
Sulong, and Thanks For All the Bugs: Finding Errors in C Programs by
Abstracting from the Native Execution Model

Abstract

In C, memory errors such as buffer overflows are among
the most dangerous software errors; as we show, they
are still on the rise. Current dynamic bug finding tools
that try to detect such errors are based on the low-level
execution model of the machine. They insert additional
checks in an ad-hoc fashion, which makes them prone to
forgotten checks for corner-cases. To address this issue,
we devised a novel approach to find bugs during the ex-
ecution of a program. At the core of this approach lies
an interpreter that is written in a high-level language that
performs automatic checks (such as bounds checks, NULL
checks, and type checks). By mapping C data structures
to data structures of the high-level language, accesses
are automatically checked and bugs are found. We im-
plemented this approach and show that our tool (called
Safe Sulong) can find bugs that have been overlooked by
state-of-the-art tools, such as out-of-bounds accesses to
the main function arguments. Additionally, we demon-
strate that the overheads are low enough to make our tool
practical, both during development and in production for
safety-critical software projects.

1 Introduction

C programs are plagued by bugs. In particular, mem-
ory errors such as buffer overflows, NULL pointer deref-
erences, and use-after-free errors cause critical bugs. Un-
like higher-level languages, the C standard does not de-
fine any checks that could detect such erroneous accesses
and thus abort the program. Errors induce undefined be-
havior; in practice they can corrupt memory, leak sen-
sitive data, change the control flow, or crash the pro-
gram. Sometimes, errors remain undetected since they
can cause delayed failures or possibly do not exhibit any
visible symptoms. Therefore, memory errors in C often
result in hard-to-find bugs or enable attackers to exploit
them.

To tackle this issue, industry and academia have come
up with a plethora of static and dynamic tools to find
bugs in C programs. Static tools perform analyses on
the source code to detect errors of certain bug cate-
gories; they typically rely on necessarily incomplete
heuristics and exhibit both false positives and false neg-
atives [11, 19]. In contrast, dynamic tools insert addi-
tional checks either as part of the compilation process or
at run time, and find errors during the execution of the
program. Although they only find those errors that occur
during a specific run of the program, they are expected
to find all errors and do not exhibit false positives. Both
static and dynamic bug finding tools have been widely
successful and have detected many bugs in commonly
used libraries.

In this paper we concentrate on dynamic bug finding
tools and argue that state-of-the-art approaches such as
LLVM’s AddressSanitizer (ASan) [28] and Valgrind [24]
miss real-world errors that programmers expect to be
found. We argue that this stems from current approaches
not abstracting from the machine’s low-level execution
model, but instead relying on a patchwork of additional
checks at their core where a check can be easily for-
gotten. Furthermore, the checks are implemented using
inexact techniques, which by design makes these tools
miss errors. Dynamic bug finding tools are based on
static compilers, or are employed after compilation. It
is known that compiler optimizations at higher optimiza-
tion levels interfere with bug finding tools; we show
that compilers can also optimize away memory errors
even when explicitly compiling without optimizations
(i.e., with the -O0 flag). Finally, interoperability with
uninstrumented native code makes it difficult to deter-
mine when native code is executed or uninstrumented
data structures are accessed, which gives users a false
sense of security and may cause tool writers to overlook
checks. As one example, out-of-bounds accesses to the
main() function’s arguments are not detected by current
bug finding tools.

In this paper, we present a novel approach to find bugs
during run time and to address these issues. Based on this
approach, we implemented a tool (called Safe Sulong)
that can detect out-of-bounds accesses, use-after-free er-
rors, invalid-free errors, double-free errors, use-after-free
errors, and NULL dereferences. Additionally, it can detect
accesses to non-existent variadic arguments, which no
other tool can currently detect in the general case.1 Our
approach abstracts from the machine’s execution model
through an execution environment for C that is written
in a high-level language. By abstracting pointers and
other C data structures and representing them with the
data structures of the high-level language, we can rely
on well-defined automatic checks of the high-level lan-
guage to detect bugs in the C program. While we used
Java for our implementation, the approach also works for
other languages that check and disallow buffer overflows,
NULL pointer dereferences, and use-after-free errors. Our
approach is exact (i.e., non-heuristic) and can find all er-
rors of a specific category. To reach native speeds, it uses
a dynamic compiler that compiles frequently executed
functions to machine code. This compiler does not op-
timize away bugs, since it optimizes code based on Java
semantics, where run-time errors in the program have to
cause run-time exceptions. We do not provide interop-
erability with pre-compiled native code, since it would
undermine our bug finding capabilities. We assume that
all C code (including libraries) is executed with our tool
which makes our approach impractical for programs that
use libraries where no source code is available. We want
to address this in future work by using binary translation
to translate machine code to a low-level intermediate rep-
resentation that we can execute.

Our evaluation shows that Safe Sulong has a higher
warm-up cost than current approaches, but a peak per-
formance that is better than other bug finding tools. We
detected and fixed 62 errors with our tool, out of which
8 were not found by ASan and Valgrind. Overall, this
paper provides the following contributions:

• We provide an analysis of memory errors over the
last five years to identify which memory errors are
important to find.

• We discuss limitations in state-of-the-art ap-
proaches and demonstrate them on real-world ex-
amples.

• We present an alternative approach for bug finding
that abstracts from the machine.

• We implemented our approach and evaluated its

1Note that there are static approaches such as FormatGuard [6]
which can statically detect missing variadiac arguments in functions
that use format strings.

start-up costs, warm-up costs, peak performance,
and memory usage.

2 Background

2.1 Errors in C
To determine which memory errors are relevant in prac-
tice, and should therefore be detected by bug finding
tools, we performed a key-word search on the Com-
mon Vulnerabilities and Exposures (CVE)2 and the Ex-
ploitDB3 databases. Unlike a previous study on memory
errors (up to 2012) [33] we grouped the errors into dif-
ferent bug categories. Note that we only concentrated on
memory errors (i.e., dereferencing invalid pointers) and
thus did not consider memory leaks, reading from unini-
tialized memory, and other C errors.4 Figure 2 and Fig-
ure 3 show the results for 2012 to 2017. Note that bug
categories with a high number of vulnerabilities were
also exploited more often.

Out-of-bounds accesses. The most dangerous bug cat-
egory (as already previously shown [27, 7, 33]) refers to
out-of-bounds accesses to objects, which is also known
as spatial memory safety errors. Such bugs are not only
still relevant today; they are on an all-time high. We refer
to an out-of-bounds access as a buffer overflow when it
attempts to access memory past the end of the object, and
as buffer underflow when it accesses memory before the
beginning of the object. Bug finding tools typically differ
on whether they can detect out-of-bounds accesses to the
stack, heap, global (static) data as well as whether they
detect read and/or write accesses. For example, Valgrind
can only find heap buffer overflows.

