
Online Post-Processing In Rankings For Fair Utility
Maximization

Ananya Gupta∗
UMass Amherst

Eric Johnson∗
UMass Amherst

Justin Payan†
UMass Amherst

Aditya Kumar Roy
UMass Amherst

Ari Kobren
Oracle Labs

Swetasudha Panda
Oracle Labs

Jean-Baptiste Tristan
Boston College

Michael Wick
Oracle Labs

ABSTRACT
We consider the problem of utility maximization in online ranking
applications while also satisfying a pre-defined fairness constraint.
We consider batches of items which arrive over time, already ranked
using an existing rankingmodel.We propose online post-processing
for re-ranking these batches to enforce adherence to the pre-defined
fairness constraint, while maximizing a specific notion of utility. To
achieve this goal, we propose two deterministic re-ranking policies.
In addition, we learn a re-ranking policy based on a novel variation
of learning to search. Extensive experiments on real world and
synthetic datasets demonstrate the effectiveness of our proposed
policies both in terms of adherence to the fairness constraint and
utility maximization. Furthermore, our analysis shows that the
performance of the proposed policies depends on the original data
distribution w.r.t the fairness constraint and the notion of utility.

ACM Reference Format:
Ananya Gupta, Eric Johnson, Justin Payan, Aditya Kumar Roy, Ari Kobren,
Swetasudha Panda, Jean-Baptiste Tristan, and Michael Wick. 2021. Online
Post-Processing In Rankings For Fair Utility Maximization . In Proceedings
of the Fourteenth ACM International Conference on Web Search and Data
Mining (WSDM ’21), March 8–12, 2021, Virtual Event, Israel. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3437963.3441724

1 INTRODUCTION
Ranking models are ubiquitous and support high stakes decisions in
a variety of application contexts, e.g., online marketing, job search
and candidate screening, loan applications, etc. Depending on the
application, these models are used to rank products, job candidates,
credit profiles, etc. Ultimately, these models facilitate selection of
specific items from the ranked list.

Many practical instantiations of ranking applications are online
processes where there is an incoming stream of batches of items to
be ranked. For example, if we consider a hiring application, a job
advertisement elicits applicants which naturally arrive over time.

∗These authors contributed equally to this research.
†Work completed prior to author’s internship with Amazon.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00
https://doi.org/10.1145/3437963.3441724

The hiring entity processes these applications in batches to screen
and select candidates for job interviews. Unlike a static ranking
application, such an online system necessitates proactive decision
making so as to maximize long-term utility. In the context of
hiring, this translates to the selection of qualified candidates given
an unknown distribution over the batches of future applicants.

The position of an item in a ranking directly influences its vis-
ibility or exposure [23], thereby directly affecting whether or not
the item is eventually selected. Standard techniques for ranking
often involve ordering items in descending order of relevance (as
defined in information retrieval literature [22]). For example, in
hiring, relevance can be quantified as the degree to which an appli-
cant’s qualifications match the job requirements. These standard
techniques are referred to as utility maximizing ranking algorithms.
However, recent literature has shown that utility maximization can
lead to representation disparities in the generated rankings [14, 23],
either in the static or online environment.

Recent work in machine learning fairness attempts to alleviate
discrimination by enforcing adherence to specific fairness criteria
or equivalently, fairness constraints [8, 9]. While a large proportion
of this research focuses on supervised classification [27, 28], the
idea of fairness in ranking is relatively less explored [3, 6, 23, 29]. In
previous work, algorithms have been proposed to satisfy a variety
of such fairness constraints (e.g., parity of exposure). However,
these algorithms are primarily aimed at static rather than online
ranking problems. One technique for ensuring adherence to a
fairness constraint in classification is to post-process the decisions
from a trained (black-box) classifier [11]. In the offline variant of
this technique, a learned classifier is modified offline to generate a
derived classifier which is then deployed to make the predictions
in real time. One issue with this approach is that adherence to
the fairness constraints hold in expectation with respect to the
training data distribution. Consequently, this might lead to sporadic
violations of the fairness constraints on the test data distribution.

