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Abstract—The frequency of supply-chain attacks has reached
unprecedented levels, amounting to a growing concern about
the security of open-source software. Existing state-of-the-art
techniques often generate a high number of false positives and
false negatives. For an effective detection tool, it is crucial to
strike a balance between these results. In this paper, we address
the problem of software supply chain protection through program
analysis. We present HERCULE, an inter-package analysis tool to
detect malicious packages in the Python ecosystem. We enhance
state-of-the-art approaches with the primary goal of reducing
false positives. Key technical contributions include improving
the accuracy of pattern-based malware detection and employing
program dependency analysis to identify malicious packages in
the development environment.

Extensive evaluation against multiple benchmarks including
Backstabber’s Knife Collection and MalOSS demonstrates that
HERCULE outperforms existing state-of-the-art techniques with
0.949 f1-score. Additionally, HERCULE detected new malicious
packages which the PyPI security team removed, showing its
practical value.

Index Terms—software supply chain security, malware detec-
tion, program analysis

I. INTRODUCTION

Recent reports indicate a remarkable surge in the number of
OSS supply chain attacks over the past three years, reflecting
an astonishing growth rate [1]. Popular package repositories
such as PyPI have been flooded with malicious packages,
where the PyPI team has removed 12,000 packages in 2022
alone [2]. This alarming increase in malicious packages is
further fueled by the recent advancements in large language
models (LLMs), which are extensively utilized in the devel-
opment of artificial intelligence (AI) software systems.

Attackers have been successful in distributing malware by
tricking developers into installing malicious packages with the
use of Typosquatting [3], Combosquatting [3], Dependency
Confusion [4] and Repo Confusion [5]. Typosquatting is a
technique that leverages the mistakes a user makes when
installing a well-known package with a typo in the package
name. Similarly, combosquatting is a technique that rearranges
package names in a different order.

A Dependency Confusion attack exploits a vulnerability in
the current Python dependency resolution workflow. Malicious
users can hijack the namespace of a private dependency by
creating a duplicate entry in the public PyPI registry. Since
Python’s dependency resolution prioritizes public registries
over private ones, this allows adversaries to override private
dependencies. For instance, PyTorch [6] fell victim to a
dependency confusion attack [7], where the malicious code
masquerading as the official package received over 2,000
downloads, compromising sensitive information.

Previous efforts to detect such malicious packages have
focused on analyzing individual packages, utilizing techniques
such as static analysis [8], dynamic analysis [9], and machine
learning [10]. Existing static analysis methods [11], [9] often
suffer from a high rate of false positives and can be easily
circumvented using obfuscation techniques. While dynamic
analysis methods provide greater precision and resilience
against simple obfuscation, they tend to produce a high number
of false negatives. These techniques are limited in their ability
to trigger complex malicious behaviors due to the constraints
of their testing strategies, resulting in a high number of
false negatives. Dynamic analysis necessitates sandbox envi-
ronments, thus difficult to use in development environments.
Furthermore, existing dynamic and static methods are hindered
by advanced obfuscation techniques such as splitting malicious
code across dependencies [12]. An example attack would
be the divide-and-hide attack [13], which employs modular
components to formulate the attack by separating malicious
code within multiple packages. Existing techniques [14], [11],
[15], analyze packages as a single entity rather than analyzing
the complete program which uses modular components from
other packages. In addition, such methods lead to a large
number of false positives [9] since they do not provide
sufficient information apart from matching previously known
attack pattern signatures [16]. For example, the previous PyPI
vetting pipeline only inspected setup.py for malicious code
that would execute during package installation [8]. Although
setup.py is a common target, malicious code can also be
injected in other files and separated in multiple packages.
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In this paper, we propose an inter-package analysis ap-
proach to detect malicious Python packages for supply chain
protection. Our method comprises three key analysis steps.
First, we assess the integrity of a distributed package in
relation to its source code repository. We perform a differential
analysis of the changes between the distributed artifact and
the source code to identify malicious updates that were not
included in the repository. This approach is based on the
observation that malicious actors often conceal harmful code
within the final artifact, without disclosing it in publicly
accessible source code repositories. Second, we perform data-
flow analysis to identify suspicious data flow between different
information sources and sinks that can reside in different
packages. The core idea is to incorporate data-flow analy-
sis to detect sensitive information flow to malicious targets
across different packages. We call such data flow that cross
package boundaries inter-package flows. Finally, we perform
a transitive dependency analysis to detect packages that import
previously detected malicious packages as dependencies. Any
package (even a legitimate one) can be compromised to
distribute and install other malicious packages [7].

In summary, the contributions are as follows.
• We present an inter-package analysis based approach for

supply chain protection. We implement our analysis in a
tool named HERCULE, which outperforms state-of-the-art
tools on known malicious datasets and can be extended
to detect new types of malicious behaviors.

• We show that by using differential analysis on the abstract
syntax tree representation of the source code, we can
significantly reduce the number of false positives of
existing pattern-based malware detection tools.

• We encode malicious behavior in the CodeQL query
language and show static analysis can be extended beyond
pattern-based matching for malware detection in Python
ecosystem. We also propose a transitive dependency
analysis to detect packages that are using other malicious
packages.

• Our experimental results show that static analysis can ef-
fectively detect malware spread through software supply
chain attacks, achieving high recall while maintaining a
low false positive rate for benign packages. Furthermore,
our approach identifies previously unreported malware.

II. MOTIVATIONAL EXAMPLE

In this section, we demonstrate how a developer environ-
ment can be compromised through a supply chain attack,
using a real-world malicious package identified and reported
by HERCULE, which has since been removed from PyPI.
Consider a developer attempting to create a custom dataset
of Wikipedia entries. To accomplish this, the developer needs
a data scraper, which is a program designed to automatically
retrieve web pages and convert HTML data into JSON for-
mat for processing by other tools in the scraping workflow.
A common practice among developers is to reuse existing
programs that offer these capabilities, rather than building
them from scratch. The PyPI registry includes a package called

wikipedia-scraper that provides the desired functional-
ity. However, this package is actually a facade created by an
attacker to facilitate a supply chain attack.