Use-after-free errors. The second most dangerous
bug category is use-after-free (known as a temporal
memory errors), where an object allocated by malloc(),
calloc(), or realloc() is freed, but then accessed
again. Such an access is also known as an invalid access
to a stale or dangling pointer.

NULL dereferences. The third most important bug
category is a NULL dereference. Note that this error can
be detected during normal execution of a program, where
dereferencing a NULL pointer results in a trap on most ar-
chitectures.

Other errors. Since the remaining memory errors are
less common, we grouped invalid-free errors, double-
free errors, and accesses to non-existent variadic argu-
ments as “other errors”. An invalid-free error is caused

2https://cve.mitre.org/
3https://www.exploit-db.com/
4We are currently adding support for finding such bugs in Safe Su-

long (see Section 6) and we will describe them in a future paper.

2

int sum(int count , ...) {
va_list argp;
va_start(argp , count);
int res = 0;
for (int i = 0; i < count; i++)

res += va_arg(argp , int);
return res;

}

int main() {
int count = 3;
printf("%d\n", sum(count , 4, 5));

}

Figure 1: Example for an access to a non-existent vari-
adic arguments

0

100

200

300

400

500

Jan 2005 Jan 2010 Jan 2015N
um

be
r

of
 v

ul
ne

ra
bi

lit
ie

s Spatial Temporal NULL deref Other

Figure 2: Number of reported vulnerabilities in the CVE
database (2012-03 to 2017-03)

when a pointer to a stack object or to a global object is
passed to free(), or when the passed pointer points into
the middle of an object. Double-free errors occur when
a heap object is freed twice. Accesses to non-existent
variadic arguments happen when the number of passed
variadic arguments is less than the function expects. Fig-
ure 1 shows an example where a sum() function tries to
read three variadic arguments (based on the count argu-
ment), although only two are passed. One subclass of
this error are format-string vulnerabilities, where the for-
mat string specifies how many arguments on the stack
should be accessed.

From this initial study we conclude that a bug finding
tool for memory safety errors needs at least be able to
detect out-of-bounds accesses, use-after-free errors, and
NULL dereferences.

2.2 State of the Art
Shadow memory. Most practical bug finding tools
such as ASan [28], Mudflap [10], Valgrind [24],
Dr. Memory [3], and Purify [15] base their bug find-
ing capabilities on the concept of shadow memory. They
maintain metadata for application memory in a separate
memory area referred to as shadow memory. When a
program allocates memory, the runtime of the shadow

0

100

200

Jan 2005 Jan 2010 Jan 2015

N
um

be
r

of
 e

xp
lo

its

Spatial Temporal NULL deref Other

Figure 3: Number of available exploits in the ExploitDB
(2012-03 to 2017-03)

memory tool marks the shadow memory area associ-
ated with the program memory as accessible, and a re-
gion around it as inaccessible (called a redzone). This
metadata is used to verify certain actions; for example,
read accesses validate that a memory cell is accessible.
Some tools also provide additional shadow registers to
track values in registers. Most shadow memory bug find-
ing tools use this technique to detect out-of-bounds ac-
cesses, use-after-free errors, double-free errors, invalid-
free errors and NULL dereferences. Some tools also de-
tect reads of uninitialized memory, use-after-scope er-
rors, and memory leaks. We further discriminate be-
tween shadow memory tools based on whether the in-
strumentation is added during compile-time or run-time.

Compile-time instrumentation. Compile-time instru-
mentation involves inserting code for tracking alloca-
tions and inserting additional checks when (or before)
the program is compiled. The most widely used compile-
instrumentation approach is LLVM’s AddressSanitizer
which initially detected out-of-bounds accesses, use-
after-free errors, and NULL dereferences [28], and has
been extended to detect invalid-free, double-free, and
use-after-scope (including use-after-return as a special
case) errors as well as memory leaks. Mudflap [10] was
used by the GCC project until GCC 4.9 when it was
superseded by the AddressSanitizer. It was known to
have several shortcomings such as reporting false posi-
tives and not detecting buffer overflows for neighboring
objects in the memory.5 Commercial tools include Pu-
rify [15], which is not strictly a compile-time approach,
since it inserts code into object files, and Insure++.

Dynamic instrumentation. Dynamic instrumentation
involves inserting checks on the binary level during the
execution of the program. The advantages of dynamic
instrumentation are that it works for any language that
is compiled to machine code, that all code is checked,

5see https://gcc.gnu.org/wiki/Mudflap_Pointer_

Debugging

3

even if the source code is not available, and that it does
not require recompilation [29]. The most widely used
run-time instrumentation approach is Valgrind. Other
dynamic instrumentation approaches include Dr. Mem-
ory [3], and Intel Inspector6. Note that binary instrumen-
tation approaches cannot detect ouf-of-bounds accesses
to the stack (unless the top of the stack is exceeded).

2.3 Limitations of Current Approaches
Our main focus is finding all memory safety errors in a C
program. Under this considerations, current approaches
have several limitations.

Problem 1: Lack of abstraction from the machine.
Current bug finding tools do not abstract from the
low-level execution model of the machine, since they
aim to provide interoperability with existing machine
code. We argue that such tools follow a “patchwork
architecture” that results in a number of limitations for
bug finding tools. They insert additional checks in the
program, either as a separate phase in an an existing
compiler (such as ASan) or to existing native code (such
as Valgrind). They typically need to instrument all read
and write operations, all allocations and deallocations, as
well as all system calls [24]. A forgotten check cannot be
easily found, since in many cases the program behaves
as intended, with the only difference that specific bugs
went undetected. Additionally, current tools are based
on low-level details of the respective platform. As a
consequence, bug finding capabilities cannot easily
be ported to other platforms [15]. Finally, current
approaches are implemented in low-level languages
such as C/C++ with core parts written in assembler (for
performance reasons). These languages provide few
safety guarantees, which makes the bug finding tools
prone to the same kind of errors that they want to find.

Problem 2: Compiler optimizations. Current bug
finding tools are built on top of an optimizing compiler
such as Clang or GCC. As previously noted [34], this
is an issue for bug finding tools, since they implement
C semantics that are different from the ones of the
compiler’s optimizer. For example, while bug finding
tools report errors for invalid accesses and abort the
program, compilers assume undefined semantics for
errors and sometimes optimize them away. It has been
shown that compilers are increasingly taking advantage
of undefined semantics to optimize code, which leads to
more vulnerabilities [35].