In this work we consider the problem of satisfying fairness con-
straints while maximizing utility in online ranking applications.
We do not advocate for a specific fairness constraint. Instead, we
assume that a constraint is assigned prior to deployment, and our
goal is to ensure that it is always satisfied. While our approach can
incorporate general constraints, in this paper, we define the demo-
graphic disparity criterion to ensure parity of pairwise exposures of
the different groups of items over an aggregate of observed ranking
batches. Parity constraints are important in ranking applications
beyond fairness considerations, e.g., to incorporate diversity in
rankings.

https://doi.org/10.1145/3437963.3441724
https://doi.org/10.1145/3437963.3441724

We consider an incoming stream of batches of items that need
to be ranked for a specific application. An existing ranking model
generates a ranking from each batch at a given timestep. The goal
is to decide whether (and how) to re-rank the batch in order to
maximize cumulative utility while enforcing the fairness criteria.
We post-process or re-rank the decisions generated by the initial
(fixed) ranking model by deploying a re-ranking algorithm that
guarantees that the fairness constraints are satisfied. Unlike a static
intervention, an online post-processor is better equipped to handle
concept drift in the test data distribution. It can address instanta-
neous fairness constraint violations at any given timestep, thereby
satisfying the fairness constraint pro-actively through the time
steps, while maximizing a predefined utility notion.

We begin by proposing two different deterministic policies: Fair
Queues and Greedy Fair Swap. Since our framework involves an un-
known distribution over ranking batches, we also propose to learn
a re-ranking policy via a novel variation of learning to search [7],
dubbed locally optimal learning to search with queues (L2SQ). L2SQ
creates a priority queue for each group in a batch, within which
items are ordered according to relevance scores from the initial
ranking model. The learned policy creates a re-ranking by repeat-
edly deciding which queue to pull from until all queues are empty.
The learned policy’s action space is defined at each position in the
re-ranking to be the non-empty queues which, upon being pulled
from, can result in a ranking that satisfies the fairness constraint.

In summary, we make the following contributions: a) we present
an algorithmic framework for online post-processing of ranking
batches according to a given fairness criteria, b) we propose two
deterministic policies, and a novel approach to learn a re-ranking
policy which maximizes utility while respecting the fairness crite-
ria, and c) we present extensive experimental results on various real
world (German Credit, AirBnb, StackExchange and Resume) as well
as a synthetic dataset to demonstrate the effectiveness of the pro-
posed approaches in terms of utility and adherence to the fairness
constraint. We release our processed versions of the datasets for the
online re-ranking setting. In addition, our experiments demonstrate
that the performance of the policies depends on the original data
distribution w.r.t the given fairness constraint and the notion of util-
ity. For concreteness and based on available datasets, we consider
specific instances of ranking applications, but our methodology is
generally applicable.

2 RELATEDWORK
There are several directions of ongoing research at the intersec-
tion of algorithmic fairness and rankings. Yang and Stoyanovich
[26] propose various logarithmic discounting based measures for
fairness and extend the approach on learning fair representations
in [31] by redefining the loss function to be appropriate for ranked
outputs. Several novel metrics for fairness auditing on rankings
are proposed in [15, 21]. There is previous work on mitigating bias
in the relevance scores, which are often used for generating rank-
ing models. This includes work on inverse propensity scoring to
estimate true relevance scores produced using click data [13] and
learning a fair relevance model [30]. Kulshrestha et al. investigate
and distinguish between sources of bias arising from the data and
the ranking model respectively [16]. Asudeh et al. and Guan et al.

break the ranking score into a linear combination of component
scores, with weights on each component given by the user. If the
user-provided weights produce an unfair ranking, their algorithm
proposes the closest weight vector which produces a fair rank-
ing [1, 10]. There is previous research on learning ranking models
which satisfy specific fairness constraints. Beutel et al. introduce a
set of novel metrics for fairness auditing in recommendation sys-
tems and improve fairness criteria during model training using
pairwise regularization [2]. Singh et al. propose a learning to rank
approach for utility maximization with fairness constraints [24].