Fig. 1: An illustration from a real-world example how a
developer environment can be compromised via supply chain
attack

Figure 1 illustrates the supply chain attack carried out
by installing package wikipedia-scraper. The package
itself does not contain any malicious code, however it enlists
a dependent package bot-package which will get installed
as part of the dependency resolution. The attack is not carried
out at the installation stage, rather when the program runs.
Invoking the API in package wikipedia-scraper triggers
a chain of API calls that eventually executes a malicious bot.
Once deployed, the bot executes in the background and listens
on a port, waiting for commands from a command and control
server via GET and POST requests.

Inspecting the code of the package wikipedia-scraper
in isolation is not enough to identify the malicious behavior
since part of the malicious code resides in a dependent pack-
age i.e. bot-package using the divide-and-hide [13], [12]
obfuscation technique. This highlights one of the limitations
in existing techniques, which analyze packages individually
one at a time. In order to detect such attacks the detection
technique needs to analyze all dependent packages as well.

To effectively protect the developer environment against
such attacks, it is essential to conduct an analysis that iden-
tifies all dependencies of a downloaded package, including
both explicitly declared and implicitly used ones. Once these
dependencies are established, it is critical to perform an inter-
package analysis across all transitively dependent packages
to detect and flag any malicious ones. This analysis should
capture data and control flow between different packages to
identify suspicious behaviors, such as executing unauthorized
commands. Additionally, it is vital for the analysis to minimize
false positives to be effective in practice.

III. APPROACH

We propose HERCULE, which employs a multi-staged inter-
package static analysis approach. Our method comprises three

2



Fig. 2: High-level overview of our approach HERCULE

analyses, each offering insights to help users understand why a
package is flagged as malware. First, we analyse the integrity
of the package to verify if the distributed artifact adheres to
the corresponding source repository modulo benign changes
due to the build process. Second, we perform a whole-package
behavior analysis to detect suspicious data-flow or control-flow
involving protected data sources. Finally, through a transitive
dependency analysis, we detect packages that install known
malicious packages.

A. High-level Overview

Figure 2 depicts the high-level overview of HERCULE.
Given a package named Package-Z, our approach first gener-
ates the closure of the package S. The closure of the package
is the complete collection of dependent packages that are both
explicitly and implicitly defined as dependent packages. Note
that this collection can be different from the set of necessary
packages required to execute Package-Z, which is a subset of
the closure of the package S. A package may be installed as
a dependency of Package-Z without ever being used within
the package itself. However, because this package is explicitly
declared in the metadata files, such as pyproject.toml, it
will still be installed on the system. Therefore, we include all
such packages as part of the closure. Similarly, packages that
are not explicitly declared but implicitly used in Package-Z
are also included in the closure S. Malicious code injected
by adversaries may import packages without explicitly declar-
ing them as dependencies to avoid detection. Therefore, we
recursively enumerate all implicitly and explicitly declared
dependent packages to generate the closure S . We rely on
existing features in the package manager pip 1 to resolve
dependency versions when an explicit version is not specified.

Second, we analyse the integrity of the downloaded package
with respect to the corresponding source repository. This
analysis provides a signal if the downloaded artifact was
modified either during the build process or at the publishing
stage. Detecting artifacts that do not adhere to the source
repository helps to identify suspicious files that are not aligned
with the source repository. Note that misaligned artifacts are
flagged as suspicious but not malicious since new files could
be introduced or existing files can be modified as part of the
build process [8].

Third, HERCULE iterates over the dependency graph of the
package to identify known malicious packages. If a malicious
package is downloaded as a dependency of the package, we
flag the scanning package as malicious. In our motivational

1https://pip.pypa.io/en/stable

example, wikipedia-scraper is flagged malicious since
it downloads the known malicious package bot-package
as part of its dependency resolution.

Fourth, HERCULE performs inter-package static analysis
to track data and control flow across packages. The inter-
package analysis includes all definitions and declarations used
in the package and its dependencies. HERCULE scans the
entire codebase, including all dependencies, for any code
that matches abstractions captured from previously known
malware. The semantics of malicious behavior is encoded as
CODEQL2 queries, which is a code analysis engine developed
by GitHub. We develop queries in CODEQL to specifically
analyze suspicious source-sink data flows.

Finally, HERCULE classifies the package as malicious if
there is at least one detected malicious behavior or there is
one malicious package found in the transitive dependencies.

B. Integrity Analysis

Algorithm 1 lists the steps for our integrity analysis. The
first step is to accurately determine the source code repository
R for the distributed package P . Following best practices to
construct a Software Bill of Materials (SBOM), package dis-
tributors are encouraged to advertise the corresponding source-
code repository which can be used by third-party analysis
such as HERCULE to verify the integrity of the build artifact.
FETCHSOURCEREPO method in Algorithm 1 enumerates the
meta-data for the package to identify the source repository
and the release version. If a repository is detected, HER-
CULE fetches the source code matching the release version
for comparative analysis. Most of the source repositories are
hosted with version control systems and follow best practices
in software engineering to tag each release. HERCULE uses the
Levenshtein distance3 to identify the corresponding commit
tag in chronological order of the tag creation time. If a
corresponding tag cannot be found, the latest version of the
code is fetched.

