
FAD.js: Fast JSON Data Access
Using JIT-based Speculative Optimizations

Daniele Bonetta
VM Research Group

Oracle Labs
daniele.bonetta@oracle.com

Matthias Brantner
Oracle Labs

matthias.brantner@oracle.com

ABSTRACT
JSON is one of the most popular data encoding formats,
with wide adoption in Databases and BigData frameworks
as well as native support in popular programming languages
such as JavaScript/Node.js, Python, and R.

Nevertheless, JSON data processing can easily become a
performance bottleneck in data-intensive applications be-
cause of parse and serialization overhead. In this paper,
we introduce Fad.js, a runtime system for efficient process-
ing of JSON objects in data-intensive applications. Fad.js
is based on (1) speculative just-in-time (JIT) compilation
and (2) selective access to data. Experiments show that
applications using Fad.js achieve speedups up to 2.7x for
encoding and 9.9x for decoding JSON data when compared
to state-of-the art JSON processing libraries.

1. INTRODUCTION
The JavaScript Object Notation (JSON [5]) format is one

of the most popular data-interchange formats. Data-intensive
systems and applications heavily rely on JSON. Notable ex-
amples are REST-based and serverless applications [18, 1],
key-value stores (e.g., MongoDB [9]) and BigData analytics
frameworks (e.g., Apache Spark [25] and Storm [2]).

In most of these scenarios, JSON is used at the boundary
between a data source (e.g., a Database, a Web service, a file
system, or a memory-mapped TCP buffer) and a language
runtime (e.g., a JavaScript/Node.js virtual machine). The
interaction between the language runtime and the external
data source can easily become a performance bottleneck for
applications that need to produce or consume significant
amounts of JSON data. Such performance overhead is of-
ten caused by two facts. First, the JSON data resides in a
source that is external to the memory space of the language
runtime. As a consequence, the language runtime needs to
materialize the data in its language-private heap memory
space (using a primitive data type, e.g., a JavaScript string)
before consuming it. Analogously, a language runtime pro-
ducing a JSON-encoded string needs to allocate a string

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

in its private memory space before externalizing it. A sec-
ond source of performance overhead is that all the JSON
encoding and decoding libraries in language runtimes rely
on general-purpose techniques that do not take into account
the structure, schema or types of the data that they are pro-
cessing. Decoding is often based on an LL parser [10], while
encoding is implemented by performing a full walk of the
object graph that is being converted to JSON. The adop-
tion of such general-purpose libraries is mostly motivated
by the fact that JSON is used in the context of dynamic
languages such as JavaScript or Python, where it is not pos-
sible to know in advance (i.e., statically) the characteristics
of the JSON data that will be processed by the application.
In other words, such applications do not use a pre-defined
schema (e.g., based on JSON schema [20]) that could be
used to speed up the encoding (or decoding) process.

Interestingly, the lack of a pre-defined and explicit schema
does not necessarily imply that there is no structure in the
way JSON data is used. We argue that very often JSON-
intensive applications present an implicit schema that is
known only at runtime, and we believe that all such ap-
plications deserve specific optimizations.

In this paper, we introduce a new runtime system, called
Fad.js, that significantly improves the performance of oper-
ations on JSON data in data-intensive applications. Fad.js
differs from existing encoding and decoding approaches for
dynamically typed languages such as JavaScript in two as-
pects: (1) it performs encoding and decoding operations
on raw data, without materializing objects in the language
memory space until they are used, and (2) rather than be-
ing based on general-purpose parsing techniques, it is based
on the notion of speculation and specialization, and relies
on just-in-time compilation (to machine code) in order to
optimize encoding and decoding operations for an implicit
schema. Thanks to its design, Fad.js performs extremely
well in all cases where JSON operations have stable usage
patterns, outperforming general-purpose JSON libraries in
all our benchmarks. This paper makes the following contri-
butions:

1) We present the design of Fad.js, a runtime system for
fast access to JSON data in dynamically typed lan-
guages such as JavaScript. To the best of our knowl-
edge, Fad.js is the first runtime system to apply JIT
compilation to JSON processing in a dynamic language
runtime. We base our implementation on Graal.js [7],
a state-of-the-art implementation of Node.js [6]. How-
ever, the Fad.js runtime techniques can be considered

language-independent, and can be applied to other dy-
namic languages or data processing systems as well.

2) We describe a novel JIT-based encoding technique,
which we call Constant structure encoding. In our
benchmarks, this technique improves the performance
of encoding data into JSON up to 2.7x.

3) We describe a novel JIT-based decoding technique,
which we call Direct structure decoding. This tech-
nique improves the performance of JSON decoding up
to 9.9x.

2. MOTIVATING EXAMPLE
JSON is extensively used in data-intensive applications in

combination with dynamic languages. Most of the time, the
structure of the JSON objects being accessed by the lan-
guage runtime is unknown until execution time, and com-
mon JSON libraries do not make any a priori assumption
on the structure of the underlying data. Instead, they rely
on well-known parsing and encoding techniques that are
known to offer good performance for common usage pat-
terns. Very often, however, JSON data manipulation could
benefit from some speculative runtime assumptions. For ex-
ample, a JSON encoder could speculate on some property
names being constant: as long as the objects have the same
set of properties (with constant types), the encoding of a
JSON string could potentially be performed more efficiently.
Consider the following example:

1 exports.handler = function(event , callback) {
2 var result = {
3 key: event.key ,
4 data: someFunctionOf(event)
5 };
6 // encode and forward to a data storage

service
7 callback.success(JSON.stringify(result));
8 }

The code snippet corresponds to an AWS Lambda func-
tion [1] consuming data from an external Web source (e.g.,
an HTTP connection). The code in the example produces a
result object using JavaScript’s built-in function stringify.
This function generates a JSON-encoded string by perform-
ing a full walk of the objects and values in the result ob-
ject graph, reading all the names of the properties in the
object, and traversing the graph (including the data object)
while encoding into the JSON-formatted string. For this
specific example, many operations could be avoided because
the result object has a constant structure across invoca-
tions of the function. Specifically, it always has two proper-
ties named key and data whose values most likely are of the
same value type. Hence, reading the names of the properties
could be avoided (they are constant). Similarly, traversal of
the full object could be avoided, too. The encoded JSON
string could be created starting from some constant string
tokens (i.e., the pre-formatted property names), concate-
nated with the values of the result properties. Moreover,
since the result object has a constant structure, reading
the values out of the object (i.e., key and data) can be op-
timized, too. Additionally, data is always the last property
in the object. Hence, the encoder can speculate on that fact
when deciding whether a trailing comma needs to be added
to the encoded string.

Rather than implementing the encoding operation using a
general-purpose JSON encoder, this example suggests that

the language runtime could specialize on the data being en-
coded, and benefit from some form of runtime knowledge.
In doing so, it could generate machine code that can be
executed more efficiently, as it does not need to take into
account all possible encoding scenarios.