Unlike the above previous work, in our problem setting, an ex-
isting ranking model generates a ranking of items (or a sequence
of rankings). Our approach performs a re-ranking of the items and
constructs a new ranking so as to maximize a given utility notion
while satisfying a fairness constraint. Consequently, we do not
directly learn a ranking model or intervene during the training
process of a ranking model.

One direction of previous research most relevant to our approach
is utility maximization in rankings subject to fairness constraints.
Singh et al. define the concept of exposure and optimize for fair
probabilistic rankings [23]. While their algorithm satisfies the fair-
ness constraints in expectation, the constraints might not hold on
the individual rankings sampled from the optimized probability
distribution. Zehlike et al. [29] present a statistical test based ap-
proach which operates on a series of rankings in an online fashion.
However, they consider a specific fairness criterion based on the
proportion of certain group members at each position in the rank-
ing. Biega et al. [3] propose the idea of amortized fairness, but
the analysis is specifically for individual fairness criteria. Celis et
al. [5] propose a constrained maximum weight matching algorithm
for utility maximization with a fairness constraint. However, the
approach does not consider aggregate of rankings in an online
setting. Panda et al. [18] explore audit and control of fairness mea-
sures in ranking batches. We present a concrete formulation of the
online post-processing problem for ranking batches and analyze
deterministic as well as learned policies as solution approaches.

There is significant previous research on diversity in information
retrieval [4, 17] where the goal is to not present similar items in
the rankings. Stoyanovich et al. study the online, diverse top-k set
selection problem which is different from our problem setting [25].
Sakai and Song present a metric for auditing rankings for diversity
measures [20]. In contrast, our approach reconstructs rankings to
satisfy given diversity criteria. Moreover, unlike the majority of
previous work on ranking diversity which are based on similarity
of items, our approach operates on a discrete set of items as groups.

3 PROBLEM DEFINITION
In this section we describe the problem setting of online fair utility
maximization in ranked batches. We begin with a brief review of
standard definitions from information retrieval. Consider a batch of
= items 8 2 1� 2� � � � =. Let A „8” denote the rank of item 8 in ranking A .
The exposure [23] of 8 under ranking A is defined as the following.

Exposure„8 jA ” =
1

log„A „8” ‚ 1” (1)

Let@¹8º be the relevance of item8. The discounted cumulative gain

(DCG) of a rankingAis de�ned as��� ¹Aº =
=Í

8=1

2@¹8º � 1
log¹A¹8º¸ 1º and the

normalized DCG (nDCG) ofAas ��� ¹Aº
��� ¹A¢ º , whereA¢ ranks items in

decreasing relevance order.
We assume that each item8in the batch is a member of a pre-

de�ned group,6¹8º. In this work, as a concrete example of a fairness
constraint, we aim to generate rankings so as to equalize exposure
across groups [23, 30]. Speci�cally, let� 9 = f82 »=¼| 6¹8º = 9gbe
a group of items. Then the exposure of� 9 in ranking Ais given by
Exposure¹� 9jAº =

Í

82� 9

Exposure¹8jAº.

We denote our fairness constraint as thedemographic disparity
(DDP) constraint that bounds the di�erence in mean exposures
between all pairs of groups. We de�ne the DDP of a rankingAas

��% ¹Aº = max
f � 9•� 90g

Exposure¹� 9jAº

j� 9j
�

Exposure¹� 90jAº

j� 90j
” (2)

Our fairness constraint ensures that the DDP is less than a predeter-
mined thresholdU. Note that DDP is analogous to the demographic
parity constraint in classi�cation. It also relaxes a previously pro-
posed demographic parity constraint on rankings [23]. Although
we focus on DDP here, our approach can be adapted to account for
any general fairness constraint.