For each python file in the distributed package P , we find
the corresponding source file from the code repository R
using code clone detection i.e. FINDCLONE(). Each source
file f is first normalized by applying standard refactoring
techniques to prevent mismatches due to formatting changes
that may occur during the build process. In addition, all source
files are upgraded to the latest version of Python using the
pyupgrade4 tool, which allows HERCULE to only support
the latest version of Python. For each identified pair of source

2https://codeql.github.com/
3https://en.wikipedia.org/wiki/Levenshtein distance
4https://pypi.org/project/pyupgrade
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Algorithm 1: Integrity Analysis
Input: Python Package P
Output: suspicious set of modified locations Lsusp,

suspicious set of new files Fsusp

1 Lsusp ← ∅, Fsusp ← ∅
2 Fpkg ← EXTRACTSOURCEFILES(P )
3 R ← FETCHSOURCEREPO(P )
4 if R ̸= ∅ then
5 Fsrc ← EXTRACTSOURCEFILES(R)
6 for file f ∈ Fsrc do
7 fN ← NORMALIZE(f )
8 end
9 for file f ∈ Fpkg do

10 fN ← NORMALIZE(f )
11 ASTpkg ← GENAST(fN )
12 fclone ← FINDCLONE(fN , Fsrc)
13 if fclone ̸= ∅ then
14 ASTsrc ← GENAST(fclone)
15 Lchanges ← ASTDIFF(ASTsrc, ASTpkg)
16 if Lchanges ̸= ∅ then
17 for loc ∈ Lchanges do
18 Lsusp ← Lsusp ∪ loc
19 end
20 end
21 end
22 else
23 Fsusp ← Fsusp ∪ fN
24 end
25 end
26 end
27 else
28 Fsusp ← Fpkg

29 end
30 return Lsusp, Fsusp

files from the distributed package P and the repository R,
we analyze the changes at the Abstract Syntax Tree (AST)
level. Operating at the AST level allows to disregard subtle
textual changes (i.e. carriage return token) and reduces the
discrepancies between the distributed package P and the code
repository R. For example, if source code is developed in
a Unix environment but the build happens in a Windows
environment, textual changes due to differences in encoding
might be introduced.

C. Behavior Analysis

Code differences in the distributed package compared to
the source repository alone, do not provide sufficient evidence
to flag the package as malicious. The analysis must provide
additional substantial evidence of malicious behavior to flag
a package as malicious. Thus, a behavioral analysis is needed
to detect packages that exhibit malicious behaviors.

We employ inter-package analysis, more specifically data-
flow analysis to detect potentially malicious behavior. For this
purpose, we use CODEQL, which is a semantic code analysis
engine primarily used to detect software vulnerabilities in
a range of programming languages (i.e. C, C++, Go, Java,
Python etc). CODEQL generates a relational database captur-
ing program semantics using the abstract syntax trees, control
flow graphs, and data flow graphs. Users can analyze the pro-

gram by running queries against the generated database with
its unique object-oriented query language. For our purposes,
we reuse the same infrastructure but develop the queries to
capture patterns specific to previously studied supply chain
attacks.

To improve recall and avoid missing malicious behavior, we
first construct the closure of the package by recursively retriev-
ing all necessary dependencies. Querying this closure enables
us to capture code that may be fragmented or concealed within
the dependencies [12].

CODEQL Queries HERCULE comprises CODEQL queries
designed to identify data flows from sensitive sources to
sinks, specifically targeting flows previously associated with
supply chain attacks [17], [9], [18]. We have written a total
of 22 queries, which can be categorized into the following
groups.

• Encoding/Obfuscations: detect data flows where the
data source is encoded or obfuscated. Common behavior
observed in malicious packages to thwart rule-based
detection techniques.

• File Operations: detect data flows that access and ma-
nipulate the file system. This includes identifying flows
from network sources to the file system.

• Network Connections: detect using IP addresses or
domain names to create network connections. Hard coded
IP addresses and domain names are commonly found in
malicious packages.

• Processes: detect remote connections influencing oper-
ating system commands or new processes, to identify
potential remote code executions.

• Exfiltration: detect information flow from the local en-
vironment or file system to remote end points.

First, we detect data flows that use encoding such as base64
to detect obfuscation in the code. However, the detection is not
merely the existence of a base64 encoding but a behavior that
exhibits malicious intent (i.e. compile code). We also analyze
file modifications to protect files, which can be used to corrupt
the integrity of the environment. The protected class of files
includes files that encompass the running environment (i.e.
Python library files) and configuration files used by the system
(i.e. /etc/resolv.conf). Behavior that exhibits remote
network connection establishment will also be detected, typ-
ically used to load the payload of the malware. We also
curate queries to capture data flows from sensitive sources to
untrusted sinks. Sensitive sources refer to information specific
to the running system, while untrusted sinks are those with
remote connections that transmit data outside the system.

D. Transitive Dependency Analysis

Using behavior analysis we can detect packages that down-
load other malicious packages. Even though these packages
themselves do not directly contribute to the attack, indirectly
they install the malicious packages as their dependencies. As
discussed earlier, adversaries use various tactics such as divide-
and-hide and dependency-confusion [7] to install malicious
dependencies. A user who installs a package installs the entire
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dependency chain. Thus, it is imperative to analyze the entire
dependency graph to protect against supply-chain attacks.

HERCULE generates the dependency graph of the whole-
program based on the dependencies resolved by the package
manager pip and finds the relation between each of the
packages with respect to malicious packages. The dependency
graph consists of nodes representing each package in the
whole-program, with directed edges representing the depen-
dency relation.

HERCULE transitively scans each dependency chain in the
package closure to detect the existence of a known malicious
package. If any of the transitive dependencies include a link
to a known malicious package, the package will be flagged as
a malicious package. The chain of dependencies that installs
a known malicious package will be reported to the user.

IV. IMPLEMENTATION AND EVALUATION

We implemented HERCULE in Python. We use the Python
implementation of GUMTREE to identify AST differences. For
behavior analysis we develop CODEQL queries with malicious
behavior specifications accustomed for supply chain attacks.
We use the default Python package manager pip to resolve
dependencies and construct the closure of the program.