Even more effective optimizations can be performed in the
case of JSON data decoding. Consider the following exam-
ple of an Apache Storm [2] stream processing component
written in Node.js 1:

1 Bolt.process = function(tuple , done) {
2 var tweet = JSON.parse(tuple.value);
3 if (tweet.user === "@userfoo") {
4 // send to the next pipeline stage
5 this.emit({
6 value: tweet.body ,
7 anchorTupleId: tuple.id
8 });
9 }

10 done();
11 }

The Storm component in this example selects a sequence
of JSON-encoded tweets with a given username (@userfoo,
in the example). Using the default JSON decoder of Node.js
(i.e., JSON.parse), even the small code snippet in the exam-
ple results in significant overhead. For each tweet, the ap-
plication allocates a UTF-8 JavaScript string in the Node.js’
process heap space (from the raw binary data received from
the socket), parses it (into tuple.value), materializes an
object graph (the tweet object) in the Node.js heap space,
accesses its user property, and – only if needed – reads a sec-
ond property (i.e., body). Intuitively, most of the operations
could be avoided or optimized. The encoder could avoid al-
locating a JavaScript string and an entire JavaScript object
instance, and could rather read the content of the value

property directly from the raw input data, materializing the
body property only when (and if) it is read by the appli-
cation. By materializing only what is really used, the per-
formance of the application could be significantly improved.
Moreover, the encoder could also speculate on other pecu-
liarities of the application (e.g., it could speculate on the
fact that user is always the 5th property in a tweet), and
use such runtime assumptions to generate machine code that
can benefit from compiler optimizations such as, e.g., loop
unrolling and escape analysis.

The Fad.js runtime has been designed exactly for the
encoding and decoding scenarios that we have described.
Such operations share properties that are commonly found
in data-intensive applications:

1) Objects often have properties with constant names and
types.

2) The JSON encoding or decoding operations are per-
formed on more than a single object or JSON string,
respectively. For example, when processing a large
JSON file with one object per line.

3) The JSON data are read only partially, and not all of
the values are used by the application logic. However,
their usage presents a stable access pattern.

4) The application processing JSON data always inter-
acts with an external I/O data source (e.g., a Database,
a TCP connection, or a file).

1Example of a Bolt component extracted from the
Apache Storm multi-language bindings for Node.js:
http://storm.apache.org/

Given the semantics of dynamically-typed languages, none
of these properties can be exploited to make any static as-
sumption on the structure or on the types of the data. This
is particularly true for JavaScript, where any object graph
can change all or a subset of its properties at runtime (e.g.,
to a different type), and where properties can be deleted at
any moment. As a consequence, the notion of an implicit
JSON schema is not to be considered strict, as it cannot be
formalized for the purposes of static or semi-static analy-
sis. Conversely, we consider the implicit schema of a JSON-
intensive application a pure runtime-only information that
could emerge after observing JSON usage patterns.

3. FAD.JS
Fad.js is a JSON encoding and decoding runtime target-

ing the data-intensive workloads described in the previous
section. Informally, Fad.js attempts to identify an implicit
JSON schema at runtime and relies on its properties to ac-
cess JSON data more efficiently. The Fad.js runtime tech-
niques are language-agnostic, and could potentially be ap-
plied to any managed language or data processing system.
In this paper, we focus on JavaScript and Node.js: in this
context, Fad.js can be considered a drop-in replacement for
the built-in JSON libraries of JavaScript’s core standard li-
brary. Targeting Node.js as the main scenario for Fad.js is
motivated by the popularity of JavaScript in many JSON-
intensive domains. In addition to being fully compatible
with the default JSON library of Node.js, Fad.js features
an additional API (detailed in section 3.3) that can be used
to further improve the performance of JSON parsing under
certain circumstances.

Fad.js can be considered an Active library [12], that is,
a library with a given interface that can self-optimize and
adapt its runtime behavior depending on its usage. It can
be executed as a standard Node.js module, and it can be
executed as part of the query processor of a traditional
database management system. Fad.js is built on top of Or-
acle’s Graal.js and Truffle technologies, which we describe
in the following section.

3.1 Background: Truffle and Graal.js
Truffle [24] is a framework for the development of run-

time systems that can be used to implement language ex-
ecution engines (e.g., a JavaScript virtual machine), data
processing engines as well as JIT-enabled runtime libraries
such as Fad.js. A Truffle-based runtime is implemented in
the form of a self-optimizing Abstract Syntax Tree (AST)
interpreter [10]: each node in the AST corresponds to a
single runtime operation (e.g., reading some bytes, perform-
ing a function call, etc.) which can be compiled to highly-
optimized machine code by means of partial evaluation [15]
by the Graal [21] dynamic compiler. At runtime, each AST
node eagerly replaces itself with a specialized version that
relies on some (runtime-only) speculative assumptions, lead-
ing to better performance. For example, node rewriting spe-
cializes the AST for the actual types used by an operation
(e.g., short integers rather than double-precision numbers),
and can result in the elision of unnecessary generality, e.g.,
boxing and complex dynamic dispatch mechanisms. As long
as an assumption holds, the compiled machine code will ben-
efit from it (e.g., by treating some object properties as short
integers). As soon as a runtime assumption is invalidated,

the machine code and the corresponding AST nodes are de-
optimized and replaced with new, more generic, versions that
do not rely on the assumption anymore. Node rewriting
and JIT compilation are handled automatically by the Graal
compiler, which transparently compiles AST nodes to ma-
chine code when needed, and replaces invalidated machine
code with less-optimized one in case of speculation failures.

The Fad.js runtime described in this paper has been de-
signed to target Oracle’s Graal.js JavaScript language run-
time [7]. Graal.js is a high-performance JavaScript runtime.
It is fully compatible with Node.js, and is developed using
Truffle. Graal.js is a highly compliant implementation of
JavaScript: as of today, it passes more than 96% of the
ECMA2107 language compliance tests, and is able to fully
support Node.js workloads, with peak performance in line
with state-of-the-art JavaScript runtimes such as Google
V8 [6]. Graal.js is an embeddable language runtime: it can
be run on the HotSpot Java Virtual Machine, but can also
be deployed into other systems as a shared library. As an
example, it can be embedded in a database management
system in a setup similar to the one of the V8 JavaScript
engine in MongoDB [9].

Since both Fad.js and Graal.js are based on Truffle, their
AST nodes are compatible, and can be freely combined.
For example, the node implementing a JavaScript property
lookup operation can be executed during a Fad.js encoding
operation. In this way, the machine code produced for the
Fad.js operation accessing JavaScript native objects (e.g.,
to read a property) will be compiled with the very same
machine code of the JavaScript operation. This effectively
means that core operations of the JavaScript runtime such
as reading or writing properties can be directly inlined in the
Fad.js runtime without any additional overhead.

3.2 Runtime Speculation in FAD.js
Fad.js achieves high performance by means of two main

techniques, both of which are based on speculative assump-
tions, JIT compilation, and direct access to raw data:

• Constant structure encoding: Fad.js attempts to iden-
tify an object graph (or a subset of it) with constant
structure, property names and types. When found,
Fad.js generates machine code that is specialized for
such graph structure and, as a result, encodes objects
with higer efficiency by leveraging object shapes [23].

• Direct structure decoding: Fad.js attempts to identify
a subset of JSON properties that are actually accessed.
When found, the Fad.js runtime generates machine
code that is optimized for parsing only those properties
and values. In this way, the Fad.js runtime (1) avoids
materializing unused properties and (2) produces ma-
chine code that is more efficient to execute.

Both techniques are implemented in Fad.js at the VM
level, meaning that they directly interact with the language
execution runtime, and they leverage VM-level and per-
object metadata. Fad.js relies on runtime assumptions and
the dynamic generation of machine code that can benefit
from such assumptions: as long as they hold, encoding and
decoding operations can be performed more efficiently. Ex-
amples of runtime assumptions that are used by Fad.js to
generate machine code can be relative to the type of encoded
numbers (e.g., to generate machine code capable of encoding
numbers with a syntax that does not need to match symbols
such as commas or exponents), to specific runtime condi-

tions (e.g., whether arrays have elements of multiple types),
or can rely on specific aspects of an application (such as the
presence of certain property names or the order in which
properties are accessed).