3.1 Online Post-Processing For Rankings
Unlike previous work, we focus on the online setting where the
batches of items arrive over time. Speci�cally, at each timestep
C2 f 1• ” ” ” •)gwe receive a batch of items initially ranked by a �xed
ranking model in descending score order (ranking denotedA¹Cº

init).
We will de�ne a post-processing policyc to re-rank the items

in each batch according to a new rankingA¹Cº containing group
populations� ¹Cº

9 , such that nDCG is maximized and the fairness
constraint is satis�ed. However, in this setting, the nDCG and the
fairness constraint apply in aggregate over batches. In particular,
at a given timestepC, we de�ne the nDCG atCfor some sequence
of rankings' = fA¹1º• ” ” ” •A¹Cºg, =��� ¹'• Cº, as

1
C

CÕ

B=1

=��� ¹A¹Bºº (3)

The DDP atC, ��% ¹'• Cº, is

max
f � 9•� 90g

Í C
B=1 Exposure¹� ¹Bº

9 jA¹Bºº
Í C

B=1 j� ¹Bº
9 j

�

Í C
B=1 Exposure¹� ¹Bº

90 jA¹Bºº
Í C

B=1 j� ¹Bº
90 j

(4)
c uses all rankingsfA¹BºgC� 1

B=1 [f A¹Cº
init g to compute the utility

and the constraints in aggregate. However, it can only re-rank the
current batch and not any of the previous batches. By re-ranking
the current batch, our post-processing policy aims to satisfy the
fairness constraint (in aggregate) while maximizing cumulative
utility over the batches observed so far. Consequently, our goal in
online post-processing is given by

maximize=��� ¹'•) º

subject to max
1� C�)

��% ¹'• Cº � U (5)

Henceforth, we use the term fair ranking to denote an aggregate
of ranking batches up to a given (current) time step which satisfy our
DDP fairness constraint (and the term unfair ranking otherwise).

4 DETERMINISTIC POLICIES
A deterministic policy re-ranks a batch at a given time-step so as to
obtain a solution to the objective in Equation 5. In this section, we
describe two deterministic re-ranking policies based on di�erent
heuristics: Fair Queues and Greedy Fair Swap.

4.1 Fair Queues
We begin by modifying the FA*IR algorithm proposed in [29]. The
original FA*IR algorithm creates a priority queue for each group,
sorted in decreasing order of relevance. This is followed by construc-
tion of a new ranking as follows. To �ll each position in the new
ranking, it identi�es the queue with the most-quali�ed (top) item
and pops from that queue. If that selection results in a sub-ranking
which violates the fairness constraint, it identi�es the queue with
the next most-quali�ed top item and pops from that queue instead.

We denote our modi�cation of FA*IR as Fair Queues. This algo-
rithm works in a similar fashion to FA*IR, but there are two key
di�erences. FA*IR models each sub-ranking on=0 items using a
binomial distribution?¹: ;=0• ?º and checks that?¹: ;=0• ?º ¡ U,
while Fair Queues applies our non-probabilistic DDP constraint
on full rankings. Second, our fairness de�nition is based on group
exposure in aggregate across multiple time steps and applies to
multi-group settings, while the fairness de�nition in [29] only ap-
plies to single rankings with two groups (usually denoted as the
protected and non-protected groups).

Figure 1: An example illustrating the can be fair pruning for
the action space. There are 3 groups: male, female, and non-
binary. The DDP threshold is 0.25. The model checks if it
can select from the male queue and still create a fair ranking.
Both possible ranking completions are unfair after selecting
a male item, indicating that selection from the male queue
is not a valid action for this time step. The red highlights
indicate the group pairs which attain the maximum average
exposure di�erence (DDP).

We denote the subroutine that checks if a ranking can be com-
pleted while satisfying the fairness constraint ascan be fair(illus-
trated in Figure 1). A naive approach would examine every com-
pletion of the ranking until it �nds a fair completion or until it
exhaustively examines all enumerations of ranking completions.
Since there are=! rankings on= elements, we use a heuristic (Sec-
tion 4.1.1) to �nd a single ranking completion. If that heuristic-based

ranking completion is unfair,can be fairfails, and we restrict the
algorithm from selecting from the queue in consideration. In case
all queues are eliminated, we select from the queue of the group
with the minimum exposure.