On the one hand, compiler optimizations can lead to false
positives. For example, a false positive that was found in

6https://software.intel.com/en-us/intel-inspector-

xe

int test(size_t length) {
int arr [10] = {0};
size_t i;
for (i = 0; i < length; i++) {

arr[i] = i;
}
return 0;

}

Figure 4: A C program with a potential out-of-bounds
access is reduced to return 0 by optimizing compilers.

an ASan-instrumented Firefox build was caused by load
widening [28] where a series of loads is transformed to
a single load of several memory values at once, while
potentially exceeding the bounds of an object. Due to
platform-specific alignment requirements, such an opti-
mization can be correct on the system level; however,
ASan classified it as a bug since the access would be out-
of-bounds in C. While this issue has been fixed by dis-
abling load widening [28], such compiler optimizations
can still cause false positives in dynamic instrumentation
bug finding tools (such as Valgrind [29]).

The more serious problem is that compiler optimization
can lead to missed errors, that is, false negatives. It is
widely known that on high optimization levels (e.g., with
the -O2 flag), compilers optimize the code based on the
fact that error semantics are undefined. It also has been
shown that compilers can remove redundant null pointer
checks, even at -O0 [35]. We have also found, that Clang
can optimize away memory safety errors at -O0. For
example, consider the (contrived) function in Figure 4.
The function initializes elements of an array without fur-
ther using it. The array accesses have no visible side
effects, so the compiler optimizes the function to imme-
diately return 0. The compiler can exploit the fact that an
out-of-bounds access (when length ≥ 10) has undefined
error semantics. Consequently, out-of-bounds accesses
that would have occurred in the original code might stay
undetected on the binary level, and current bug finding
approaches are unable to find them.

Since the compiler can optimize away bugs (or cause
false positives), many projects decide to disable opti-
mizations for testing altogether (with the -O0 flag) and
accept performance degradations. However, as we will
demonstrate, explicitly disabling optimizations does not
stop compilers from optimizing away bugs.

Problem 3: Inexact approaches Shadow memory ap-
proaches have not been designed to detect all bugs of
a certain category. First, they cannot detect all out-of-
bounds accesses. When an access to an object runs out-
of-bounds and lands inside a different object, the access
is not detected as a bug. Also, if the redzone of a global
variable is exceeded, the shadow memory check is ren-

4

dered useless. Second, shadow memory approaches can-
not reliably detect use-after-free errors. When freeing an
object, these approaches mark the object’s shadow mem-
ory as unallocated. If the block is quickly reallocated,
subsequent uses of the dangling pointer stay undetected
since the memory is again marked as valid. ASan [28]
and Purify [15] rely on heuristics to avoid that freed
memory is quickly allocated again.

Problem 4: Finding invalid accesses in the libc.
A challenge for bug finding tools is how to support
external libraries. Run-time instrumentation approaches
support existing machine code by design. In contrast,
compile-time instrumentation approaches that support
native interoperability require heuristics or special
treatment of native functions, in order to maintain a
correct state of the shadow memory. We argue that such
interoperability is not necessarily desired, since users
(and even tool writers) might overlook errors in this
precompiled code.

To achieve a higher coverage, compile-time instrumen-
tation approaches recommend to create special instru-
mented builds for external libraries [28]. This is a chal-
lenge for the libc where most production-quality im-
plementations contain non-standard C code (or hand-
written assembly) that causes most bug finding tools
(both run-time and compile-time instrumentation ap-
proaches) to report errors. Examples are optimized ver-
sions of strlen() that compute the length of a string by
word-wise comparisons [36, Section 6.1], which can pro-
duce out-of-bounds accesses similar to the load widen-
ing optimization. Current compile-time instrumentation
tools disable instrumentation or checks for such func-
tions, or replace them altogether.

As a pragmatic alternative, compile-time instrumentation
approaches such as ASan and Mudflap provide so-called
interceptors that wrap the system library functions and
call them only after performing validity checks on the
arguments. This approach is dangerous when users ex-
pect these interceptors to be comprehensive. As we will
show in Section 4.1, we found bugs in real-world pro-
grams that were not detected by ASan due to a missing
interceptor. Valgrind and Dr. Memory also provide re-
placements for these functions, which, however, do not
work when these calls have already been inlined at com-
pile time. Thus, Valgrind detects magic constants that
point towards a strlen() implementation and disables
checks for that code block [29].

Another challenge that is specific to libc implemen-
tations is that they heavily use non-standard C exten-
sions such as function attributes, that are rarely used in
user applications. Figure 5 shows an example that we

#include <ctype.h>

int main() {
isdigit (1000000);

}

Figure 5: This code fragment, which would cause an
out-of-bounds access in the libc, is optimized away by
Clang -O0.

found7, where a function attribute causes Clang to op-
timize away an out-of-bounds access, even when com-
piling with -O0. The call to isdigit() is resolved
to an access in a lookup table that is obtained by a
call to ctype b loc(). Since the argument is not in
the range of an unsigned char, the call would cause
an out-of-bounds access to the lookup table. However,
Clang removes the call since it has an attribute

((const)) that specifies that the function has no
side effects.

3 Implementation

Safe Sulong was developed to address the four problems
mentioned in Section 2.3. First, we designed our tool
with a focus on bug finding capabilities. Unlike state-of-
the-art approaches that plug into compilers or into native
code (see P1), Safe Sulong abstracts from the machine
and implements a simple execution model; it executes C
code using an interpreter written in Java that relies on au-
tomatic checks of the language. The C interpreter uses an
exact approach (to address P3), so no errors are missed.
It also provides a libc that we specifically designed for
finding bugs. We do not provide interoperability with
native code, since this could undermine the bug finding
capabilities (see P3). Unlike state-of-the-art approaches
that rely on compilers that exploit undefined behavior for
compiler optimizations (see P2) we use a dynamic com-
piler that optimizes the code based on Java semantics and
cannot optimize away invalid accesses. In summary, our
approach allows us to reliably find errors in C programs
without sacrificing run-time performance.

3.1 System Overview

Figure 6 shows the architecture of Safe Sulong. It com-
prises the following components:

Bug finding libc. We argued that current libc imple-
mentations (which are optimized primarily for perfor-
mance) are detrimental to bug finding tools. To address

7http://lists.llvm.org/pipermail/llvm-dev/2017-

March/111371.html

5

Clang -O0

program.c

LLVM IR

Truffle

Java Virtual Machine

LLVM IR Interpreter

compile to

runs on

Graal compiler

libc.c

Figure 6: Overview of Safe Sulong

this issue, we implemented a libc that is tailored to find-
ing bugs. Our libc is written in standard C and does
not rely on any GNU extensions. It uses introspection
to perform additional checks based on run-time informa-
tion (which we will describe in a future paper). For ex-
ample, for functions which expect a buffer and a buffer
length (such as gets s()), it uses bounds information to
check whether the passed size does not exceed the actual
bounds of the buffer. This allows the libc to print warn-
ings for bugs in the program that are not triggered during
execution. To implement the libc, Safe Sulong exposes
functions that are implemented in Java and can be called
similarly to system calls. For example, when printing
a pointer value using printf("%p"), the printf im-
plementation calls a function implemented in Java to re-
trieve a textual representation of the pointer.