We evaluate HERCULE’s effectiveness in identifying mali-
cious packages by answering the following research questions:
RQ1 How effective is HERCULE in detecting malicious

packages compared to existing state-of-the-art tech-
niques?

RQ2 What is the contribution of each analysis step in
HERCULE in detecting malicious packages?

RQ3 How effective is HERCULE in reducing false positives
for benign packages?

RQ4 How efficient is HERCULE across benign and malicious
packages?

A. Experimentation Setup

Dataset: We evaluate our technique using two types of
dataset; existing benchmarks in the literature, and benign pack-
ages collected from PYPI registry. From the existing bench-
marks in the literature, we extracted 255 unique malicious
packages from MalOSS data-set [9], out of which we removed
13 files that are not Python packages (including DLL files and
setup.py files), resulting in 242 malicious packages. Simi-
larly we extracted 345 malicious packages from Backstabber’s
Knife Collection [17] and 2935 packages from PyPIMalReg-
istry data-set [18]. We further supplement our data-set with
1300 benign packages. We curate our benign packages from
a set of packages published by Google, Microsoft, Oracle,

TABLE I: Statistics of the packages used in the evaluation

Category Data-Set # Pkgs Size Files LoC

Malicious Packages
MalOSS 242 214.87 5.21 491.55
BackStabber 345 407.09 9.51 1374.18
MalRegistry 2935 40.67 10.79 487.36

Benign Packages Popular Packages 100 2147.49 395.80 25806.06
Trusted Packages 1200 1781.06 116.05 18778.47

and Amazon, which are called trusted packages as well-known
organizations publish them. The benign packages also include
the top-100 popular packages5 on the PyPI registry. These
packages are the most downloaded, most used, and most
depended upon in the PyPI ecosystem. Although there is no
guarantee that these packages are not compromised or do not
contain malicious code, we use this dataset to provide insights
on the false-positive rate of HERCULE.

Table I lists the details of the python packages used in our
evaluation. Columns “#Pkgs” captures the number of packages
in each dataset. Columns “Size”, “Files” and “LoC” capture
the average file size of the distributed package, the average
number of files in a package and the average number of lines
of code (Python), respectively. There is a significant difference
in a malicious package captured in existing benchmarks and
the benign packages we captured from PyPI. All three metrics
including the package size, number of files and number of
lines of code are in different order of magnitude. This also
underscores a key challenge for detection tools: scalability.

Comparison with Existing Tools: For comparison with
existing state-of-the-art tools we select tools that support
Python packages for supply chain malware detection. BAN-
DIT4MAL [11] is an extension of BANDIT [14]. BANDIT
is designed to find common security issues in Python code.
BANDIT4MAL extends BANDIT by adding rules specifically
targeting patterns derived from previously studied supply chain
attacks. MALOSS [9] is another technique that employs a
combination of static and dynamic analysis to detect malicious
packages in multiple ecosystems, supporting PyPI, npm, and
RubyGems. We note that the current version is outdated due
to lack of maintenance, limiting us to using only the static
analysis component in our experiments. GUARDDOG is a rule-
based detection tool employing a set of predefined heuristic
rules and patterns to characterize suspicious behavior.

LASTPYMILE [8] is a technique specifically designed to
detect phantom files, i.e., source files within a package that do
not match any source files in the advertised origin repository.
LASTPYMILE uses artifact hashing to identify discrepancies
between files in the source repository. We compare LAST-
PYMILE with the integration analysis component of HER-
CULE. For comparison purposes, we implemented our own
version of LASTPYMILE since the original repository6 is
customized for packages currently hosted on PyPI, however
the malicious packages in existing benchmarks are no longer
available on PyPI.

Setup: All experiments are conducted using Docker
containers on a 192-core 2.40GHz 512G RAM Intel Xeon
machine.

B. Evaluation: Efficacy of HERCULE

We evaluate if HERCULE can effectively detect malicious
packages and can accurately classify benign packages. We also
compare the efficacy of HERCULE with other state-of-the-art

5https://hugovk.github.io/top-pypi-packages/
6https://github.com/assuremoss/lastpymile
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TABLE II: Comparison with state-of-the-art supply chain malware detection tools

Data-Set # Pkgs HERCULE GUARDDOG BANDIT4MAL MALOSS
TP FP TN FN TP FP TN FN TP FP TN FN TP FP TN FN

MalOSS 242 213 0 0 29 142 0 0 100 220 0 0 22 185 0 0 57
BackStabber 345 313 0 0 32 294 0 0 51 330 0 0 15 247 0 0 98
MalRegistry 2935 2761 0 0 174 1985 0 0 950 1971 0 0 964 2505 0 0 430
Popular Packages 100 0 3 97 0 0 18 82 0 0 93 7 0 0 38 62 0
Trusted Packages 1200 0 113 1087 0 0 37 1163 0 0 981 219 0 0 411 789 0

Overall 4822 3287 116 1184 235 2421 55 1245 1101 2521 1074 226 1001 2937 449 851 585

tools in these data-sets. Table II compares the performance
of state-of-the-art tools on the studied Python packages. Each
column summarizes the efficacy of each tool. Sub columns
“TP” and “FP” depict the count for true positives and false
positives, respectively. A true positive is a malicious package
that is correctly identified as such, while a false positive occurs
when a benign package is incorrectly classified as malicious.
Columns “TN” and “FN” represent the count for true negatives
and false negatives, respectively. A true negative refers to a
report that labels a benign package as benign, and a false
negative refers to a malicious package that is identified as
benign.