Using the heuristic forcan be fair, Fair Queues has a worst-case
complexity of� ¹6=2º for a ranking with= items and6 groups. The
use of a heuristic rather than an exact method forcan be fairimplies
that we might sometimes over-restrict the action space. However,
even with the heuristic,can be fairnever incorrectly allows for
selecting a queue which precludes a �nal fair ranking, as long as
there is a queue which allows for a �nal fair ranking. Therefore,
while the reconstructed ranking might be sub-optimal with respect
to nDCG, it will be fair whenever possible.

4.1.1 Can Be Fair Heuristic.Our heuristic completes a ranking
using the same basic framework as Fair Queues - it selects a queue
to draw from at each step. However, rather than selecting from the
queue with the most relevant top item, it selects from the queue with
the least expected exposure if we �ll each remaining position by
selecting from arandomqueue . To calculate the expected exposure,
we �rst calculate the average exposure for all remaining open slots
in the ranking. We then compute the expected exposure for a group
by assuming that each remaining item in the group's queue receives
the average remaining exposure. We can then average the exposures
for each group under this assumption, and select from the queue
with the lowest expected exposure. We do not claim this heuristic
creates the optimally fair ranking completion, but rather treat it as
a reasonable approximation.

4.2 Greedy Fair Swap
Our second deterministic policy denoted as Greedy Fair Swap aims
to promote members of groups with lower exposure within a single
ranking A¹Cº . The algorithm (Algorithm 1) iteratively selects the
most highly ranked member (highest relevance score) of a lower-
exposure group which is still below a member of a higher-exposure
group, and swaps them. Note that this swap is greedy because it
minimally lowers nDCG while guaranteeing a lower DDP. The
algorithm terminates when the rankings up to timeCmeet the DDP
thresholdU. Since there are

�=
2
�

possible swaps, Greedy Fair Swap
is $ ¹=2º for re-ranking a batch with= items. This algorithm does
not necessarily produce a ranking with optimal nDCG under the
fairness constraint.

5 POLICY BASED ON LEARNING TO SEARCH
Both Greedy Fair Swap and Fair Queues have a potentially unde-
sirable property by de�nition, which is they only act when it is
absolutely required. Consequently, the DDP measure stays very
close to the threshold at all times. If these policies suddenly have
to re-rank a batch with highly relevant items from the group with
the highest exposure, these will be forced to take a large penalty
on nDCG to maintain the DDP under the fairness threshold. This
weakness motivates a more pro-active learned policy. In this sec-
tion, we describe a learned policy based on a variation of learning
to search.

Algorithm 1: Greedy Fair Swap
input : Initial ranking Ainit on itemsf81• ” ” ” 8= g, group

membership function6, thresholdU0

output : RankingAon f81• ” ” ” 8= g, with ��% ¹Aº � U0

1 Initialize A= Ainit

2 while ��% ¹Aº ¡ U0 do
3 Identify the group with highest exposure� �

4 Identify the group with lowest exposure� ;

5 Set; = arg min
892� ; | 98902� � •A¹890ºŸA¹89º

A¹89º

6 Set� = arg max
8902� � | A¹890ºŸA¹; º

A¹890º

7 Swap; and� in A
8 return A

5.1 Background
Locally optimal learning to search (LOLS) [7] learns a policy
by imitating and extending areference policy. Since the learned
policy provably has low regret on deviations from the reference, it
is possible to improve upon the performance of the reference [7].
The learned policy can be trained so as to predict an action from
features derived from thestate spaceat a given timestep. Below
we summarize the concept at a very high level. LOLS constructs a
training example by �rolling in� up to a given number of time steps
according to the learned policy. For every action in the action space,
LOLS �rolls out� using the reference policy (or possibly a mixture
of the reference and the learned policy). This roll out terminates at
an end state, and a score can be assigned to that end state. Using
these scores, the model learns to prioritize actions which led to
high scoring end states at a given time step.

5.2 LOLS With Queues (L2SQ)
Our proposed approach, Locally Optimal Learning to Search with
Queues, merges the learning to search algorithm reviewed in Sec-
tion 5.1 with the queue-based ranking procedure described in Sec-
tion 4.1. A detailed description of L2SQ can be found in Algorithm 2.
Concretely, we create a scoring model (a feedforward neural net-
work) that maps from a partial ranking and a collection of queues
(one per group) to a score for each queue. We select from the queue
with the top score from the model, rather than the queue with the
most-relevant item. Intuitively, we would like the L2SQ model to
learn to maintain a fairness bu�er well below the DDP threshold,
allowing the model to take advantage of incoming batches with
highly relevant items from a high-exposure group.

