
Run-time Data Analysis to Drive Compiler
Optimizations∗

Sebastian Kloibhofer

Johannes Kepler University

Linz, Austria

sebastian.kloibhofer@jku.at

Abstract
Throughout program execution, types may stabilize, vari-

ables may become constant, and code sections may turn out

to be redundant—all information that is used by just-in-time

(JIT) compilers to achieve peak performance. Yet, since JIT

compilation is done on demand for individual code parts,

global observations cannot be made. Moreover, global data

analysis is an inherently expensive process, that collects

information over large data sets. Thus, it is infeasible in dy-

namic compilers. With this project, we propose integrating

data analysis into a dynamic runtime to speed up big data

applications. The goal is to use the detailed run-time infor-

mation for speculative compiler optimizations based on the

shape and complexion of the data to improve performance.

Keywords: Dynamic compilation, Compiler optimization,

Data analysis, Program optimization

1 Motivation
The rise of big data inevitably brings new challenges for

applications and hardware in terms of query complexity,

processing capabilities, and database design [1, 2].Withmore

and faster main memory being available [3], in-memory data

processing is more accessible than ever, to rid data-centric

applications of I/O bottlenecks and to use the different cache

layers efficiently [4, 5]. Those factors shift the burden of

dealing with large datasets to programming languages and

the underlying runtimes. Even more so, it is the developers’

responsibility to ensure that data queries are efficient.

Consider the query in Fig. 1. Assuming complete knowl-

edge about the processed data, we could apply a number of

performance improvements: We could reorder the conditions

based on their selectivities, adapt the loop for predication [6],

vectorization [7], and better cache utilization [8], or even

apply prior transformations to the data (cf. Section 3). De-

velopers, however, often do not have perfect information

about the data. Hence, even recognizing any potential for

hand-crafted optimizations is a non-trivial task.

The Graal Compiler [9, 10]—the dynamic JIT compiler

of the polyglot Java platform GraalVM [11]—optimizes pro-

grams using run-time information. The Truffle framework[12]

additionally allows guest-language integration via abstract

∗
This research project is partially funded by Oracle Labs.

syntax tree (AST) interpretation. To explore data analysis in

the context of program optimization, we propose to embed

a data analysis framework into GraalVM. Truffle already

utilizes profiling information to boost performance of the

otherwise “slow” interpreter via partial evaluation, but there

is no comprehensive support for other forms of analyses yet.

While the collection of run-time metrics via Truffle is cov-

ered in a concurrently developing joint project and is not

part of this particular work, we want to adapt the compi-

lation process based on such a framework. By extracting

data-specific information from the AST, we want to perform

compiler optimizations on data-heavy applications.

for (row in db)
 if (row.x == 0 || row.y < 125) accm += row.z
Figure 1. A loop (“query”) to process data in a program

2 Problem
Data analysis encompasses a variety of techniques, appli-

cable to a wide range of use cases. Databases accumulate

data statistics to optimize queries [4]. Taint tracking tries to

detect the abuse of untrusted data to prevent exploits [13].

Offline analyses of large data sets result in statistics and

visualizations [14, 15]. Even compilers perform data flow

analysis to improve application performance [16, 17].

Using data to optimize programs is not a novel idea and

has been applied in runtime systems to specialize operations

for observed input types, to determine high-level vector-

ization targets, or to reduce the memory footprint [18, 19].

Particularly dynamic languages are a favored target, due to

their limited static information [20]. Also, polyhedral models1

are frequently applied in data science, speeding up image

processing or deep learning via hardware-dependent opti-

mizations [21]. Nevertheless, many of those approaches are

limited to specific computational patterns and loop struc-

tures or offer APIs for optimized data handling [8, 21]. Zhang

et al. [22] use Truffle to optimize query plans. However, they

require using pragmas to explicitly highlight target loops—

again shifting responsibility to the developer.

Large-scale object-level data analysis within a JIT compiler

is often impossible due to its compile-time overhead as well

as its scope, mostly limited to individual compilation units.

Therefore, we argue that a combined approach—analysis

1
a mathematical framework for optimizing operations such as nested loops

S. Kloibhofer

Partial Evaluator
inlining, IR creation

2 Graal Compiler
optimization, code generation

3

hotspot
identified

AST preprocessing,
IR information encoding

data access optimizations,
loop optimization, vectorization

execution, self-
specialization

data analysis & collection

AST Interpreter

mov %eax, %ebx

jmp <loc>

1

Figure 2. The proposed addition to the Graal compilation pipeline: Object-level analysis in the AST interpreter, preprocessing
and encoding of analysis information into the IR at partial evaluation, and optimization of patterns and loops during compilation

without user interaction during interpretation and platform-

specific optimizations during compilation—could counter

the drawbacks of traditional data analysis and reveal new

optimization potential. To the best of our knowledge, there

is no research proposing a similar framework yet.