BANDIT4MAL identifies the most number of malicious
packages while HERCULE has the second highest count, and
MALOSS scored the lowest. In terms of false positives, BAN-
DIT4MAL reports the highest number of false positives and
GUARDDOG reports the lowest. BANDIT4MAL uses pattern
based matching without differentiating intended behavior and
malicious behavior, which flags many packages as malicious
resulting in the highest number of false positives. GUARDDOG
is more conservative and reports the least number of false
positives, but also has the highest number of false negatives.
Using a more lightweight integrity analysis to detect intended
behavior HERCULE strikes a balance between finding the
most number of malicious packages while reporting the least
number of false positives. HERCULE detects 3287 malicious
packages from the malicious benchmarks with an 89.6%
accuracy, while reporting the second lowest number of false
positives from the benign benchmarks with a 91.1% accuracy.

TABLE III: Comparison with state-of-the-art tools using pre-
cision, recall, f1-score, fp-rate and accuracy

Technique Precision Recall F1-Score FP-Rate Accuracy
HERCULE 0.966 0.933 0.949 0.089 92.721
MALOSS 0.867 0.834 0.850 0.345 78.557
GUARDDOG 0.978 0.687 0.807 0.042 76.027
BANDIT4MAL 0.701 0.716 0.708 0.826 56.968

Table III captures the overall accuracy of each tool. High
precision implies that among the flagged packages, the ma-
jority are true positives. GUARDDOG reports the highest
precision of 0.978 with HERCULE having the second high-
est of 0.966. Although GUARDDOG does not detect most
of the malicious packages, due to its low number of false
positives, the precision is high. HERCULE can detect more
malicious packages than GUARDDOG and uses integrity anal-
ysis to reduce the number of false positives. High recall

implies that among the malicious packages, the technique
can identify most of them. HERCULE demonstrates a high
recall rate of 0.933 compared to MALOSS and GUARDDOG.
BANDIT4MAL analysis flags any package matching certain
patterns, which is also why it has the lowest precision of 0.701.

For datasets with a high imbalance between classes, known
as the imbalance classification problem [19], the more accurate
metric for effectiveness is the F1-score. F1-score captures
the harmonic mean of the precision and recall. A high F1
score indicates the strong overall performance of a binary
classification task. HERCULE reports the highest f1-score of
0.949, outperforming the rest with a significant margin. This
is because of its ability to analyze inter-package data flows
to detect malicious behavior.

We also report the false positive rate (FP-Rate) in Table III,
which indicates the effectiveness in practice. A lower false
positive rate is preferred to reduce developer fatigue. GUARD-
DOG reports the lowest FP-Rate of 0.042 while BANDIT4MAL
has the highest. Since BANDIT4MAL employs simple pattern-
based matching, this observation is not surprising. HERCULE
reports the second best of 0.089 using an integrity analysis
to remove false positives.

RQ1: Comparison with multiple state-of-the-art tools shows
that HERCULE outperforms existing techniques with an f1-
score of 0.949.

C. Evaluation: Contribution of each Component
We evaluate the contribution of each component in our

proposed approach using each data-set we have evaluated
on. Table IV summarizes the analysis of HERCULE on the
evaluated Python packages. Column “#Pkgs” represents the
total number of packages in each data-set and column “#S”
represents the total number of packages for which HERCULE
identifies the source repository. Columns “#I”, “#M” and “#C”
represent the total number of packages which have violated the
source integrity, the total number of packages detected with
malicious behavior and the total number of packages identified
as compromised, respectively.

HERCULE correctly identifies the label for each package
with an accuracy of 92.721%. The integrity analysis captures
packages with discrepancies in the distributed package. HER-
CULE reports 3 and 113 false positives in popular packages
and trusted packages, respectively. We investigated the reasons
for the false positives. HERCULE flagged 3 of the popular
packages as integrity violations. Some of these packages (i.e.
.grpcio-status) do not provide the source repository
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TABLE IV: Contribution of each component in HERCULE to
accruactely detect malicious packages

Data-Set # Pkgs #S #I #M #C

MalOSS 242 101 219 209 6
BackStabber 345 147 291 310 9
MalRegistry 2985 1433 2807 2678 25
Popular Packages 100 89 30 1 1
Trusted Packages 1200 1081 1023 113 0

Overall 4872 2851 4370 3311 41

Fig. 3: Accuracy of each Behavior Class

information, hence, all files in these packages are considered
to have failed the integrity analysis. However, among the
projects for which HERCULE identified the source repository,
new files were generated as part of the build process, such as
setup.py and version.py. A few others include cache
files from test directories.

The malicious behavior analysis of HERCULE accurately
identifies malicious packages among the malicious dataset
with an accuracy of 89.6%. For the benign packages HERCULE
also reports an accuracy of 91.1%, reflecting the analysis
capability to differentiate the benign from malicious behavior.
This is because the malicious behavior analysis in HERCULE
is combined with the integrity analysis which prunes alerts
based on the source locations that do not violate the integrity.
For example, the Python package requests exhibits the
behavior of data communication with external sources, which
is the intended behavior of the package. CODEQL reports 2314
alerts on the package, however using the integrity analysis
HERCULE filters out all 2314 alerts since they are not reported
on source locations that violate integrity analysis.

Lastly, the transitive dependency analysis flags 40
compromised packages in total. Among the packages
learninglib:0.1, learninglib:0.2 and
mllearnlib:0.7, do not exhibit any malicious behavior
within the package, however, all three packages explicitly
download a malicious package (i.e. maratlib:0.6) as one
of its dependencies.

We also analyzed the contribution of each behavior class to
the high precision and recall of HERCULE. Figure 3 depicts
the number of false positives and true positives flagged by

each of the Behavior Classes we have encoded in CODEQL.
The majority of malicious packages are identified by the File
and Network classes, indicating that most packages in our
benchmarks establish remote network connections. This is
expected, as many malicious packages either send exfiltrated
data to a remote server or create a connection to load their
payload.