To implement the LOLS framework, we must de�ne a reference
policy, a parametrization of the state and action spaces, and a cost
function to be applied at the end of roll-outs. At training time,
we construct training examples where each example consists of
a rolled-in set of rankings up to some timestep (described below)
and a choice of queues from which to select the next element of
the current ranking. We then roll-out for each possible choice of
queue to obtain costs for each queue. From this pairing of state
and costs, we construct multiple training examples to update the
scoring model. To construct a set of rankings at inference time, we
apply the scoring model for each slot of each ranking, �lling in
slots with the top item from the highest-scoring queue at each step.

Algorithm 2: L2SQ Training

input : Sets of initial rankingsf ' ¹= º
init g#

==1, mixture parameter
V � 0, and roll-out horizon�

1 for = 2 f1•2• ” ” ” • #gdo
2 ' init ' ¹= º

init
3 for C2 f1•2• ” ” ” •)gdo
4 Roll-in C� 1 rounds to reachA¹Cº

init 2 ' init

5 Create priority queue&6 (ordered by decreasing relevance)
for all groups6

6 Initialize A¹Cº = ;
7 while j&6 j ¡ 0 for at least 2 groups6 do
8 for 6 2 f1•2• ” ” ” • � gdo
9 if j&6 j ¡ 0 and can_be_fair(A¹Cº•&6) then

10 CopyA0¹Cº A¹Cº

11 Insert&6 .pop() intoA0¹Cº

12 Apply roll-out policy to �ll A0¹Cº and the next
� batchesA0¹Ç 1º• ” ” ” A0¹Ç � º

13 Compute cumulative nDCG after roll-out for
group6

14 For all rolled-out6, compute cost = max nDCG for any
group minus nDCG of6

15 Construct training example from groups6
16 Compute BPR loss
17 Apply roll-out policy to insert&6 .pop() intoA¹Cº

18 Update model with total BPR loss

We parametrize the search space over queues (rather than over
items) because DDP is based on groups and is agnostic to the choice
of individual elements within a group.

Reference Policy Any ranking policy can be used as the refer-
ence policy. All our results use Fair Queues as the reference policy,
since L2SQ did better with Fair Queues as a reference than with
Greedy Fair Swap in early experiments.

Parametrization of State and Action Spaces We encode the
state space using 17 features per group: mean exposure and per-
centage of the group in previous batches, total number of items in
current ranking, statistics of relevance scores and ranks for items
which have already been ranked (min, max, mean, standard de-
viation), the relevance score of the top item in the queue, size of
the queue, and statistics of relevance scores for the queue (min,
max, mean, standard deviation). We parametrize the model using a
feedforward neural network, which takes as input all features for
all groups and outputs a vector of scores, one per group.

The action space consists of all selections from non-empty queues
which can result in a ranking that satis�es our constraint. We use
the can be fairsubroutine described in Section 4.1 to restrict the
action space for L2SQ.

Roll-out and Cost Computation To create training examples,
we roll-in up to a certain time step, simulate selecting from each
non-restricted queue, then roll-out from each simulated choice to
compute a loss function. The policy used for roll-out is a mixture
of the learned policy and the reference policy, where the reference
policy is selected with probabilityV. We calculate the score of
each queue using the average nDCG over all batches after roll-
out. An illustration of roll-out with two groups (male/female), four
timesteps, and a DDP threshold of 0.25 is shown in Figure 2.

Figure 2: Roll-out and loss function computation at a single
time step. We display the relevance of each item, as well as
the di�erence in male and female exposures for each com-
pleted batch. We roll-out after selecting from each queue to
calculate the post-roll-out nDCGs. The loss is a function of
the post-roll-out nDCGs and the model's scores. Note the
model's scores encode the model's preferences for selecting
from each group's queue, not the relevances of particular
items.