3.3 FAD.js API

The Fad.js runtime is exposed to Node.js applications via
a compact API designed to be very familiar to JavaScript de-
velopers, as it resembles the default general-purpose JSON
API that is part of the JavaScript language specification [4].
Like with the built-in JSON runtime of Node.js, a JavaScript
object graph can be converted to a JSON-formatted string
using the stringify function:

1 var data = {an:{ object:"graph"}};
2 // Encoding using the default Node.js API
3 var default = JSON.stringify(data);
4 // Encoding using FAD.js
5 var optimized = FADjs.stringify(data);
6 assert.equal(optimized , default); // true

The encoding operation has the same semantics of Node.js’
default one, and the encoded string produced by Fad.js
is identical to the one produced by the default JavaScript
encoder. A JSON-formatted string can be converted to a
JavaScript object graph using two distinct APIs, namely,
parse and seek:

1 var string = '{an:{ object :"graph "}}';
2 // Decoding using the default Node.js API
3 var default = JSON.parse(string);
4 // Decoding using the two FAD.js APIs
5 var fullParsed = FADjs.parse(string);
6 assert.equal(fullParsed , default); // true
7 var fastParsed = FADjs.seek(string);
8 assert.equal(fastParsed , default); // false

The first function, parse, has the same semantics of the
corresponding JavaScript built-in function, and can be used
as a drop-in replacement for it: it produces an acyclic object
graph corresponding to the input JSON data, and throws an
exception in case of a malformed input string. At runtime,
however, the parse function behaves differently, as it does
not allocate any string nor any object graph in the heap
space of the JavaScript application. Rather, it only ensures
that the string is valid (and throws an exception in case of
a validation failure), returning to the application a proxy
object that corresponds to the actual object graph of the
input data. In this way, no real allocation is performed on
the JavaScript heap space. After the initial validation per-
formed in situ, the actual object graph is populated lazily
and selectively, that is, only for the values that the applica-
tion will actually read.

The second Fad.js function, seek, is similar to parse,
but does not perform full input data validation, and is de-
signed to be used in all the contexts where the input data
is expected to be already valid, for example because it is
stored in a file managed by external data sources (e.g., a
logging file produced by a trusted source) or it belongs to
some memory-mapped files (for example to implement data
exchanges between processes). Apart from the lack of the
initial input correctness validation, parse and seek behave
in the same way, and share all the Fad.js runtime optimiza-
tions.

Unlike built-in libraries in Node.js, which always operate
on heap-allocated strings, the Fad.js parsing primitives can

operate on raw data. This is described in the following code
snippet:

1 fs.createStream('/path/to/some/file.json');
2 fs.on('data', function(chunk) {
3 // chunk is a raw binary buffer with utf8

encoding
4 Buffer.isBuffer(chunk , 'utf8'); // true
5 // Node.js must allocate a JS string:
6 var p = JSON.parse(chunk.toString('utf8'));
7 // FAD.js can operate on the data , directly
8 var p = FADjs.parse(chunk);
9 });

The code in the example corresponds to a small Node.js
application reading a JSON file (e.g., a log file): while the
default JavaScript JSON parser in Node.js always needs to
convert raw binary data to a JavaScript string, the Fad.js
runtime can operate on the binary data, directly, avoiding
the materialization of the string in the Node.js heap space.

4. CONSTANT STRUCTURE ENCODING
In Fad.js, an object graph is encoded to a JSON-formatted

string by speculating on the constant nature of the implicit
schema of the input objects. As long as such assumption
holds, the Fad.js runtime can avoid or optimize most of the
expensive operations that are usually involved in the gener-
ation of the JSON string. Consider the following example
Node.js application:

1 connection.on('data', function(data) {
2 var entry = JSON.stringify(data) + '\n';
3 fs.appendFileSync('/some/file', entry);
4 });

where the entry object corresponds to some data with the
following informal (implicit) schema:

1 var entry = {
2 id: /* any number , always present */,
3 name: /* any string , always present */,
4 value: { /* any object value , or empty */ }
5 }

The example corresponds to a logging application in which
some user data is fetched from an external source (e.g., a
database connection), and stored line-by-line in a file. The
JSON encoding operation is performed on multiple object
instances with a similar object graph: most of the struc-
ture of the JSON data is constant, with exceptions being
the value field, which could be empty or have any other
structure. As discussed earlier, a generic JSON encoding li-
brary would recursively walk the object graph of the entry

object, initially reading each property name (i.e., id, name,
and value), successively retrieving for each property name
the value associated with it. In doing so, it would append
property names and their values to the final JSON string,
performing the necessary formatting associated with each
value type (e.g., converting escape characters in strings).

The Fad.js runtime implements the stringify operation
in a different way, which does not require a full scan of
the object properties and values for each object instance as
long as the input data has the expected structure. Specif-
ically, the Fad.js runtime generates a Truffle AST that re-
sembles the structure of the object graph being encoded,
and uses it to perform the encoding operation. The Fad.js
runtime caches in the AST nodes all the values that are
assumed compilation constant (e.g., property names and

EncodingNode
 {name,id,value}

ReadNode
"id" ReadNode

"name"

ReadNode
"value"

EncodingNode
 {...}

deopt &
re-specialize

Graal.js AST

Graal.js AST node

FAD AST node

Figure 1: Fad.js encoding AST specialized for a
given object shape. The Fad.js nodes perform the
speculative encoding of the input object by lever-
aging Graal.js nodes for constant-lookup property
reads. The Fad.js AST is itself inlined in the Graal.js
AST calling the Fad.js encoder.

their type-related information): as long as the input objects
have the schema that Fad.js expects (i.e., they have proper-
ties with the expected name and type), the Fad.js runtime
avoids reading the property names of each object as well as
their type, and performs the encoding operations by combin-
ing constant strings (the property names) with the runtime
value of each property. The Truffle AST is built on-the-fly
by Fad.js, and is specialized for the implicit JSON schema
of the input object graph of the application. The gener-
ated machine code performing the encoding operation takes
into account the dynamic nature of the object graph, that
is, it can produce different strings depending on the pres-
ence of certain properties that are known to be potentially
absent (e.g., value in the example), or that have a nature
that is too heterogeneous for generating a constant compila-
tion unit. For highly-polymorphic scenarios, i.e., when too
many properties are absent or have a very heterogeneous
data type, the Fad.js runtime rewrites its AST nodes and
de-optimizes the compiled code to a generic version that
does not rely on runtime speculation. Fad.js code genera-
tion operates as follows:

• A Truffle AST is built as a direct acyclic graph that
matches the structure of the input object is created at
runtime; the graph has a node for each of the object
instances in the input graph (i.e., for the object value
in the example) and edges correspond to object refer-
ences. Since JSON does not allow cycles [4], Fad.js
ensures that the graph is a tree.

• Each of the nodes of the AST stores a constant list of
strings, which corresponds to the finite set of property
names of each object instance.

• Each of the nodes also stores a constant list of pre-
formatted strings that correspond to the formatted prop-
erty names that will be used to generate the final JSON
string. Such pre-formatted strings include the charac-
ters that have to be appended to generate the final
encoding (e.g., the ":" symbol, the proper string quo-
tation characters, etc.)

The Truffle AST generated by Fad.js is effectively an exe-
cutable representation of a JSON encoder that is tailored to

the implicit JSON schema used by the application. It is spe-
cialized for objects with the given properties and types: as
long as the input object graphs have the expected structure,
executing the Truffle AST produces a valid JSON-formatted
string. A Truffle AST specialized for the hidden graph of the
example in the previous section is depicted in Figure 1, while
Figure 2 presents the internal implementation of a special-
ized AST node for the same implicit JSON schema. Encod-
ing ASTs in Fad.js relies on runtime information provided
by the Graal.js JavaScript engine, which we describe in the
following section.