The majority of false positives were reported from the File
class, suggesting that file system manipulation behavior is
frequently observed in the benign packages within our dataset.
Further investigation revealed that many false positives stem
from a behavior pattern where test cases create and modify
existing ones. These packages also lack repository informa-
tion. Improving metadata extraction to accurately identify the
source repository could help reduce such false positives.

RQ2: All three analyses enhance HERCULE’s ability to
accurately label packages, achieving manageable false posi-
tives while maximizing the detection of malicious packages
in our studied dataset.

D. Evaluation: Precision and Reducing False Positives

One core component of HERCULE is the integrity analysis
which we use to prune false positives. The discrepancies
between the distributed package and the source repository have
been studied previously in LASTPYMILE [8]. However, in
our approach we use an AST level differentiation to precisely
and efficiently identify the discrepancies compared to a hash-
based system as proposed in LASTPYMILE. We compare the
impact of having an integrity analysis, by comparing it with
a baseline tool such as BANDIT4MAL which generates a vast
number of alerts that match its detection rules. We evaluate the
reduction of false positives on benign packages. HERCULE*
represents the combination of BANDIT4MAL with our AST
based integrity analysis used to filter out false positives.

TABLE V: Impact of integrity analysis captured in terms
of number of alerts pruned using hash-based and AST-based
techniques

Data-Set BANDIT4MAL LASTPYMILE HERCULE*
Popular Packages 19900 3562 (-82.10%) 2241 (-88.74%)
Trusted Packages 44353 24309 (-45.19%) 8553 (-80.72%)
Overall 64253 27871 (-56.62%) 10794 (-83.20%)

Table V summarizes the number of alerts pruned by differ-
ent implementations of the integrity analysis. Column BAN-
DIT4MAL shows the total number of alerts generated for all
the packages in a given data set. Columns LASTPYMILE and
HERCULE* represent the filtered number of alerts in the form
of x(-y\%), where x is the total number of alerts remaining
after pruning and y is the reduction percentage.

From the results of the analysis, it is evident that blindly
using static analysis to match patterns can create a large
number of false positives. Additional analysis, such as dif-
ferential analysis can help to prune such false positives.
LASTPYMILE [8] generates a database of hashes for every
commit and compares the hashes in the distributed package to
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find files that do not match any of the hashes. This process
is expensive as it has to iterate through all the commits and
is sensitive to even the slightest space change in the file.
HERCULE* employs an AST differentiation that is robust to
formatting changes such as additional spaces, tabs, and special
character changes.

AST-based differentiation prunes 83.20% of false positives
in both popular and trusted packages, allowing to achieve
a manageable number of false positives. HERCULE* imple-
ments a lightweight differentiation based on a single commit
identified as the commit matching the version number of the
package, while LASTPYMILE differentiates with all commits
in the repository. On average LASTPYMILE needs more than
60 minutes to differentiate modified files, mainly because
of the complexity of identifying phantom (i.e. modified or
new) files which require comparison with all commits in
the repository. For the same dataset HERCULE* differentiate
modified files and prune alerts on average within 5 minutes.
Using a lightweight differential analysis HERCULE* was able
to achieve the highest overall prune ratio.

RQ3: The lightweight AST differentiation-based integrity
analysis achieves a pruning ratio of 83.20% over BAN-
DIT4MAL.

E. Evaluation: Efficiency of HERCULE

We also evaluate the efficiency of HERCULE in terms of
the time duration taken to classify a package as malicious or
benign. Figure 4 depicts the violin plot for the time duration
taken for HERCULE to complete, across each dataset in our
evaluation. The violin plot depicts the distribution of the time
duration, capturing both the statistical values (i.e percentiles)
and the density as well. HERCULE on average is able to
detect malicious packages in 3 minutes across all datasets as
shown in Figure 4. The average time taken by HERCULE to
detect a malicious package is 1.84 minutes for the BackStabber
dataset, 1.9 minutes for MalOSS, and 1.56 for the MalRegistry
dataset. The average time to identify a benign package is 3.07
minutes for the top 100 popular packages and 6.32 minutes
for packages from trusted organizations.

Fig. 4: Performance of HERCULE across different dataset

The analysis time for benign packages requires a signifi-
cantly longer time compared to the packages in the malicious

benchmarks. This is mainly due to the differences in the
average file size of packages in the benign dataset compared
to the malicious benchmarks (Ref Table I). HERCULE requires
more than 10 minutes for 10 of the packages in our top-100
dataset, including scipy, virtualenv, numpy and pandas. These
packages represent the largest packages in the top-100 dataset
in terms of size and number of files. For instance, the scipy
package has 6983 files amounting to 230701 lines of code.

RQ4: HERCULE completes the analysis of malicious pack-
ages in 1.61 minutes and benign packages in 6.08 minutes.

V. CASE STUDY: NEW MALWARE DETECTED ON PYPI

In this section we briefly discuss our experience in finding
new malware using HERCULE by randomly scanning packages
from the PyPI package registry. All of these malware packages
have been confirmed by the PyPI security team and removed
from the registry.
wikipedia-scraper-in is a product that allows the

user to generate data by crawling web pages. Similar pack-
ages for popular websites such as YouTube, Facebook, and
LinkedIn are published in PyPI registry. A manual inspec-
tion of wikipedia-scraper-in shows that the package
only imports a library called btstudio and invokes an
API call. When analyzed by a state-of-the-art tool, such
as BANDIT4MAL or MALOSS, this would not raise any
flags. HERCULE first runs an integrity analysis to detect
code not part of the source repository. However, the pack-
age does not include information to establish a mapping
with a source repository, hence integrity analysis flags all
files as suspicious. Using our malicious behavior analy-
sis, HERCULE finds a suspicious control flow starting from
wikipedia-scraper-in, leading to a method invocation
in btstudio for the subprocess.run method, which
starts a separate process (specifically, invoking a call to
execute a Windows executable which resides within the de-
pendent package btstudio). We note that HERCULE de-
tects a flow from wikipedia-scraper-in to btstudio,
instead of simply matching for code patterns that include
subprocess.run.