Training Examples and Loss Function We create multiple
pairwise examples per state, comparing each queue to the queue
with the highest post-roll-out nDCG. The model assigns each queue
in the pair a score, and we compute the Bayesian Personalized
Ranking loss [19] based on the pair of scores and �nal nDCGs for the
two queues. If&1 is the queue with the highest �nal nDCG, then for
every non-restricted&2 at a given timestepC, we calculate the loss
as; ¹&2• Cº = ¹=��� ¹&1º � =��� ¹&2ºº¹1 � ln f ¹5¹&1º � 5¹&2ººº,
wheref is the logistic function and5¹�º is the score of the model
for a queue. Note that we do not calculate any losses for actions
which are restricted bycan be fair. An example of loss function
computation is in Figure 2 (right).

Inference At inference time, we apply the scoring model for
each slot of each ranking, �lling in slots with the top item from
the highest-scoring queue at each step. We apply thecan be fair
restriction on the action space at inference time as well, to ensure
that the generated rankings are fair (if possible). Because of the
can be fairrestriction on the action space, the L2SQ model has a
worst-case complexity of� ¹6=2º at inference time for a ranking
with = items and6 groups.

6 EXPERIMENTS
6.1 Data
We evaluate our proposed approach on the following four real
world datasets: UCI German Credit, StackExchange, AirBnB, and
a new dataset Resume. In addition, we analyse our algorithms on
a synthetic dataset described below. In each case, we construct
training examples with 10 batches each, and validation and test
examples with 25 batches each.

Synthetic Data We construct a synthetic dataset to study the
behavior of our proposed algorithms. We de�ne four groups for
generating this synthetic dataset. We generate the data by sampling
an initial component� * ¹0•1º and adding a value sampled from a
Gaussian random variable with standard deviationf = 0”1 to each

group. We set the Gaussian random variable to have a negative mean
for two of the four groups, wherè � * ¹� ”75•� ”25º is sampled for
each batch, and zero mean for the remaining two groups. For each
batch, we select a random number of elements from each group
(speci�cally, between 3 and 7 items per group). We sample 100
training examples, 50 validation examples, and 50 test examples.

German Credit Hans Hofmann [12] introduced the German
Credit dataset which maps applicants to credit rating/scores gener-
ated by the private German credit agency Shufa. Each applicant has
features such as age, gender, martial status, etc. There are 1,000 ap-
plicants overall. Our data was created similar to [29] who assigned
a score to each applicant as the sum of the relevant numeric or
ordered attributes1. We rank the applicants by this score. For our
experiments we take the cross-product of gender and age to create
four groups. To convert these rankings we shu�e the data and then
split into batches of size 20. We sample 100 training examples, 50
validation examples, and 50 test examples.

AirBnB Although their setting is di�erent, we take inspiration
from [3] to create a ranking dataset from AirBnB listings. Note
that our results are not directly comparable to [3], because they
consider individual fairness criteria while we consider DDP which
is de�ned for groups. We create a dataset using AirBnB data2 for the
cities Boston, Seattle, and New York. There are 37,171 listings in our
dataset. Each listing is considered an item, and we obtain item scores
by summing ratings for each of 7 attributes: cleanliness, check-in,
communication, location, review score, value, and accuracy. Ratings
are generally very close to the maximum of 10. Batches (of size
20) are uniformly sampled at random from the total population.
We create four groups of listings based on price per night: $0-$50,
$51-$100, $101-$200, and $201-$1000. Although listing price is
not a sensitive attribute, our fairness constraint will ensure that
some listings from each price range appear in the results, providing
cheaper listings more opportunity to be seen while giving the user
diversity of choice. From this construction, we sample 300 training
examples, 50 validation examples, and 50 test examples.