4.1 Object shapes in FAD.js
The Fad.js runtime operates on the JavaScript data types

of Graal.js. One of the reasons behind Graal.js’ performance
is its dynamic object storage model [23], which is a very ef-
ficient representation of objects in the language heap space
with specialized AST nodes for fast read and write access
to properties. Because JavaScript is a dynamic language,
any object can have an arbitrary number of properties with
arbitrary types, with any object being conceptually equiv-
alent to a map. Property lookup operations on such dy-
namic objects can have a very high runtime overhead, as
they might require to compute the hash of the property to
be accessed for each operation. In order to reduce any hash-
based lookup cost, modern dynamic languages (including
Graal.js) rely on the notion of object shape [13, 16] (also
called Hidden classes). An object shape is a runtime rep-
resentation that encodes certain metadata regarding a spe-
cific object instance such as the number and the type of its
properties. Shapes are used to perform constant-offset prop-
erty lookups (rather than hash-based ones) where possible.
Consider the following example JavaScript application an-
notated with the shape state for each operation:

1 // new object: empty shape
2 var obj = {};
3 // shape now contains [id:num]
4 obj.id = 3;
5 // shape now contains [id:num ,name:str]
6 obj.name = "foo";
7 // shape now is [id:num ,name:str ,value:ref]
8 obj.value = {};
9 // both lookups can be performed with

constant offset using the shape
10 var combined = obj.id + ":" + obj.name;

Shapes evolve at runtime, and encapsulate information
about the internal structure of an object instance, that can
be used later on by the language runtime to produce efficient
machine code. For example, by knowing that id is the first
property with a numeric type, the JIT compiler can gener-
ate machine code that performs the lookup operation in an
efficient way (i.e., one memory load at constant offset from
the base address of the object), rather than using expensive
hash-based lookups (to compute the location of the selected
property in the object memory layout).

Object shapes are exploited in a similar way by the Fad.js
runtime, as depicted in Figure 2. The figure describes the
informal source code of a Truffle AST node generated by
the Fad.js runtime to perform the encoding of an object
with the same structure of the one in the example. The
code in the figure corresponds to the Java code of a more
complex AST node that Fad.js generates at runtime to en-
code the full object graph (corresponding to the AST de-
picted in Figure 1.) The node in the figure is specialized

1 public class EncodingNode extends ASTNode {
2 // pre - formatted values for this AST node
3 private final String encA = "{\'id\':";
4 private final String encB = ",\'name\':\'";
5 private final String encC = ",\'value\':";
6 // expected shape of the input object
7 private final Shape expectedShape;
8

9 /* Graal.js AST nodes used for fast
constant -offset property lookups */

10 @Child private final ReadNode [] prop;
11 // Next encoding node in the AST
12 @Child private final EncodingNode next;
13

14 public void executeNode(JSObject input ,
StringBuilder result) {

15 // constant shape check
16 if (input.getShape () == expectedShape) {
17 /* the property name is a compilation

constant , and the property reads
will run a constant -offset lookup */

18 String valueA = prop[0].read("id");
19 String valueB = prop[1].read("name");
20 result.append(encA + valueA);
21 result.append(encB + valueB);
22 /* call the next AST node , potentially

specialized for another object
shape */

23 String valueC = next.executeNode(
24 prop[2].read("value"));
25 result.append(encC + valueC + "}");
26 } else {
27 /* unexpected shape: de -optimize and

rewrite the node */
28 throw new RewriteASTException ();
29 }
30 }
31 }

Figure 2: A Fad.js Truffle AST node specialized to
perform the encoding of an input object based on its
shape. After a successful shape check, the node exe-
cutes the encoding operation based on compilation-
constant assumptions.

for the given object shape, and assumes that it will always
have to encode objects with such shape. By exploiting this
assumption, the Fad.js node can treat as compilation con-
stants the names of the properties to be read. In this way,
it can perform constant-time read of their values (whereas a
general-purpose encoding library would have to list all the
properties for each invocation of the encoder). In addition
to fast lookup of property values, the node can already make
one more assumption on the structure of the string that it
will have to generate. In particular, it can treat as compi-
lation constants some pre-initialized string tokens with pre-
formatted JSON structure. When the type of an object to
be parsed is not encoded in the AST node because it is a ref-
erence to another object, the AST node simply performs a
call to another AST node which will specialize on the shape
of the next object in the object graph (line 28 in the figure).

4.2 Impact on JSON encoding
Three key aspects make the Fad.js encoding approach

faster than general-purpose approaches:
1) By assuming that property names are constant, the en-

coding step does not need to retrieve the list of prop-

...

entry

a b c d

11 N

entry

a

 if (entry.a <= k) {
 ...

 if (entry.a <= k) {
 var x = entry.c;
 ...

a b c

 if (entry.a <= k) {
 var x = entry.c;
 var y = entry.d[1];

a b c

0

d

1?? ?

entry entry

(a)
Initial (full) object graph

(b)
Runtime virtualized object graph after FAD parsing

var	entry	=	{
				a	:	3,
				b	:	[many	elements	...],
				c	:	2,
				d	:	[1,	2]			
}

Figure 3: String decoding (parsing) in Fad.js. The
full object graph (a) of a JSON string is not entirely
materialized in the JavaScript memory by Fad.js,
and only the required subset is materialized after
partial parsing (b).

erties from each object. Since an object instance in
languages such as JavaScript can have any arbitrary
number of property names, such operation can take a
time proportional to the size of the object. In Fad.js
this operation is constant.

2) After reading all the property names, a general-purpose
encoder needs to retrieve the value of each property.
Since objects in JavaScript can have any arbitrary
number of properties of any arbitrary type, objects
are usually implemented with a hash-based data struc-
ture (e.g., an hash map). As a consequence, reading
each property value from an object corresponds to an
hash-based lookup for each property name. In Fad.js
such expensive hash-based lookup of property values is
avoided: since property names are assumed constant,
each value is resolved in the compiled code with a sin-
gle constant-time memory load operation at a fixed
known offset in the JavaScript heap.

3) By assuming that the structure of the JSON object
is a compilation constant, Fad.js does not perform a
full recursive walk of the input object graph. Rather,
it simply ensures that the input object has the same
structure that the compiled code expects. This check
can be performed very efficiently using object shapes.

5. DIRECT STRUCTURE DECODING
JSON parsing in Fad.js is implemented using a technique

called direct structure decoding. The main peculiarity of
this technique is that it enables the generation of efficient
machine code specialized for accessing only the subset of

the input JSON data that is used by the application, avoid-
ing unnecessary parsing operations. Moreover, all accesses
to data are performed in situ, without materializing in the
JavaScript memory space values that are not explicitly used.

Unlike general-purpose JSON parsers, parsing in Fad.js
is not performed at a single location in the code (that is,
when parse or seek are called.) Rather, parsing is split into
two separate operations, namely input data validation and
selective parsing. The first operation is performed eagerly,
while the latter is executed incrementally and lazily, and
happens at property access time. Both operations happen
transparently to the user. Consider the following example:

1 // an array to store the final result
2 var total = new Array();
3 // callback executed for each line
4 readFile.on('line', function(data) {
5 var entry = FADjs.parse(data);
6 if (matchCondition(entry.a)) {
7 var x = entry.c;
8 var y = entry.d[1];
9 total.push([x,y]);

10 }
11 });

The example corresponds to a data scraping application
that scans a JSON file line-by-line, selecting the entries
matching a specific condition (e.g., to retrieve all the log
entries for a specific day). As the example suggests, the
application does not need to parse the entire JSON data.
A general purpose JSON parsing library, however, would
always consume heap-allocated objects for each line of the
file. The materialized full object graph for the JSON object
in the example is depicted in Figure 3 (a). As the picture
shows, the object includes two arrays of variable length (b
and c) among other properties; parsing and materializing in
the JavaScript heap such arrays would correspond to a con-
siderable waste of resources. The JSON data in the example
is parsed by Fad.js using the following approach, which is
also summarized in Figure 3 (b):

1) When parse is called (at line 5), no JSON object ma-
terialization is performed. Rather, an empty proxy ob-
ject is created that holds a reference to the input data.
We call this object the virtualized object graph of the
JSON data. At this stage, no parsing operations have
been performed yet.