Upon detecting the malicious behavior, we further verified it
by uploading the binary file to VirusTotal 7, which flagged
the file as a Trojan virus, confirming its malicious nature.
We then collected all packages from the same user, who had
uploaded 136 packages to the PyPI registry that followed a
similar pattern. Among these 136 packages, four served as
payload distributors, while the remaining packages directly or
indirectly invoked APIs to execute the binary file.

We extracted the binaries and analyzed each one sep-
arately. We analyzed two binaries, datakund.exe and
datakund-btstudio.exe, which are both Windows ex-
ecutables. They are essentially the same, however, parts
of the code in datakund-btstudio.exe are more ad-
vanced, indicating an evolution from datakund.exe to

7https://www.virustotal.com
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datakund-btstudio.exe. For example, some functions
have included exception handling likely an indication of code
iteration. The two executable files are bots used by the adver-
sarial user. Once deployed, the bots execute in the background
and establish a connection to listen on a port for commands
sent by the command server via GET and POST requests.

VI. PRACTICAL IMPACT

We evaluate the effectiveness of HERCULE in reducing false
positives reported by the industry-grade supply chain detection
tool MACARON [20]8, developed by Oracle Labs. Our analysis
focused on the 1000 Python packages recently released in the
PyPI registry as of October 10, 2024. The malicious metadata
check in MACARON identified five packages as potentially
malicious, as shown in Table VI. One package identified as a
true positive was flagged by both tools, while the remaining
packages that were false positives were classified as benign by
HERCULE. This demonstrates that HERCULE can effectively
complement the metadata analysis in a tool like MACARON,
enhancing its practical effectiveness by reducing its false
positives.

TABLE VI: Reducing False Alerts of MACARON

Package Name Version MACARON HERCULE Duration (min)
cmdb-worker-pckg 1.0.0 ✗ ✗ 1.672
hacking-shield 0.2.3 ✗ ✓ 0.788
fruitspace.py 1.0.2 ✗ ✓ 1.8
one-chat-api 0.2.8 ✗ ✓ 0.727
httpsy 0.3.0 ✗ ✓ 0.775

VII. LIMITATIONS AND THREATS TO VALIDITY

A. Limitations

HERCULE mainly relies on the integrity of the source
repository to precisely differentiate modifications. If the source
repository itself is compromised by means of social engineer-
ing attacks, the analysis would fail to flag the package. Even if
the malicious behavior identifies the injected code, HERCULE
would filter it out since it does not violate the integrity of
the source repository. In addition, the current prototype of
HERCULE only analyses data-flow within Python files and
does not capture malicious code written in C/C++ code that
is interacting with the Python code.

B. Threats to Validity

While we consider the most downloaded and trusted pack-
ages to be benign, they may still contain undetected malicious
code. Additionally, these packages do not encompass the en-
tirety of benign packages. Therefore, further evaluation using a
larger dataset of benign packages is necessary to generalize our
findings. To address the potential limitations in the generality
of benign packages, we collected over 1000 packages from
two distinct sources: the most downloaded packages and those
from reputable organizations.

The behavior specifications are based on previously iden-
tified malicious packages. While we have generalized these

8https://github.com/oracle/macaron

specifications in our behavior analysis, they remain dependent
on the packages used for our evaluation. To mitigate this
issue, collecting additional malicious packages to create an
independent dataset would be beneficial. However, there is a
scarcity of publicly available packages with verified ground-
truth labels. To address this validity concern, we evaluated
our approach using three widely studied benchmarks. These
datasets were curated at different times and include a diverse
set of packages.

Lastly, our implementation of LASTPYMILE may differ
from the original implementation provided by the authors,
which could yield different results. However, the authors’
implementation only works for packages currently hosted in
the PyPI registry, limiting our ability to evaluate malicious
packages that have already been removed. To address this
issue, we will release our implementation of LASTPYMILE
alongside our artifact release, allowing the research commu-
nity to replicate our results.

VIII. RELATED WORK

A. Software Supply Chain Attacks

As reliance on open-source software grows, attackers find
more opportunities to contaminate software artifacts by target-
ing software supply chains [21]. A recent study shows various
ways that adversaries spread malware by compromising the
open-source software supply chain [17]. According to this
study, adversaries either compromise existing packages or
create and publish malicious packages that mimic popular be-
nign packages. This study also provides information about the
attacker’s goals, methods to trigger the malicious behavior, and
common obfuscation techniques. Bagmar et al. [22] performed
an extensive analysis of the PyPI ecosystem, and showed
issues that allow an attacker to run malicious code at package
installation time. HERCULE supports these scenarios identified
in this study: (1) it verifies the integrity of the package w.r.t.
the source repository to detect existing compromised packages,
and (2) it detects fake packages that pretend to be benign
using data-flow analysis techniques. Moreover, HERCULE is
the first tool that detects more advanced attacks, such as Divide
and Hide [13], which have not been studied in the previous
work [12].