3 Approach
With this work, we focus on the compile-time dynamics that

arise when using data analysis. We want to collect data-level

information such as types and structures, accesses (mem-

ory reads, writes), value distributions, or query patterns (e.g.

loops that filter/aggregate/transform data sets). While com-

mon compilers focus on structural optimizations such as

loop unrolling [23] or auto-vectorization [7], we want to

gather information about the data itself to enable further

optimizations. Fig. 2 depicts the overall process:

1) Collection of run-time metrics is implemented in a joint

project. There, we extend Truffle to enable object-level anal-

ysis without additional user input and accumulate metrics

such as selectivity, access counters, and similar meta-data.

2) Truffle’s partial evaluator optimizes the AST and inlines

most operations [11], transforming it into the intermediate

representation Graal IR [16]. Hence, it acts as the primary

interface between the interpreter and the compiler. As the

AST represents control flow, but the collected information

is data-based, we are limited to pattern detection and eval-

uation of stable information, e.g., uniformly observed data

types or accumulated query metrics (selectivity, costs).

3) Most optimization work is done in the compiler. At

this point, query patterns have been determined and corre-

sponding metrics should be available, subsequently allow-

ing us to aggressively speculate on the shape of the data

when observing large, homogeneous data structures. In fil-

ter queries, we can reorder conditions to prioritize highly

selective predicates. On previously transformed data struc-

tures, we can optimize accesses to remove any overhead and

can use hardware-specific instructions. This includes exten-

sive vectorization, to perform simultaneous computations on

multiple data in linear memory. We can restructure nested

loops to improve cache performance and further boost vec-

torization. If any of our assumptions are invalidated, we

furthermore have to be able to return to the interpreter and

to revert optimizations.

// Employee{int dept, double sal}
emps = /* N Employee array */
totalSal = 0
for (i = 0..N-1)
 if (emps[i].dept == 100)
 totalSal += emps[i].sal

dept
sal

emp
100
2000

emp
200
1500

emps
emp
100
1800

0 1 2 3

Figure 3. Querying an array of structures

// _Employee_{int[] dept, double[] sal}
emps = /* transformed Employee array */
totalSal = 0
for (i = 0..N-1)
 if (emps.dept[i] == 100)
 totalSal += emps.sal[i]

dept
sal

emps 0 1 2 3

2000 1500 1800
100 200 100

Figure 4. Querying a structure of arrays

Prototype: Storage Transformation. For initial experi-
ments, we implemented a prototype in SimpleLanguage [24].
SimpleLanguage is a Truffle research language that exhibits

typical characteristics of purely dynamic, object-oriented lan-

guages, while also addressing most technologies and compo-

nents within the Truffle framework. This prototype handles

patterns such as depicted in Fig. 3, where a loop aggregates

the salaries of an array of Employee objects for a specific

department. We can optimize this by transforming the under-

lying storage representation from an array of structures (AoS)
to a structure of arrays (SoA) [25]. Therefore, we provide an
array implementation that tracks accesses to stored objects.

When observing a large number of read accesses, an AoS

transforms itself by generating property arrays from the in-

dividual objects’ properties. Subsequent access to the array

is then rewired, effectively resulting in a query and memory

layout as in Fig. 4. The benefits of this representation stem

from the linear arrangement of the properties: Whereas the

original representation involves object field accesses (neither

in linear memory, nor cache-efficient), looping over object

properties now effectively means iterating over arrays, thus

ensuring better cache locality and enabling vectorization.

While transformation of the data takes place in the inter-

preter, our part of the project is to optimize the access to

this data. Hence, we ensure that for any array access strictly

either the fully optimized or the unoptimized version is com-

piled, with a state change (storage transformation) resulting

in deoptimization and recompilation. This allows us to amor-

tize the analysis overhead, e.g., by preventing bounds checks

or null checks for the property arrays. In Fig. 4, this also

means that we can extract loop-invariant parts (e.g. loading

the base addresses of emps.sal, emps.dept). We perform

Run-time Data Analysis to Drive Compiler Optimizations

most of this work using compiler intrinsics as well as experi-

mental compiler phases, detecting accesses into transformed

structures within Graal IR by leveraging the known types

and structures used in the transformed representations.