2) After an (empty) virtual object is created, the input
data is validated. This happens eagerly and in situ,
without materializing its content in the Node.js heap
space. Eager validation requires a full scan of the in-
put JSON data, but does not require the allocation
of the validated data in the JavaScript heap. During
validation, the virtualized object graph corresponding
to the data is populated with some minimal metadata
that will be used to speed up the materialization of
selected values at runtime. The metadata is called the
JSON parsing index. Once the object has been vali-
dated, and no JSON syntax errors have been found,
the virtual object is returned.

3) When a property of the virtualized object is read (i.e.,
the entry.a property in the example at line 6) the vir-
tualized object materializes its value in the JavaScript
memory space. To this end, the Fad.js runtime parses
only the subset of the input JSON data required to
materialize the value of the property. Parsing is per-

formed on the raw data, and the Fad.js parser might
start the parsing operation at any arbitrary position.

4) The virtualized object graph now stores the value that
has been parsed. The next time the same property will
be read by the application, its value will be read from
the in-memory (materialized) representation, and no
parsing operations will be performed anymore for that
property on the raw data.

5) If the value of the property that has been parsed is
of object reference type (e.g., entry.d at line 8) its
value is not materialized, and another virtual object
is created instead. When one of the values of the
new virtualized object graph will be accessed (e.g.,
the entry.d[1] element), the Fad.js parser will re-
solve the value by performing the correct incremental
parsing operations.

In traditional parsers, any parsing operation starts from
the beginning of the input data. The Fad.js runtime can
parse subsets of data beginning from any position. In order
to speed up parsing operations, the Fad.js runtime stores in
its virtualized objects an auxiliary data index, called pars-
ing index. Such index is used to keep track of the position
of property values in the the input JSON data, and is used
by Fad.js to keep track of potential parsing positions. With
the goal of saving memory space, the index does not con-
tain the name of the properties: storing each property name
would correspond to unnecessary string materializations in
the JavaScript heap space, that the Fad.js runtime would
potentially not use. Rather, the index only contains an ar-
ray of initial parsing positions (in the order they appear in
the input data). When a property is accessed, it is respon-
sibility of the Fad.js runtime to chose from which index to
start the parsing step. Therefore, a parsing operation may
start from the first entry in the parsing index, and then try
all the successive ones until the required property (e.g., the
d property in the example) is found. As a consequence of
this approach, parsing indexes are not strictly required by
the Fad.js parser runtime: if no index is found, the parser
would simply perform the parsing operations from the be-
ginning of the string, or from a recent parsing position (if
any). The parsing index is built while (eager) validating the
input data (i.e., when the parse function is called), and is
implemented using an array that occupies only a int Java
value for each property in the input data. Moreover, its al-
location is independent of the actual parsing operations in
Fad.js: for large JSON inputs the Fad.js runtime can ar-
bitrarily avoid the creation of indexes that are too big, and
postpone the creation of fine-grained indexes at property
access time. An exemplification of how indexes are used by
the Fad.js parser is depicted in Figure 5.

An important consideration about the Fad.js parsing ap-
proach is that all parsing steps are performed lazily, when
properties are read by the application. Beyond the obvi-
ous benefit of parsing only what is needed, the lazy nature
of the Fad.js parsing approach has another notable advan-
tage: the parsing operations can be effectively inlined into
the executable code, and can be specialized for every sin-
gle access location. This has the advantage that the Fad.js
parser can avoid unnecessary operations on the subset of
the object graphs that it needs to materialize. For example,
it can parse only the entry.a property when the thresh-
old is not interesting for the application, avoiding parsing
entry.c and other properties when they are not needed.

 if (entry.a <= k) {
 var x = entry.c;
 var y = entry.d[1];
 ...

if (...)

var y = ...var x = ..

entry.c entry.d[1]

parse obj
('a')

entry.a < ..

skip(array)

parse obj
('c')

parse obj
('d')

parse
array (1)

Graal.js AST node

FAD AST node

Uninitialized
(depot) node

Figure 4: Lazy parsing of a JSON string in Fad.js.
The Fad.js runtime is inlined in the JavaScript AST
with nodes that drive the partial incremental pars-
ing of the input string.

The JavaScript source code with a Fad.js parsing opera-
tions embedded in its property access operations is depicted
in Figure 4. Another important consideration about lazy
parsing in the parse function is that the runtime seman-
tics of the function is equivalent to the one of the default
JavaScript JSON parser. In other words, lazy parsing hap-
pens transparently to the user, and the function can be used
as a drop-in replacement for the JSON parsing runtime in
existing applications.

5.1 Parsing using the Seek API
The example application in the previous section could

also be implemented using the seek API introduced in Sec-
tion 3.3. Using seek rather than parse would make the
Fad.js runtime behave in the same way as described in the
previous section, with the following notable differences:

1) The Fad.js runtime will not perform the initial eager
validation of the input data. In case of a malformed
input, calling seek will not throw an immediate excep-
tion.

2) Since validation is not performed eagerly, the Fad.js
runtime will not populate the JSON parsing index
when seek is called.

3) Validation and any updates to the parsing index are
performed incrementally, when properties are accessed.
In the example, this means that Fad.js validates the
JSON data in three different moments, that is, each
time one of the three properties is accessed by the
application. This has the relevant consequence that
Fad.js validates only the subset of the input JSON
data that is required to ensure that the value can be
materialized. In case of parsing errors an exception is
thrown at property-access time.

The seek function can be considered an unsafe version of
parse that can be used only when the input data is known
to be valid, or when the application can tolerate a JSON
parsing error by handling potential exceptions when prop-
erties are read (rather than when parse is invoked). Exam-
ple scenarios where seek could be preferred over parse are
all cases where the correctness of the data is guaranteed by
the data source, for example if the data was produced by
the same application in a previous step during some data
conversion operation, or when it is received from a trusted
network connection with consistency guarantees.

[]{ }a : [...]3 , b : , c : 2 , d : 1 , 2

parse obj ('a')
range:[0,+3] skip (array)

range:[3,+99]

0 2 100

parse obj ('c')
range:[100,+3]

102

parse obj('d') & parse arr(1)
range:[104,109,+2]

109

a c d

1

parsing index

from
'a'
'b'

prop.

'c'
'd'

6
102
106

2

0
1 111

prop.
108
from

6 106

parsing index

virtual object
"d"

virtual object
"entry"

Figure 5: Parsing indexes. The Fad.js runtime
builds an auxiliary index to be used to perform in-
cremental parsing. Depending on the API used, the
parsing indexes are populated eagerly during vali-
dation, or lazily while parsing a subset of the input
data.

Thanks to its design, the seek function can effectively ac-
cess only the very minimal subset of the data that is needed
by the application, avoiding a full scan of the input JSON
data at all when the application does not need to access the
full JSON object. Using seek can lead to very significant
speedups for applications that need to access a minimal part
of large JSON objects with a complex graph structure.