Clang and LLVM IR. Safe Sulong executes LLVM In-
termediate Representation (IR), which represents C func-
tions in a simpler, lower-level format. LLVM is a flexi-
ble compilation infrastructure [21], and we use LLVM’s
front end Clang to compile the source code (our libc
and the user application) to the IR. Note that we do not
enable any of Clang’s optimizations to lower the risk that
bugs are optimized away. In future work, we want to re-
place Clang with a non-optimizing frontend, to eliminate
this risk completely (see Section 6). Since LLVM IR
retains all C characteristics that are important for this pa-
per, we will talk about C objects when we actually refer
to LLVM IR objects. By executing LLVM IR, Safe Su-
long could execute languages other than C, that can be

compiled to this IR, including C++ and Fortran.

Truffle. We used Truffle [37] to implement our LLVM
IR interpreter. Truffle is a language implementation
framework written in Java. To implement a language,
a programmer writes an Abstract Syntax Tree (AST) in-
terpreter in which each operation is implemented as an
executable node. Nodes can have children that parent
nodes can execute to compute their results.

Graal. Truffle uses Graal [40], a dynamic compiler, to
compile frequently executed Truffle ASTs to machine
code. Graal applies aggressive optimistic optimizations
based on assumptions that are later checked in the ma-
chine code. If an assumption no longer holds, the com-
piled code deoptimizes [17], that is, control is transferred
back to the interpreter and the machine code of the AST
is discarded.

LLVM IR Interpreter. The LLVM IR interpreter is the
core of Safe Sulong; it executes both the user application
as well as the enhanced libc. It performs checks while
executing the LLVM IR and aborts execution with an er-
ror when it detects a bug. First, a front end parses the
LLVM IR and constructs a Truffle AST for each LLVM
IR function. Then, the interpreter starts executing the
main() function’s AST, which can invoke other ASTs.
During execution, Graal compiles frequently executed
functions to machine code.

JVM. The system runs on any JVM that implements
the Java based JVM compiler interface (JVMCI [26]).
JVMCI supports Graal and other compilers written in
Java. Note that our tool is platform-independent and pro-
vides the same bug finding capabilities on all platforms.
Additionally, Safe Sulong running on a Windows JVM
can execute code that was written for libc under Linux.
To achieve this, Safe Sulong does not provide interoper-
ability with pre-existing native code.

3.2 Managed Objects and Type Safety
We base the execution model of Safe Sulong on ab-
straction from the underlying machine. Our basic idea
is to implement our interpreter in Java (i.e., in a high-
level language) and represent C data structures by Java
data structures. Since Java provides well-specified auto-
matic bounds and type checks, the interpreter automati-
cally checks and detects invalid accesses such as out-of-
bounds accesses, use-after-free errors, and NULL pointer
dereferences. Note that the interpreter could also have
been implemented in another high-level language that
provides these capabilities.

Figure 7 shows a simplified version of our class hi-
erarchy, which is based on a previous Truffle imple-
mentation of C [14]. The base class for all objects is

6

ManagedObjectManagedObject

AddressAddress

pointee: ManagedObject
offset: int

I32ArrayI32Array

arr: int[]

FunctionAddressFunctionAddress

id: int

I32I32

value: int

I48I48

bytes: byte[]

StructStruct

data: TruffleObject

AddressArrayAddressArray

arr: Address[]

Figure 7: Simplified Class Hierachy of ManagedObject

ManagedObject from which subclasses for all primi-
tives, pointers, functions, arrays, and structs inherit. To
represent primitive types, we implemented classes that
wrap a Java primitive. For example, to represent an
LLVM IR I32 object (which corresponds to a C int on
AMD64) we use a Java int since both have the same bit
width. For some data types, no equivalent Java primitive
exists; for example, Clang produces LLVM IR code that
can contain integers with uncommon bit widths such as
I48. We implemented such types with a Java byte array.
To represent function pointers, we use a function ID that
we use to look up the AST for a function at a function
call site. Note that we use inline caches to make func-
tion pointer calls efficient [16], and even enable spec-
ulative inlining [25]. For arrays, we use Java arrays.
For structs, we use an array-based map-like data struc-
ture that is provided by the Truffle framework [38, 14].
To represent pointers, we implemented an Address class
that contains a reference to its pointee and an integer field
offset used for pointer arithmetics.

Figure 8 shows an example where malloc() allo-
cates an int array with three elements. Our interpreter
maps this allocation to an Address that points to an
I32HeapArray that holds a reference to a primitive Java
int array. The offset in Address is initially 0; when
pointer arithmetics compute an address in the middle of
an object, the offset is updated. For example, execu-
tion of the expression arr[2] first sets the offset to 8,
which is computed by multiplying the size of arr’s type
by 2. When the interpreter executes the load, it takes the
offset from Address, divides it by 4 (since the derefer-
enced object is an int array), and uses the obtained value
2 to index the Java array.

The presented type hierarchy guarantees type safety
and restricts type punning (i.e., incompatible pointer
casts), which has undefined behavior according to the
C standard. We restrict type punning by detecting in-
valid casts when the casted pointer is used to read or
write from the object. For example, in our architecture
a pointer array can only hold Addresses and no inte-
gers; storing an integer would require converting it to an

arr: Addressarr: Address

offset = 0
pointee

pointee: I32HeapArraypointee: I32HeapArray

arr =

int *arr = malloc(sizeof(int) * 3)

Figure 8: Example on pointer arithmetics and memory
allocation

Address that could be stored in the array. While strict
type safety is beneficial for improving the program qual-
ity and finding bugs, it can prevent real-world programs
from execution; we found that many programs rely on
type punning to store primitives of one type into a prim-
itive or primitive array of another type. As a pragmatic
solution, we relaxed the type safety rules to accomodate
common patterns that we observed in real-world pro-
grams. For example, when the program stores a double
in a long array, we simply take the bit representation of
the double, convert it to a long, and store it into the ar-
ray. In future work, we want to formalize these type rules
and demonstrate their compliance with the C standard.