B. Integrity Violation

To detect potentially malicious packages that are published
on public registries, one approach is to find discrepancies
between the source code of the package and its corresponding
repository [23], [24], [8]. The assumption in these works is
that if the source code of a project is tampered with in the
build process by a malicious actor, the injected malicious code
that is present in the resulting artifact will not be present
in the corresponding code repository. Identifying the source
code repository for an artifact is not always straightforward
and several techniques are proposed to improve the accuracy
of such mappings [25], [20]. The supply chain security com-
munity has come up with frameworks, such as SLSA [26]
to establish a trusted link from an artifact to a commit
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in its corresponding source-code repository and publishing
CI pipeline using verifiable provenances. Unfortunately, the
current adoption of such provenances in open-source projects
is low [20]. Moreover, such provenances are not enough
for detecting malicious packages. A malicious package can
compromise the integrity of the environment after it is installed
by modifying other packages that are installed on the system.
More recently, cryptographic solutions [27], [28] are proposed
to ensure integrity of the software. These solutions aim to
provide users the ability to verify the entire supply chain from
development to deployment. While the proposed solutions
provides assurance, it requires the package developers to
adapt their proposed solutions. Different to this approach our
integrity analysis is lightweight and can be utilized by the end
user irrespective of the project development process.

C. Supply Chain Malware Detection and Prevention

Duan et al. [9] combine metadata analysis with static and
dynamic analysis techniques to shortlist suspicious packages
and manually determine if they are malicious. Similarly,
we use static analysis to find security-sensitive data flows.
However, our static analysis detects data flow across packages,
enabling us to detect advanced non-trivial attacks, such as
Divide and Hide [13]. Sejfia and Schäfer [10] use machine
learning to find potentially malicious npm packages using
features such as fingerprinting personal information, presence
of minified code, binary files and usage of specific APIs,
excluding packages that have reproducible builds. To reduce
false negatives, this work also uses a clone-detection technique
to find discrepancies to detect injected malicious code. More
recently Froh et al. [29] proposed an approach to detect mali-
cious updates to the packages. While HERCULE differentiates
between the distributed package and the source repository,
this work differentiates between previous versions of the same
package. The two techniques are complementary to each other
since they focus on two different dimensions of how the supply
chain can be compromised. Our work is also complementary
to Macaron [20], which provides an extensible framework to
detect supply chain attacks. HERCULE can be added as a check
to Macaron to detect and prevent the described attacks during
the development and deployment of artifacts.

Gonzalez et al [30] proposed to detect malicious commits
that are injected into open source repositories, using a rule
based decision model. The solution aims to prevent the inte-
gration of malicious code commits, thus improving the supply
chain during development. Our work is complementary with
the solution, which detects malicious intent at the development
stage of the project while HERCULE focus on detecting
malicious behavior during deployment. Vasilakis et al [31]
proposed an active learning to eliminate the possibility of in-
tegrating vulnerable library components in to the environment.
The proposed solution aims to learn the correct functional
behavior of the desired third party library, and regenerate
a newer safer version. This line of work is orthogonal to
HERCULE which detects malicious behavior to prevent supply

chain attacks, while this work aims to eliminate supply chain
attacks by regenerating the code.

D. Program Analysis

Program Analysis have been widely studied for detecting
logical errors [32], [33], identifying security issues [34], [35],
program repair [36], malware detection [37], sand boxing [38]
and supply chain protection [29]. Atkinson et al [33] discussed
the need for whole program analysis to improve automated
support for program understanding. They introduce the chal-
lenges to reason about a program’s behavior by simply exam-
ining individual modules alone, and the need to have analyses
that work on the whole program. Balzarotti et al [39] proposed
a vulnerability analysis approach that characterizes both the
extended state and the intended workflow of a web application.
The proposed analysis also take into account inter-module
relationships and the interaction with external sources. Ferreira
et al [38] proposed lightweight permission system that protects
Node.js applications by enforcing package permissions at
runtime. They proposed lightweight sand boxing strategy that
combines dynamic checks with static analysis. Mantovani et
al [40] proposed to use program analysis to detect security
vulnerabilities in decompiled binaries. Similar work has also
been proposed for JavaScript code [41] and C code [42].

Different to existing work using program analysis, HER-
CULE use program analysis to detect software supply chain
attacks. Specifically, we use inter-package data-flow analysis
to identify malicious behavior patterns.

IX. CONCLUSION

We presented a inter-package analysis approach that com-
bines three analyses to identify malicious packages with
high precision and high recall. Our approach incorporates an
integrity check based on AST differentiation analysis, that
can identify discrepancies between the distributed artifacts
and the source repository. We then utilize CODEQL to detect
malicious behavior using data-flow analysis. Lastly, we im-
plement a transitive dependency analysis to identify malicious
packages installed as part of the dependency resolution. Our
inter-package analysis was able to outperform existing state-
of-the-art techniques to detect malicious packages with high
precision and fewer false positives.

Our tool and experiment setup is available via:
https://github.com/rshariffdeen/Hercule
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package updates in npm with a lightweight permission system,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1334–1346.

[39] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna, “Multi-module
vulnerability analysis of web-based applications,” in Proceedings
of the 14th ACM Conference on Computer and Communications
Security, ser. CCS ’07. New York, NY, USA: Association for
Computing Machinery, 2007, p. 25–35. [Online]. Available: https:
//doi.org/10.1145/1315245.1315250

[40] A. Mantovani, L. Compagna, Y. Shoshitaishvili, and D. Balzarotti,
“The convergence of source code and binary vulnerability discovery –
a case study,” in Proceedings of the 2022 ACM on Asia Conference
on Computer and Communications Security, ser. ASIA CCS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
602–615. [Online]. Available: https://doi.org/10.1145/3488932.3497764

[41] T. Brito, M. Ferreira, M. Monteiro, P. Lopes, M. Barros, J. F. Santos,
and N. Santos, “Study of javascript static analysis tools for vulnerability
detection in node.js packages,” IEEE Transactions on Reliability, vol. 72,
no. 4, pp. 1324–1339, 2023.

[42] S. Lipp, S. Banescu, and A. Pretschner, “An empirical study on the
effectiveness of static c code analyzers for vulnerability detection,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 544–555. [Online].
Available: https://doi.org/10.1145/3533767.3534380

12