5.2 Parser Specialization
Parsing operations in Fad.js are performed lazily, at prop-

erty access time. For each property value to be accessed,
parsing is done using a specialized JSON parser capable
of retrieving the value of a single property using a special-
purpose parser that can recognize only a subset of the entire
JSON syntax. Specialized parsers are implemented using
Truffle ASTs, and are compiled to machine code via par-
tial evaluation. Each specialized parser corresponds to a
lightweight parser that can access the value of a JSON prop-
erty without recognizing the full JSON syntax, but only the
subset that is needed to retrieve the value. For example, de-
pending on the position of a property to be parsed, Fad.js
may chose to parse only the N -th element of an array: in
doing so, a specialized parser is used that can recognize only
the subset of the JSON grammar for parsing array elements,
and can safely skip the body of all the elements of the ar-
ray (delimited by the comma ”,” symbol) that are not ac-
cessed by the application. Such specialized parser would
potentially ignore the content of other array elements and
simply look for the comma separation symbol (still ensuring
that strings and other values are escaped correctly); in this
way, the parser can be considerably faster than a general-
purpose JSON one, as it does not need to match all the
possible symbols that a normal JSON parser would match.
Moreover, such parser does not need to allocate and popu-
late new objects in the JavaScript heap. Other specialized
parsers that are used by Fad.js cover all the possible pars-

Table 1: JSON schemas used by JSONBench.
Schemas marked with p have a polymorphic nature,
while schemas starting with m are monomorphic.
All values are average values.
Schema Objects/Values Width/Length Size

m books 1 / 5 5 / 50.5 482 B

m catalog 2 / 4 2.5 / 8 98 B

m google 17 / 54 4.12 / 32.46 3.5 kB

m menu 9 / 12 2.22 / 5.18 310 B

m react 8 / 30 4.63 / 10 656 B

m sgml 7 / 11 2.43 / 43.1 1.09 kB

m small 1 / 2 2 / 12 30 B

m thumbnail 4 / 20 5.75 / 67.25 2.1 kB

p avro 68 / 90 2.31 / 21.86 5.32 kB

p fstab 3 / 5 2.33 / 993.2 10 kB

p github 5 / 4 1.6 / 7.8 124 B

p rpc-req 13 / 16 2.15 / 23.41 1.03 kB

p rpc-res 30 / 28 1.9 / 22.76 1.84 kB

p stat 7 / 11 2.43 / 14.33 436 B

p twitter 15 / 51 4.33 / 39.29 3.4 kB

p youtube 9 / 19 3 / 14.11 1.09 kB

ing operations that a general-purpose JSON parse may per-
form. For each of the JSON syntax elements (e.g., objects,
arrays, strings, etc.), Fad.js can execute an optimized skip
parser that efficiently validates an input string without ma-
terializing its values (examples of specialized parsers for the
example of the previous section are reported in Figure 5.)
Skipping is usually implemented with a fast linear scan of
the substring corresponding to the object (resp. array). As
discussed, each specialized parser is directly inlined in the
Truffle AST node performing the property read operation.
In this way, the Fad.js parser is effectively able to generate
highly-specialized machine code that can combine the prop-
erty access operation with the other optimizations that the
language runtime would already perform. In other words,
the parsing step can also benefit from all the other optimiza-
tions that the language runtime is performing on the rest of
the executed code. As an example, the language runtime
can perform optimizations such as escape analysis, loop un-
rolling, or constant fold elimination on each of the values
being parsed.

5.3 Impact on JSON decoding
The Fad.js parser takes advantage of the following as-

pects that makes it more efficient than a general-purpose
one:

1) By parsing only the properties that are actually used
by the application, it can avoid traversing or materi-
alizing subtrees of the JSON graph that are not used.

2) By parsing only the properties that are accessed, Fad.js
performs fewer allocations of objects in the language
runtime heap. Fewer allocations correspond to a lower
memory footprint that can have an impact on the over-
all application performance (e.g., by reducing the over-
all pressure on garbage collection).

3) By performing the parsing operation together with
property access, the specialized JSON parser can be
inlined directly in the property lookup operation.

4) Since it can operate on off-heap raw data, the Fad.js
parser can be applied to any data-intensive application

1
.4

2
.1

1
.7

2
.7

2
.2

1
.5

2
.3

1
.1

0
.5

1

2
.2 2
.2

0
.8

1
.5

1
.1

1
.6

0

1

2

3

m
b
o
ok

s
m

ca
ta

lo
g

m
go

og
le

m
m

en
u

m
re

ac
t

m
sg

m
l

m
sm

al
l

m
th

u
m

b
n
ai

l

p
av

ro

p
fs

ta
b

p
gi

th
u
b

p
rp

c-
re

q
p

rp
c-

re
s

p
st

at
p

tw
it

te
r

p
yo

u
tu

b
e

S
p
ee
d
u
p
v
s.

G
ra
a
l.
js

FAD.js Node.js

Figure 6: Encoding performance. The Fad.js JSON
encoding runtime is consistently faster than the
baseline for the monomorphic and polymorphic
JSON schemas used by the benchmark.

before any data is actually materialized in the Node.js
heap space. Checking for the existence of a property
(e.g., to perform filter operations) without reading its
value can therefore happen without any memory allo-
cation in the language heap memory space.

6. EVALUATION
We have evaluated the performance of Fad.js against state-

of-the-art solutions such as the Node.js JSON parsing library
(v6.7) and the default JSON parser in Graal.js. We consider
Graal.js (v0.18) as the performance baseline for Fad.js, as
it shares with Fad.js the JavaScript runtime environment.
All the experiments were performed on a server-class ma-
chine (Intel Xeon E5-2690 at 2.90GHz with 16 cores and
256GB RAM), with hyper-threading and turbo-mode dis-
abled to ensure reproducibility. The standard deviation for
each benchmark run is below 6%.

6.1 JSONBench
To assess the performance of Fad.js on JSON-intensive

workloads, we have designed a new benchmark, called JSON-
bench. The benchmark is aimed at measuring the perfor-
mance of JSON operations in Node.js applications that make
extensive usage of JSON, operating on raw data, and for
which JSON encoding or decoding is the main performance
bottleneck. The JSONBench benchmark consists of two
JSON-intensive applications, namely, parsing and stringify.
For each application, the benchmark evaluates the perfor-
mance of a JSON runtime over a selection of a total of
16 different JSON object schemas that have been extracted
from existing public data sources or Web services (such as
a Google search result or a Twitter API response message).
Each JSON object has different characteristics in terms of
structure, number of elements, size, etc. An overview of
the JSON objects used in the benchmark is depicted in Ta-
ble 1. Each object is based on a JSON schema [20] ob-
ject that is used by the benchmarking harness to generate
pseudo-randomized data. After an initial data generation
step which is common for both benchmarks, the two appli-
cations perform the following operations:

7
.2

7
.7

6

6
.6 6
.8

6
.4

9
.9

6
.5

6
.4

5
.1

7
.2

6
.2 6

.7 6
.9

6
.1

6

0.0

2.5

5.0

7.5

10.0

m
b
o
ok

s
m

ca
ta

lo
g

m
go

og
le

m
m

en
u

m
re

ac
t

m
sg

m
l

m
sm

al
l

m
th

u
m

b
n
ai

l

p
av

ro
p

fs
ta

b
p

gi
th

u
b

p
rp

c-
re

q
p

rp
c-

re
s

p
st

at
p

tw
it

te
r

p
yo

u
tu

b
e

S
p
ee
d
u
p
v
s.

G
ra
a
l.
js

FAD.js Node.js

Figure 7: Parsing performance of Fad.js with appli-
cations accessing the first leaf property of the in-
put object graph. The Fad.js runtime has semantics
equivalent to the default JavaScript library, and of-
fers consistent significant speedups.