Evaluation Methodology. Work on this project is cur-

rently driven by improving performance on hand-crafted

SimpleLanguage microbenchmarks. These focus on opera-

tions on large in-memory datasets of similar objects (akin

to in-memory query processing). Figure 5 contains early

results of this evaluation and shows the relative speedups

of our implementation (cf. Section 3) in microbenchmarks

over two query types. We measure the performance with

and without compiler optimizations and for each also show

the speedup without initial transformation overhead. This

suggests that we are able to amortize the analysis costs via

compiler optimizations. In the course of this project, we

also aim at evaluating our approach with other data-centric

open-source benchmarks running on Truffle languages.

aggregate filterQuery type

0.8
1.0
1.2
1.4
1.6

Sp
ee

du
p

(
)

1.324 1.248

1.792

1.427

0.685 0.8240.752 0.864

comp. opts. w/ trans. ovh.
no comp. opts. w/ trans. ovh.

comp. opts.
no comp. opts.

Figure 5. SimpleLanguage microbenchmark results

4 Conclusion
Our project aims at leveraging analysis of large datasets in

a dynamic compiler. By shifting the analysis part into the

interpreter, we want to foster, simplify and speed up com-

piler optimizations, primarily focusing on data-heavy opera-

tions and queries. Our main goal is to achieve performance

improvements for in-memory data processing applications—

especially in dynamic languages—by speculating on the prop-

erties of data structures and queries, subsequently utiliz-

ing vectorization, loop transformations, and other platform-

specific optimizations. Using Truffle, we aim to extend this

process to polyglot applications, performing analysis and

optimizations across language boundaries.

References
[1] X. Jin et al. 2015. Significance and challenges of big data research.

Big Data Research. Visions on Big Data, 59–64. issn: 2214-5796. doi:

10.1016/j.bdr.2015.01.006.
[2] A. Abelló. 2015. Big data design. In (DOLAP ’15). ACM, NewYork, NY,

USA, 35–38. isbn: 978-1-4503-3785-4. doi: 10.1145/2811222.2811235.
[3] S. F. Oliveira, K. Fürlinger, and D. Kranzlmüller. 2012. Trends in

computation, communication and storage and the consequences for

data-intensive science. In IEEE, 572–579. doi: 10.1109/HPCC.2012.83.
[4] D. Das et al. 2015. Query optimization in oracle 12c database in-

memory. Proc. VLDB Endow., 1770–1781. issn: 2150-8097. doi: 10.
14778/2824032.2824074.

[5] G. Graefe et al. 2014. In-memory performance for big data. Proc. VLDB
Endow., 37–48. issn: 2150-8097. doi: 10.14778/2735461.2735465.

[6] J. R. Allen et al. 1983. Conversion of control dependence to data

dependence. In (POPL ’83). ACM, New York, NY, USA, 177–189.

isbn: 978-0-89791-090-3. doi: 10.1145/567067.567085.
[7] G. M. Duboscq. 2016. Combining speculative optimizations with flexi-

ble scheduling of side-effects. PhD thesis. Linz, April 2016.

[8] A. Simbürger et al. 2019. PolyJIT: polyhedral optimization just in

time. Int J Parallel Prog, 874–906. issn: 0885-7458, 1573-7640. doi:
10.1007/s10766-018-0597-3.

[9] L. Stadler, T. Würthinger, and H. Mössenböck. 2014. Partial escape

analysis and scalar replacement for java. In (CGO ’14). ACM, Orlando,

FL, USA, 165–174. isbn: 978-1-4503-2670-4. doi: 10.1145/2581122.
2544157.

[10] D. Leopoldseder et al. 2018. Dominance-based duplication simulation

(DBDS): code duplication to enable compiler optimizations. In ACM

Press, Vienna, Austria, 126–137. isbn: 978-1-4503-5617-6. doi: 10.
1145/3168811.

[11] T.Würthinger et al. 2013. One VM to rule them all. In (Onward! 2013).