3.3 Memory allocation
Every allocated object is either a stack object, a heap
object, or a global object, that is, automatic, dynamic,
or static memory, respectively. We know the type for
stack allocations, and can thus directly allocate mem-
ory with the specified type in the function prologue.
For heap objects (allocated by malloc(), calloc(), or
realloc()) we do not yet know the type of the object
that will be stored in it. Thus, we allocate the respective
Java object only on the first cast, read, or write access
(i.e., when the type of the object becomes known) and
propagate the type back to the allocation site (similar to

7

HeapObjectHeapObject

free()
isFreed()

I32HeapArrayI32HeapArray

arr: int[]
free() { arr = null; }
isFreed() { return arr == null; }

Figure 9: The HeapObject interfaces is used to free
heap objects

HeapObject obj =
(HeapObject) pointer.pointee;

if (pointer.offset != 0) {
throw new InvalidFreeException ();

}
if (obj.isFreed ()) {

throw new DoubleFreeException ();
}
obj.free();

Figure 10: Implementation of the free method

allocation mementos in V8 [5]). The next time the allo-
cation function is called, we directly allocate an object of
the observed type. For global objects, the parser allocates
objects at the start of the program.

We have subclasses of each data structure for each
storage location. For example, an I32Array has the sub-
classes I32AutomaticArray, I32DynamicArray, and
I32StaticArray. Each heap object implements the
HeapObject interface which is used to free objects (see
Figure 9). The free() method sets the object’s data to
null, so that the garbage collector can reclaim the mem-
ory. Having different classes for different storage loca-
tions also allows us to print meaningful error messages,
since we can include the memory type of an object that
is illegally accessed or freed.

3.4 Finding bugs
We implemented our bug finding capabilities by relying
on Java’s automatic checks. In contrast to C, the Java
language semantics require that illegal loads, stores, and
casts result in an exception. Thus, a JVM cannot simply
optimize invalid accesses away.

Out-of-bounds accesses. We translate load and stores
accesses to arrays in C to array accesses in Java. When
the JVM executes the load, it first checks whether the in-
dex is in-bounds; an out-of-bounds index access results
in a Java ArrayIndexOutOfBoundsException. Note
that such checks reduce the performance of Java pro-
grams. To address this, Java compilers such as Graal
eliminate checks when they can prove that the index will
always be in-bounds [39]. For structs, we currently per-
form explicit bounds checks where similarly to native ap-
proaches a check could be forgotten.

Use-after-free accesses. We map C objects that are al-
located on the heap to Java objects that have a reference
to the data object over the data field. If an object is
freed, the reference to its data is set to null. A sub-
sequent access will result in a NullPointerException
since Java checks and prevents dereferences of null.

Double free errors. As shown in Figure 10, we explic-
itly check for double free errors in the AST node of the
free() function using the isFreed() method specified
by HeapObject. This method is implemented by check-
ing whether the data field has already been set to null.

Invalid free errors. For detecting invalid free errors,
Safe Sulong first casts the object to be freed to the
HeapObject interface. If the object was not allocated
on the heap, a ClassCastException is thrown since
Java checks every type cast. Therefore, invalid free er-
rors with a wrong pointee are detected. Next, the code
verifies that the pointer offset is zero, that is, an excep-
tion is thrown if the pointer does not point to the start
of the pointee. Only if the checks succeed the pointee is
freed.

Type errors and non-existing variadic arguments.
Figure 11 shows how we implemented variadic argu-
ments. A call to va start() sets up the processing of
variadic arguments by allocating space for a struct that
holds a counter and an array of pointers to the variadic
arguments. va start() can also initialize this array
since the interpreter exposes the number of variadic
arguments over the count varargs() function; which
can determine this number because the interpreter passes
function arguments over a Java Object array that has
a field for the array length. Also, we do not require
the user to specify the types of the variadic arguments
since we can get pointers to them via the get vararg()

function. When the user accesses a variadic argument
via va arg(), the current variadic argument index is
used to access the pointer array. The result is then
dereferenced by the user-specified type. We can detect
an access to a non-existent variadic argument (and also
type errors), since it would cause an out-of-bounds read
of the malloced array. This allows our interpreter to
detect the classic format string problems.

4 Evaluation

In our evaluation, we primarily want to demonstrate the
effectiveness of Safe Sulong as a bug finding tool (Sec-
tion 4.1). We also demonstrate the resource costs of our
implementation to argue that our approach is efficient
enough to be used in practice. Safe Sulong is based on
a dynamic approach, which makes it difficult to directly

8

struct varargs {
int counter;
void **args;

};

#define va_list struct varargs *

#define va_start(ap, count)
ap = (va_list)malloc(sizeof(struct varargs));
ap->args = (void **)

malloc(sizeof(void *) * count_varargs ());

for (ap->counter = count_varargs () - 1;
ap->counter != -1;
ap->counter --) {

ap->args[ap->counter] =
get_vararg(ap->counter);

}

ap ->counter = 0;

#define va_arg(ap, type) *((type *)
(ap ->args[ap ->counter ++]))

Figure 11: Implementation of variadic arguments

compare it with static approaches. First, it has differ-
ent memory usage characteristics than other tools (Sec-
tion 4.2). Second, its run-time performance varies dur-
ing execution: at the beginning it is worse than other
tools (Section 4.3) but it becomes faster when warmed
up (Section 4.4). We performed all measurements on
a quad-core Intel Core i7-6700HQ CPU at 2.60GHz
on Ubuntu version 14.04 (with kernel 4.3.0-040300rc3-
generic) with 16 GB of memory.

4.1 Effectiveness

We claimed that Safe Sulong is an effective bug finding
tool. To evaluate this claim, we selected C projects from
Github (see below) and executed them with Safe Sulong
to find errors in them. We also want to demonstrate that
state-of-the-art approaches fail to detect common real-
world bugs that Safe Sulong can detect. To evaluate this,
we executed each of the found erroneous programs un-
der the same conditions with ASan and Valgrind, that is,
with the most popular compile-time and run-time instru-
mentation approaches, to check whether they could also
find the error.

We primarily selected small programs, reaching from
25 to 1248 (on average 220) lines of code (LOC)8.
We observed that small open source projects were more
likely to contain errors than larger projects because they
were often personal “hobby projects” that have not been
tested with bug finding tools. Occasionally, this enabled
us to find bugs by simply executing the test suite of the
project with Safe Sulong. When the project lacked a test

8To calculate the LOC we used cloc which omits comments and
newlines. Where it was possible to distinct subprojects or programs
inside a project, we took the LOC of the subproject.