• The stringify benchmark simulates a Node.js microser-
vice application (e.g., an Amazon Lambda function)
that generates a stream of JSON objects. To this end,
the application has to encode an high amount of JSON
objects with a similar structure. The JSON schemas
correspond to different types of messages produced by
the benchmark (randomization ensures that each ob-
ject is unique, and a fixed seed ensures reproducibility.)
The benchmark measures the maximum throughput
for the JSON encoding runtime to write the data to
an in-memory data buffer.

• The parsing benchmark simulates a data scraping ap-
plication processing JSON data in-memory. The bench-
mark first loads into a raw memory buffer a 1GB ran-
dom generated set of JSON objects (generated using
the JSON schemas), and performs linear accesses to
the values of each object. The benchmark can be con-
figured to change the number of properties that are
read.

The JSON schemas used by the benchmark are divided
in two main categories, namely, monomorphic and polymor-
phic schemas. The first category corresponds to JSON ob-
jects that always have all the property names and struc-
ture that the JSON schema prescribes. In other words, the
benchmark random generator only ensures that each object
has different values, but all objects always have the same
fixed number of properties. The latter category corresponds
to JSON objects that might also change some of their tree
structure. For example, JSON objects with a same JSON
schema may or may not have certain properties. The dis-
tinction between the two classes of randomized JSON data
is aimed at simulating two different types of workloads, that
is, workloads where JSON data is very homogeneous (e.g.,
when JSON is fetched from a database), and workloads
where data is more dynamic, and its implicit JSON schema
has only a subset of properties that are always constant (e.g.,
a Web service that can add or remove properties depending
on invocation parameters).

All benchmarks are single-threaded. The performance of
the Fad.js encoding runtime compared against Graal.js and

2
1
.8

1
7
.8

8
3
.3

2
5
.8 3

4
.9 4

6
.9

1
8
.1

4
9
.2

1
8
0
.6

4
2
.7

2
1
.5

3
6
.8

4
9
.8

1
6
.5

6
5
.3

3
0
.2

0

50

100

150

200

m
b
o
ok

s
m

ca
ta

lo
g

m
go

og
le

m
m

en
u

m
re

ac
t

m
sg

m
l

m
sm

al
l

m
th

u
m

b
n
ai

l

p
av

ro

p
fs

ta
b

p
gi

th
u
b

p
rp

c-
re

q
p

rp
c-

re
s

p
st

at
p

tw
it

te
r

p
yo

u
tu

b
e

S
p
ee
d
u
p
v
s.

G
ra
a
l.
js

FAD.js Node.js

Figure 8: Performance of the seek API with appli-
cations accessing the first leaf property of the input
object graph. The Fad.js runtime can access only
the minimal subset of the input data, with very high
performance.

Node.js are depicted in Figure 6. For almost all the con-
sidered JSON schemas, the Fad.js runtime can effectively
generate the JSON-encoded string in a time that is up to
2.7x faster than the state-of-the-art JSON runtime used by
Graal.js. In general, Fad.js performs better when the data
to be encoded is monomorphic. This is expected, as the
compiled code does not need to account for special cases
and properties that might not exist. Still, also on polymor-
phic JSON schemas Fad.js can achieve significant speedups
for certain JSON schemas.

The performance of the Fad.js decoding runtimes are de-
picted in Figure 7 and Figure 8. The Fad.js parse and seek

APIs offer different semantics and performance guarantees
depending on the amount of properties that are accessed by
the application and the type of input data validation that
the application requires. In Figure 7 a first comparison of
the Fad.js parse runtime versus Node.js and Graal.js is
depicted for accessing only the first property of the object
graph. This benchmark is the ideal case for Fad.js, as it re-
quires the materialization in the JavaScript heap of one value
only. The Fad.js runtime can achieve average speedups up
to 9.9x compared to the default Graal.js runtime. This is
expected, and shows that performing validation of the input
data on the raw memory can result in significant speedups
without affecting the overall semantics of the application.
The performance of the seek API for the same amount of
property reads are depicted in Figure 8. Without valida-
tion (i.e., using seek), the Fad.js runtime can access the
JSON data with the best possible performance, and the de-
coding speedup does not depend on the size of the input
JSON object, nor on its monomorphic or polymorphic na-
ture. As a consequence, accessing complex JSON objects
(e.g., Avro) can result in speedups up to 180x. This is ex-
pected, and shows that Fad.js allows data-intensive appli-
cations to trade performance for correctness. Depending on
the number of properties that are being read, the Fad.js
performance are expected to degrade. This is depicted in
Figure 9, where the benchmark is executed for an increas-
ing number of property reads. As the picture shows, the
Fad.js runtime can effectively be faster than its state-of-

0e+00

2e+08

4e+08

6e+08

8e+08

0 25 50 75 100

Percentage of JSON values read (%)

P
a
rs
er

T
h
ro
u
g
h
p
u
t
(b
y
te
s/
s)

FAD.js

Graal.js

Node.js

Figure 9: Performance of the parse API for an in-
creasing number of property reads for all the con-
sidered JSON schemas. Depending on the number
of properties accessed by the application, the per-
formance of Fad.js tend to degrade. Still, even when
the entire object graph is read, Fad.js is faster than
its Graal.js baseline.

the-art Graal.js baseline even when all the properties of the
JSON object graph are read. This is because Fad.js can
operate on raw data, without an intermediate materializa-
tion. Nevertheless, the Fad.js runtime is clearly preferable
over the default JSON runtime when the number of prop-
erties read is small. Figure 11 describes the same scenario
for seek. As expected, the performance of seek are consid-
erably better when only a few properties are read, and de-
grade more quickly when the entire JSON object is accessed.
Nevertheless, Fad.js can be preferred over general-purpose
parsers for JSON objects that have a simple structure (e.g.,
books) since the Fad.js runtime can access raw data and
can be inlined in the property-access operations.

6.2 Data-intensive applications
The JSONBench benchmark is designed to measure the

performance of Fad.js in applications where JSON opera-
tions are the main bottleneck. With the goal of highlighting
the potential benefits of using Fad.js in the context of more
complex data processing applications, we have also mea-
sured the performance of Fad.js when employed in com-
bination with a popular data processing runtime. To this
end, we have selected five existing benchmarks that rely on

1
.9

2
.4

1
.2

1
.1

2
.7

0

1

2

3

laureates grep

reddit wordcount

reverse index
twitter grep

twitter wordcount

S
p
ee
d
u
p
v
s.

G
ra
a
l.
js

FAD.js Graal.js

Figure 10: Performance of selected Apache Hadoop
MapReduce jobs that use Fad.js for encoding and
decoding data.

0e+00

5e+09

1e+10

0 25 50 75 100

Percentage of JSON values read (%)

P
a
rs
er

T
h
ro
u
g
h
p
u
t
(b
y
te
s/
s)

FAD.js

Graal.js

Node.js

Figure 11: Performance of the seek API for an in-
creasing number of property reads (for all the con-
sidered JSON schemas). Like with parse, Fad.js is
orders of magnitude faster than its baseline when a
subset of the input data is accessed.

Node.js and on Apache Hadoop. All benchmarks perform
some JSON operations to encode and decode data, but they
also perform other operations that are not affected by JSON
(for example, other performance bottlenecks could exist at
the HDFS level, at the data distribution level, etc.) The goal
of this benchmark is not to present an exhaustive selection of
Hadoop benchmarks dominated by JSON, as writing a new
benchmarking harness for Node.js and Hadoop is out of the
scope of this paper. Rather, the goal is to highlight the po-
tential benefit of Fad.js when used in existing systems. For
each of the benchmarks, we have replaced the default en-
coding operations with Fad.js’s stringify and parse and
(or skip, if appropriate). The performance results for the
benchmark using 16 parallel threads are depicted in Fig-
ure 10. As the picture shows, all the applications benefit
from the Fad.js runtime, which can significantly increase
the throughput of each data processing application up to
2.7x. This is expected, as JSON operations can contribute
significantly to the overhead of existing data-intensive ap-
plications.