ACM, Indianapolis, Indiana, USA, 187–204. isbn: 978-1-4503-2472-4.

doi: 10.1145/2509578.2509581.
[12] C. Wimmer and T. Würthinger. 2012. Truffle: a self-optimizing run-

time system. In (SPLASH ’12). ACM, Tucson, Arizona, USA, 13–14.

isbn: 978-1-4503-1563-0. doi: 10.1145/2384716.2384723.
[13] J. Kreindl et al. 2020. Multi-language dynamic taint analysis in a

polyglot virtual machine. In (MPLR 2020). ACM, New York, NY, USA,

15–29. isbn: 978-1-4503-8853-5. doi: 10.1145/3426182.3426184.
[14] S. Kandel et al. 2012. Enterprise data analysis and visualization: an

interview study. IEEE Transactions on Visualization and Computer
Graphics, 2917–2926. issn: 1941-0506. doi: 10.1109/TVCG.2012.219.

[15] H. V. Jagadish et al. 2014. Big data and its technical challenges. Com-
mun. ACM, 86–94. issn: 0001-0782. doi: 10.1145/2611567.

[16] G. Duboscq et al. 2013. Graal IR: an extensible declarative intermedi-

ate representation. In Proceedings of the Asia-Pacific Programming
Languages and Compilers Workshop. Shenzhen, China, 9.

[17] T. Gross and P. Steenkiste. 1990. Structured dataflow analysis for

arrays and its use in an optimizing compiler. Software: Practice and
Experience, 133–155. issn: 1097-024X. doi: 10.1002/spe.4380200203.

[18] H. Wang, D. Padua, and P. Wu. 2015. Vectorization of apply to reduce

interpretation overhead of r. SIGPLAN Not., 400–415. issn: 0362-1340.
doi: 10.1145/2858965.2814273.

[19] J. Talbot, Z. DeVito, and P. Hanrahan. 2012. Riposte: a trace-driven

compiler and parallel VM for vector code in r. In ACM Press, Min-

neapolis, Minnesota, USA, 43. isbn: 978-1-4503-1182-3. doi: 10.1145/
2370816.2370825.

[20] H. Wang, P. Wu, and D. Padua. 2014. Optimizing r VM: allocation

removal and path length reduction via interpreter-level specializa-

tion. In ACM, Orlando FL USA, 295–305. isbn: 978-1-4503-2670-4.

doi: 10.1145/2544137.2544153.
[21] R. Baghdadi et al. 2019. Tiramisu: a polyhedral compiler for express-

ing fast and portable code. In (CGO 2019). IEEE Press, Washington,

DC, USA, 193–205. isbn: 978-1-72811-436-1.

[22] W. Zhang et al. 2021. Adaptive code generation for data-intensive

analytics. Proc. VLDB Endow., 929–942. issn: 2150-8097. doi: 10.14778/
3447689.3447697.

[23] J. W. Davidson and S. Jinturkar. 1996. Aggressive loop unrolling in

a retargetable, optimizing compiler. In (Lecture Notes in Computer

Science). T. Gyimóthy, editor. Springer, Berlin, Heidelberg, 59–73.

isbn: 978-3-540-49939-8. doi: 10.1007/3-540-61053-7_53.
[24] Oracle. [n. d.] GraalVM - introduction to SimpleLanguage. GitHub.

Retrieved 07/05/2021 from https://www.graalvm.org/graalvm-as-a-
platform/implement-language/.

[25] Intel. 2010. A guide to vectorization with intel® c++ compilers.

(2010).

https://doi.org/10.1016/j.bdr.2015.01.006
https://doi.org/10.1145/2811222.2811235
https://doi.org/10.1109/HPCC.2012.83
https://doi.org/10.14778/2824032.2824074
https://doi.org/10.14778/2824032.2824074
https://doi.org/10.14778/2735461.2735465
https://doi.org/10.1145/567067.567085
https://doi.org/10.1007/s10766-018-0597-3
https://doi.org/10.1145/2581122.2544157
https://doi.org/10.1145/2581122.2544157
https://doi.org/10.1145/3168811
https://doi.org/10.1145/3168811
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/3426182.3426184
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/2611567
https://doi.org/10.1002/spe.4380200203
https://doi.org/10.1145/2858965.2814273
https://doi.org/10.1145/2370816.2370825
https://doi.org/10.1145/2370816.2370825
https://doi.org/10.1145/2544137.2544153
https://doi.org/10.14778/3447689.3447697
https://doi.org/10.14778/3447689.3447697
https://doi.org/10.1007/3-540-61053-7_53
https://www.graalvm.org/graalvm-as-a-platform/implement-language/
https://www.graalvm.org/graalvm-as-a-platform/implement-language/

	Abstract
	1 Motivation
	2 Problem
	3 Approach
	4 Conclusion