Stack ExchangeAlso inspired by [3], we create a realistic query-
answer dataset from the StackExchange online archive3. As with
AirBnB, our results on this dataset are not directly comparable to
their results due to the di�erence in problem setting. Each ranking
is composed of answers to a question asked on the Unix, AskUbuntu,
and Academia StackExchange websites. We restrict ourselves to
questions with at least 4 answers. There are 28,026 questions that
meet this criterion. For each question, we rank the question's an-
swers using cosine similarity between Latent Semantic Indexing
vectors4. Answers are assigned a group based on the reputation of
the posting user. We split users into 3 bins: low reputation (1-50),
medium reputation (51-2,500), and high reputation (>2,500), so each
item falls into one of these three groups. User reputation is not
typically a sensitive attribute, but applying our fairness constraint
improves diversity of results and gives less-experienced users more
chance to gain reputation. As with other datasets, a single �ex-
ample� consists of 10 questions for training or 25 questions for

1https://www.github.com/MilkaLichtblau/FA-IR_Ranking
2http://insideairbnb.com/
3https://archive.org/details/stackexchange
4https://radimrehurek.com/gensim/models/lsimodel.html

validation/test. We sample 1000 training examples, 50 validation
examples, and 50 test examples.

Resume Motivated by the setting of screening candidates for a
job in an online, batched setting, we construct a dataset of batched
resumes from a freely available list of 14,800 parsed resumes for
software engineers, data scientists, and other computer science
related professionals across India5. We trained a simple model to
predict, from the body of the resume, whether the applicant should
be considered for a software developer position. As a simple ap-
proximation of such a signal, we train a logistic regression model to
predict (using only the resume's body) whether or not the resume's
title contains the word �developer.� We use the scores output by the
logistic regression model as the relevance scores. To sort resumes
into groups, we use the resume's �state� �eld to map each resume to
one of four regions of the country: North, South, East, and West. We
use a batch size of 20 items each. We sample 200 training examples,
50 validation, and 50 test examples.

6.2 Experimental Setup
For each dataset we split the items into two populations, one for
training and validation and the other for test. We sample sets of
rankings in a way that ensures no item is repeated within a single
ranking, but may be repeated across rankings. For training we use
10 timesteps for each set of rankings, and for validation and test
we use 25 timesteps. We use Fair Queues as a reference policy for
L2SQ, rolling out for three timesteps before calculating the loss for
each deviation. The DDP thresholdU for all datasets is set to 0.1.
We optimize the model with Adam for 20 epochs. The model is a
feed forward neural network with 17 features for each group (listed
in Section 5.2), 2 hidden layers of sizeb17

2 c and b17
4 c features per

group, and an output layer of size equal to the number of groups.
The model for each dataset was trained on a Xeon Gold 6240 CPU
@ 2.60GHz with 192GB RAM, though in practice we found the
model did not use more than 10 GB of memory.

We tune the mixture parameterVon the validation set and keep
the best model for test. We set the learning rate at 0.001 for all
datasets. The test data consists of 50 sets of rankings for each
dataset. We evaluate each algorithm on the test data and calculate,
for each timestep, the mean and 95% con�dence interval for nDCG
and DDP across all 50 sets of rankings.

We compare the initial rankings to re-rankings from Greedy Fair
Swap, Fair Queues, and L2SQ. Although there is a large amount of
prior work on fair ranking, we are speci�cally focused on post-
processing approaches that guarantee fairness over time in an
online, multi-batch setting. We are not aware of prior work that
directly ful�lls these criteria, and thus do not make any further
comparisons.

Our code is available online6.

6.3 Results
We begin with the synthetic data. In this setting L2SQ attains the
highest nDCG on the test data while still meeting the fairness
threshold (top row of Figure 3).

5https://www.kaggle.com/avanisiddhapura27/resume-dataset
6https://github.com/ejohnson0430/fair_online_ranking

	Abstract
	1 Introduction
	2 Related work
	3 Problem Definition
	3.1 Online Post-Processing For Rankings

	4 Deterministic Policies
	4.1 Fair Queues
	4.2 Greedy Fair Swap

	5 Policy Based On Learning To Search
	5.1 Background
	5.2 LOLS With Queues (L2SQ)

	6 Experiments
	6.1 Data
	6.2 Experimental Setup
	6.3 Results
	6.4 Sensitivity to Relevance Distributions

	7 Conclusion
	Acknowledgments
	References