7. RELATED WORK
Lazy and incremental techniques have been used in several

parsing runtimes and data formats (e.g., for XML data [19,
14]). We do not claim novelty for the incremental JSON
parsing in Fad.js, but we consider a novel contribution the
integration of the parsing runtime with the language vir-
tual machine, its just-in-time compiler, and the related tech-
niques based on specialization, speculation, and direct ac-
cess to raw data. Other relevant examples of lazy parsing
approaches can be found in the domain of stream parsers
(e.g., for JSON streams [3]). Such parsers usually oper-
ate on unbounded data sources, accessing only the subset
of the data that the application needs. Unlike Fad.js, all
such parsers do not rely on VM-level support, and therefore
cannot benefit from runtime-level optimizations. Moreover,
they often require the user to program against a foreign API
requiring to manually initialize and advance the parser.

The Fad.js encoding and decoding runtimes generate ma-
chine code based on runtime knowledge of the implicit schema
of the JSON data they access. To the best of our knowl-
edge, Fad.js is the first runtime that can optimize access

to data without any static knowledge. Several examples of
techniques that rely on static, a priori, knowledge exist. For
instance, XML document projection [17], is a technique that
is used to optimize XQuery operations on XML documents
via static analysis. Another relevant example is the static
generation of ad hoc parsing runtimes (e.g., for XML or Pro-
tocol Buffers [8]). When the schema of some data types is
known at compilation time, a specialized parser can be cre-
ated that can outperform a general-purpose one. All such
approaches require some a priori knowledge (i.e., a schema)
and cannot operate on data that is highly polymorphic. On
the contrary, Fad.js does not rely on any static knowledge.

Out of the realm of JSON and data encoding, other data-
intensive systems leverage dynamic code generation and di-
rect access to raw data. A relevant recent example of JIT-
based optimizations can be found in Apache Spark [25],
which relies on dynamic bytecode generation. The Spark ap-
proach shares with Fad.js the intuition that data-intensive
applications should be able to optimize certain operations
to exploit the structure of the runtime data that they pro-
cess. Differently from Spark, Fad.js does not rely on byte-
code generation, but rather uses runtime speculation and
specialization. A relevant example of raw access to data is
NoDB [11]. NoDB is a design paradigm (and a database
system) designed to reduce the overhead of data accesses by
exploiting in-memory indexes and direct access to raw data
stored in plain text files. The NoDB approach shares with
Fad.js the vision that data-intensive applications should
avoid materializing data as much as possible, and should
instead rely on runtime knowledge. Fad.js operates at a
different level of abstraction than NoDB, but could poten-
tially be adopted to speed up the access to raw data in any
application that relies on JSON, including databases.

Fad.js can be considered a new class of active library [12],
that is, a library that can use metaprogramming and run-
time code generation to adapt to certain runtime conditions.

8. CONCLUSION
In this paper, we have presented Fad.js, a runtime system

for processing JSON data leveraging speculative just-in-time
compilation based on implicit schemas that are discovered
at runtime. Fad.js is based on Truffle ASTs and can of-
fer speedups up to 2.7x for encoding and 9.9x for decoding
JSON data on unmodified applications. The Fad.js runtime
can effectively speed up existing data-intensive Node.js ap-
plication, and can be used as a drop-in replacement of the
default JavaScript JSON library.

We are planning to integrate the Fad.js runtime into
other Truffle-based languages (e.g., the R language [22]).
Additionally, we plan to expand the techniques described in
this paper to other data formats such as CSV and BSON.

Acknowledgments
We thank the VM Research Group at Oracle for their sup-
port. Oracle, Java, and HotSpot are trademarks of Oracle
and/or its affiliates. Other names may be trademarks of
their respective owners.

9. REFERENCES
[1] Amazon Lambda. https://aws.amazon.com/lambda/.

[2] Apache Storm. https://storm.apache.org/.

[3] Clarinet: SAX-based Event Streaming JSON Parser.
https://github.com/dscape/clarinet.

[4] ECMA Language Specification.
https://tc39.github.io/ecma262/.

[5] JSON Object Notation Specification.
http://www.rfc-editor.org/info/rfc7159.

[6] Node.js JavaScript Runtime. https://nodejs.org/.

[7] Oracle Graal.js. http://labs.oracle.com.

[8] Protocol Buffers. https:
//developers.google.com/protocol-buffers/.

[9] The Mongodb Database. http://www.mongodb.org.

[10] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[11] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. NoDB in Action: Adaptive Query
Processing on Raw Data. Proc. VLDB Endow.,
5(12):1942–1945, Aug. 2012.

[12] K. Czarnecki, U. W. Eisenecker, R. Glück,
D. Vandevoorde, and T. L. Veldhuizen. Generative
Programming and Active Libraries. In ISGP, pages
25–39. Springer, 2000.

[13] L. P. Deutsch and A. M. Schiffman. Efficient
Implementation of the Smalltalk-80 System. In Proc.
of POPL, pages 297–302, 1984.

[14] F. Farfán, V. Hristidis, and R. Rangaswami. Beyond
Lazy XML Parsing. In Proc. of DEXA, pages 75–86,
2007.

[15] Y. Futamura. Partial Evaluation of Computation
Process; An Approach to a Compiler-Compiler. Higher
Order Symbol. Comput., 12(4):381–391, Dec. 1999.

[16] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages With
Polymorphic Inline Caches. In Proc. of ECOOP, pages
21–38, 1991.

[17] A. Marian and J. Siméon. Projecting XML
Documents. In Proc. of VLDB, pages 213–224, 2003.

[18] S. Newman. Building Microservices. O’Reilly Media,
Inc., 1st edition, 2015.

[19] M. L. Noga, S. Schott, and W. Löwe. Lazy XML
Processing. In Proc. of DocEng, pages 88–94, 2002.

[20] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and
D. Vrgoč. Foundations of JSON Schema. In Proc. of
WWW, pages 263–273, 2016.

[21] D. Simon, C. Wimmer, B. Urban, G. Duboscq,
L. Stadler, and T. Würthinger. Snippets: Taking the
High Road to a Low Level. ACM TECO,
12(2):20:20:1–20:20:25, June 2015.

[22] L. Stadler, A. Welc, C. Humer, and M. Jordan.
Optimizing R Language Execution via Aggressive
Speculation. In Proc. of DLS, pages 84–95, 2016.

[23] A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer,
and H. Mössenböck. An Object Storage Model for the
Truffle Language Implementation Framework. In
Proc. of PPPJ, pages 133–144. ACM, 2014.

[24] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler,
G. Duboscq, C. Humer, G. Richards, D. Simon, and
M. Wolczko. One VM to Rule Them All. In Proc. of
ONWARD, pages 187–204, 2013.

[25] M. Zaharia. An Architecture for Fast and General
Data Processing on Large Clusters. ACM, 2016.

https://aws.amazon.com/lambda/
https://storm.apache.org/
https://github.com/dscape/clarinet
https://tc39.github.io/ecma262/
http://www.rfc-editor.org/info/rfc7159
https://nodejs.org/
http://labs.oracle.com
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.mongodb.org

	Introduction
	Motivating example
	FAD.js
	Background: Truffle and Graal.js
	Runtime Speculation in FAD.js
	FAD.js API

	Constant Structure Encoding
	Object shapes in FAD.js
	Impact on JSON encoding

	Direct Structure Decoding
	Parsing using the Seek API
	Parser Specialization
	Impact on JSON decoding

	Evaluation
	JSONBench
	Data-intensive applications

	Related Work
	Conclusion
	References