Buffer overflows 55
NULL dereferences 5

Use-after-free 1
Varargs 1

Table 1: Error distribution of the bugs found by Safe Su-
long

Read 29 Underflow 8 Stack 31
Heap 14

Write 26 Overflow 47 Global 8
Main args 3

Table 2: Distribution of out-of-bounds accesses accord-
ing to reads/writes, overflows/underflows, and memory
kinds.

suite, we executed the program providing both expected
input and corner cases. Finding bugs in larger programs
would have required us to use automated testing strate-
gies such as fuzzing [13]. Furthermore, many small
projects only relied on the C standard library and were
otherwise self-contained, so that we did not have to com-
pile additional dependencies. Finally, smaller projects
were less likely to contain features that are not yet sup-
ported by Safe Sulong (see Section 6).

Safe Sulong is an effective bug finding tool. In total,
we found and fixed 62 errors in 57 projects.9 Table 1
shows the distribution of the bugs, which roughly fol-
lows the distribution of the vulnerability and exploits
databases (see Section 2.1). As we expected, the ma-
jority of bugs were out-of-bounds accesses. They were
caused by strings being not NULL-terminated, not allo-
cating enough space for a string to hold the NULL ter-
minator, missing checks, integer overflows, wrong hard-
coded sizes, performing a check after an invalid access
has already happened (see [35]), off-by-one errors in
comparisons, mistakenly interpreting a negative signed
number as a large unsigned number, and other errors.
Table 2 shows that the out-of-bounds accesses included
both reads and writes (with almost equal distribution) as
well as buffer underflows and overflows. Most out-of-
bounds accesses occurred on stack objects, but we also
identified several ones on heap objects, global objects,
and to the main() function’s arguments. A smaller num-
ber of bugs were caused by NULL dereferences that could
also have been found without a bug finding tool. We only
found 1 use-after-free error and 1 variadic argument error
(where arguments did not match the format string).

ASan and Valgrind miss errors. We compiled the

9Where we found multiple similar errors in a single program, we
only counted them as one error if they were similar (e.g., both where
buffer overflows caused by a missing NULL terminator).

9

programs with Clang using no optimizations (-O0) since
we aimed to find as many errors as possible. In order
to show that compiling with optimizations results in the
omission of errors, we also compiled the programs with
optimization level -O3 for ASan and Valgrind. We used
standard options to execute Valgrind, but after finding
out that ASan does not check zero-initialized global data
by default, we had to enable the -fno-common linker
flag for ASan.

Valgrind -O0 and -O3 found slightly more than half of
the errors since Valgrind only reliably detects out-of-
bounds accesses to the heap. It misses many of the out-
of-bounds accesses to the stack and to globals. Note
that Valgrind detects reads of uninitialized values, so
it could arguably be used to indirectly identify out-of-
bounds reads to the stack (14 out of 31 stack accesses).
However, we found that this feature is not reliable, and
that some bugs can be found by compiling with either
-O0 or -O3, but not with both. ASan -O0 detected 54
of the 62 errors that Safe Sulong found. Only 50 errors
(a subset of those found with -O0) were also found with
-O3, since in the other cases Clang optimized away bugs.
From the 62 errors that Safe Sulong detected, 8 could
neither be found by Valgrind nor by ASan with any opti-
mization level (-O0 and -O3).

Uninstrumented main arguments array (P4, P1).
We argued that for tools that are based on low-level
approaches it is not always obvious whether or not the
analyzed programs contain uninstrumented native code
or data. We found that neither ASan10 nor Valgrind
detect out-of-bounds accesses to the main() function’s
arguments, a bug that we found in three applications.
Figure 12 shows an example; the buffer for argv is
created before the program (and libc) is invoked and
is therefore not instrumented. Note that the main()

function can have an additional argument for a pointer to
an array of environment variables; this array is initialized
irrespective of the main() function’s signature [22].
A missing or wrong check might allow an attacker to
exploit an out-of-bounds access to leak secrets contained
in an environment variable. On our system, executing
the program (without passing arguments) prints a key
and value pair of an environment variable stored in
~/.bashrc.

Missing interceptors (P1). ASan could not find two
bugs due to missing or incomplete interceptors; Valgrind
did not find them since the out-of-bounds accesses did
not occur in heap-allocated objects. The first bug was
caused by an unterminated string that the program passed
to the strtok() libc function (see Figure 13). ASan

10See https://github.com/google/sanitizers/issues/

762.

#include <stdio.h>

int main(int argc , char** argv) {
printf("%d %s\n", argc , argv [5]);

}

Figure 12: ASan does not detect out-of-bounds accesses
to the main function.

const char t[2] = " \n";
token = strtok(buf , t);

Figure 13: The delimiter passed to strtok() is not
NULL-terminated.

failed to detect this bug since it lacked an interceptor for
strtok(), which we consequently implemented.11 We
also found one error where the program passed an integer
to printf("%ld"), where the format string specified a
long (see Figure 14). Note that Clang detected the bug
statically and printed a warning; however, ASan did not
detect the error, because the interceptor for printf()

only checks pointer arguments. Building and linking an
instrumented version of the libc would have allowed
ASan to detect these errors. However, we believe that
most users use the libc in the standard precompiled form,
where the errors are not found.

Backend compiler optimizations (P2). In the
isidigit() example of Figure 5, we showed that
even Clang -O0 can optimize bugs away. We found
another case where a bug was eliminated by the compiler
when compiling with -O0, namely a global array out-of-
bounds access, similar to the one shown in Figure 15.
Clang statically detected the out-of-bounds access and
printed a warning. However, Clang’s front end did not
yet optimize away the bug, so Safe Sulong was still able
to detect it while executing the LLVM IR; only LLVM’s
back end optimized it away. Thus, ASan was unable to
detect the bug; Valgrind would not have detected the bug
in either case since the array was not allocated on the
heap. Arguable, a user could have found the bug through
the compiler warning. However, as demonstrated by the
isdigit() example, Clang -O0 sometimes optimizes
bugs away without a warning.

11See https://github.com/google/sanitizers/issues/

766 and https://reviews.llvm.org/rL298650

int counter;
// ...
printf("counter: %ld\n", counter);

Figure 14: A wrong format specifier is used which causes
an out-of-bounds read.

10

int count [7] = {0, 0, 0, 0, 0, 0, 0};

int main(int argc , char** args) {
return count [7];

}

Figure 15: The out-of-bounds error in this program is
optimized away, even with optimizations disabled (-O0
flag).

const char * strings [] = {"zero","one","two","←↩
three","four","five","six" /* ... */ };

void convert(FILE *input , FILE *output) {
int number;
fscanf(input , "%d", &number);
// ...
fprintf(output , "%s\n", strings[number]);

}

Figure 16: A large number as user input causes a buffer
overflow that can exceed ASan’s redzone.

Overflowing the redzone (P3) As shown before,
shadow memory approaches are inexact and cannot find
all errors of a certain category. Safe Sulong found such
a case in a program that reads a number and converts
it to a string; Figure 16 shows a simplified version of
the program. In this example, the user input is used to
index a global array; if the input number is too large, it
causes a buffer overflow. ASan can only find the buffer
overflow if the index is close to the object, that is, if
it does not exceed the redzone; for our random inputs
the access exceeded the redzone and the program either
printed (null) or crashed. Valgrind could not find the
error since strings is a global buffer.

Missing variadic arguments In the projects that we
evaluated, we only found a few implementations of vari-
adic functions. However, we identified a missing argu-
ment to the variadic printf() libc function (see Fig-
ure 17). As in Figure 12, Clang detected the bug stat-
ically, since printf() is a well-known library func-
tion. However, the bug could also have occurred in an
application-specific function, where Clang would not be
able to detect it; similar format string vulnerabilities have
been recently identified in libxml2 (CVE-2016-4448), in
Dropbear SSH (CVE-2016-7406), and PHP (CVE-2016-
4071). ASan and Valgrind cannot detect such errors at
run time.

printf("%i not found in array.\r\n");

Figure 17: Missing argument to printf

4.2 Memory Costs

We evaluated the memory costs qualitatively, since quan-
titative measurements do not adequately account for the
different characteristics of tools based on static compil-
ers and on our dynamic compilation approach. In con-
trast to tools that are based on static compilers, Safe
Sulong has additional memory costs since we run on
top of a JVM which requires memory for internal data
structures such as class metadata, memory-mapped files,
code cache, and deoptimization metadata. JVMs use a
managed heap, which is typically larger than the mem-
ory needed by the user application, since a larger heap
typically improves run-time performance, because the
garbage collector needs to run less frequently [2]. Addi-
tionally, the memory consumption of Java objects varies
during the execution of the application, since compila-
tion of methods can eliminate allocations or move them
to the stack [31] (all Java objects are by default allo-
cated on the heap). While static approaches produce an
executable before program start, Safe Sulong parses the
LLVM IR of the program and the libraries and converts
them to Truffle ASTs at run time. After parsing, our in-
memory representation of the program is larger than the
size of executables, since the Truffle framework trades
memory for peak performance by having AST nodes that
use more memory than a naive bytecode interpreter or
machine code. Allocations in the C programs have an
additional constant overhead, since on most JVMs, Java
objects contain an object header that typically requires 8
bytes. In contrast to that, the memory overhead of allo-
cations for shadow memory approaches scales with the
object size. While our approach is efficient for large ob-
jects, the constant overhead makes it inefficient for small
ones. However, some of our data structures are gener-
ally larger than in native approaches since we store more
data; for example, for pointers we store a reference to the
pointee plus a field for the pointer offset, while a native
pointer only stores the address of its pointee.

4.3 Start-up and Warm-up Costs

Safe Sulong uses a dynamic compilation approach and
thus has some additional run-time performance costs.

First, the LLVM IR interpreter has a noticeable start-
up cost, which is the time from when the user starts the
program until the program begins to run. We measured
the start-up time using a "Hello, World!" program
and /usr/bin/time. Figure 18 show the results of exe-
cuting the program 100 times for each tool. Safe Sulong
needs almost 700 ms to start up, in which the JVM ini-
tializes itself and starts Safe Sulong, which then has to
parse the libc before calling the main function. Note
that we could improve the start-up performance by lazily

11

●●●
●
●

0

200

400

600

ASan Safe Sulong Valgrind

m
s

Figure 18: Start-up time in milliseconds

●

● ● ● ● ● ● ● ●

16

4 3 2 1 1 2 1 1
0

20

40

0 10 20 30
s

Ite
ra

tio
ns

/s

ASan Valgrind Safe Sulong

Figure 19: Warm-up time of the meteor benchmark. The
x axis shows the time in seconds and the y axis the num-
ber of iterations the respective approach could run in the
last second. The points illustrate the number of ASTs
that Graal compiled up to that point.

parsing the libc, and by improving the performance of
our parser. The start-up time of Safe Sulong on this pro-
gram is worse than the start-up time of Valgrind which
needs around 500 ms to instrument and execute the pro-
gram. With less than 10 ms, ASan starts up the fastest.

Second, the LLVM IR interpreter has a high warm-
up cost, which is the time after start-up until the appli-
cation reaches its peak performance. Figure 19 illus-
trates the warm-up times of ASan, Valgrind, and Safe
Sulong on the meteor benchmark which is only 400 LOC
large. To approximate how Safe Sulong would behave
for larger programs (which Safe Sulong currently fails to
execute), we continuously executed the benchmark and
plotted how many iterations per second the respective ap-
proach could execute over time. Safe Sulong’s warm-up
costs can be mostly attributed to the time that the pro-
gram spends in the interpreter; only when the interpreter
identifies hot functions, Graal compiles them to machine
code. The curve shows a typical VM warm-up [1]. Only
in second 7, Safe Sulong completed its first execution of
the benchmark. During this time, Graal had compiled
the 18 most important functions to machine code. After-
wards, it quickly became faster and executed more iter-
ations per second than Valgrind (in second 7), and ASan

(in second 13).
Note that the benchmark contains a call to printf()

and to other libc functions, which Safe Sulong inter-
prets and compiles to machine code during execution as
well. Even after compilation, the program fails to imme-
diately reach peak performance since we currently lack
on-stack replacement, which is used by production VMs
to reduce the warm-up costs by switching from an in-
terpreted method to a compiled method while executing
in a loop [18, 12, 20]. However, our peak performance
is higher than the one of existing tools as we demon-
strate in Section 4.4. For ASan, we see that compile-
time instrumentation approaches incur almost no warm-
up costs, since checks are inserted during compilation
and the run-time is initialized during start-up. Run-time
approaches can either insert checks during start-up, or in-
sert them on-demand while executing the program. Val-
grind inserts them while executing the program; still, the
warm-up costs are not visible and likely overshadowed
by the execution time needed for one iteration.

To address start-up and warm-up costs, the Graal
project currently explores ahead-of-time compilation for
the interpreter and the compiler [41, 40]. Applying this
approach to Safe Sulong would allow us to obtain a
standalone tool which no longer requires a JVM, has
a smaller memory footprint, and lower warm-up costs,
since the parser and other components would already be
compiled when starting the program.

4.4 Peak Performance
In this section we evaluate the peak performance that
Safe Sulong can reach on long-running programs. Safe
Sulong is a prototype and currently cannot execute large
programs such as the SPEC benchmarks. Thus, we de-
cided to evaluate benchmarks from the Computer Lan-
guage Benchmark game, which contains smaller bench-
marks (66-453 LOC) to compare the performance of dif-
ferent programming languages.12 When we executed this
suite’s fastaredux benchmark with Safe Sulong, we dis-
covered that a loop ran out-of-bounds, since summed-up
probabilities did not add up to the value 1 to a rounding
error. We reported and fixed the bug13 and used the fixed
version in our evaluation. Additionally, we included the
popular whetstone benchmark.14

As baselines, we measured the performance of exe-
cutables compiled by Clang with disabled optimizations
(-O0) and enabled optimizations (-O3). Since our con-
cern was to find as many errors as possible, we com-
piled the benchmarks using Clang -O0 for all bug finding

12http://benchmarksgame.alioth.debian.org/
13https://alioth.debian.org/tracker/?func=detail&

atid=413122&aid=315503&group_id=100815
14http://www.netlib.org/benchmark/whetstone.c

12

tools, although Safe Sulong would also profit from com-
piler optimizations. Besides measuring the performance
of Safe Sulong, we also measured the performance of
executables compiled by Clang 3.9 using ASan based
on LLVM version 3.9 and Valgrind version 3.12. A di-
rect comparison of run-time performance between dif-
ferent tools is not fair, since they provide different fea-
tures. Our measurements should therefore just demon-
strate that programs under Safe Sulong achieve a peak
performance that is good enough to make our approach
viable in practice. To approximate the performance of
larger programs we had to account for the adaptive com-
pilation techniques of Truffle and Graal by setting up a
harness that warmed up the benchmarks. By executing
50 in-process warm-up iterations, we ensured that ev-
ery benchmark reached a steady state. We executed each
benchmark 10 times and used the last iteration of each
run as a sample for computing the peak performance. We
also used the same benchmark harness for the other tools,
even though their warm-up costs are minimal.

Figure 20 shows box plots for the peak performance
relative to Clang -O0 (lower is better). We excluded Val-
grind from the plots, since it runs 10× to 58× slower
than Clang -O0 on 5 benchmarks. Its slowdown is lowest
on spectralnorm, fasta, and fannkuchredux with a
slowdown of 2.3, 3.6 and 5.1, respectively. We did not
plot the results for the binarytrees benchmark, since
ASan was 14× slower and Valgrind 58× slower than
Clang -O0. This slowdown is due to the fact that binary-
trees is allocation-intensive, which suggests that current
bug finding approaches cannot deal well with allocation-
intensive benchmarks. On this benchmark, Safe Sulong
is only 1.7× slower than Clang -O0. In almost all bench-
marks Safe Sulong is faster than ASan -O0; they are only
on-par on fastaredux. Safe Sulong is mostly faster
than Clang -O0, except on the fastaredux and nbody

benchmarks. On fannkuchredux and mandelbrot

Safe Sulong is even on-par with Clang -O3. Safe Sulong
exhibits the worst performance on fastaredux, where
it is 2.5× slower than Clang -O0. In future work, we
plan to further reduce Safe Sulong’s overhead.

5 Limitations

Native interoperability. Interoperability with pre-
compiled binaries is a double-edged sword. It is
necessary to execute closed-source libraries, but it
results in overlooked bugs as we have demonstrated
in our findings. What sets Safe Sulong apart from
state-of-the-art shadow memory approaches (which are
inexact by design) is that our approach aims to find all
errors of a category. To maintain this property, Safe
Sulong does not provide a native function interface. Safe
Sulong’s biggest drawback is that this makes it inap-

plicable to programs that require this interoperability.
We want to address this issue in future work by using
binary translation to convert binaries to LLVM IR that
can be executed by Safe Sulong. There are already
translators that can convert binary code to LLVM IR;
MC-Semantics [9], REVAMB [8], QEMU [4] support
x86, and LLBT [30] supports the translation of ARM
code.

Warmup time. As discussed in Section 4.3, Safe Su-
long needs significantly more time to execute small pro-
grams due to warm-up time. Similar to state-of-the-art
JVMs, we start by running the program in an interpreter
and only compile frequently executed functions to ma-
chine code. To get close to the warm-up time of current
JVMs we still lack on-stack replacement, which would
allow us to switch to a compiled version of a function
while executing in its loop. As a long-term solution to
reduce warm-up time, the Graal project is experimenting
with ahead-of-time compilation of the interpreter and the
JIT compiler. Note that the JIT compilation approach al-
lows Safe Sulong to have a better peak performance than
other bug finding tools, which could make it applicable
to long-running server applications in production.

Programs that rely on non-standard C. Safe Sulong
cannot execute all programs that occur in the wild. We
assume that a programmer wants to eliminate undefined
behavior from the execution. Following, we also require
a program to not violate the type rules of the C stan-
dard (known as type punning). Since type violations are
still quite common, we relaxed some of the type rules
to accommodate real-world code. Additionally, a previ-
ous survey discussed certain non-standard-compliant C
patterns that are commonly assumed to work [23]. Cur-
rently, Safe Sulong lacks support for many of such pat-
terns; for example, it lacks support for tagged pointers
where pointers are converted to integers, values stored in
spare bits, and converted back to an address. We could
implement further relaxations to support such patterns;
for example, we could allow users to store integers in
the offset field of Address. However, note that Safe
Sulong will never be able to support all non-standard C
code, that compiles when using static compilers.

6 Future Work

Completeness. Safe Sulong is a prototype and is cur-
rently not able to execute all C programs. While our
interpreter can execute most LLVM IR instructions, it
also needs to provide implementations for the system
libraries (most importantly the libc). We implemented
most libc functions in C, but also needed to expose cer-
tain functionality in our Java runtime (similar to OS

13

fannkuchr fasta fastar mandelbrot meteor nbody spectr whetstone

●

●●

●●

●●

●●●

●

●● ●

●

●

●●

●

●●

●●

●●

●

●●

●●

●

●●

1

2

E
xe

cu
tio

n
tim

e
ASan −O0 Clang −O0 Clang −O3 Safe Sulong −O0

Figure 20: Execution times relative to Clang -O0 (peak performance, lower is better)

system calls). Currently, we support 126 common libc
functions which is sufficient to execute a large body of
programs. However, we still lack support for threads
and synchronization, interprocess communication, many
low-level operations (mmap(), mprotect(), setjmp()
and longjmp()), and less commonly used functions.
While we have not yet stumbled on any essential prob-
lems, much engineering effort is required to implement
the missing functionality. Note that we already support
a small subset of x86 inline assembly by constructing
ASTs for assembly operations.

Detection of memory leaks. Many bug finding tools
such as Dr. Memory, Valgrind, Purify, and ASan of-
fer support for memory leak detection. Our approach
is based on an exact garbage collector, which reclaims
memory when it is not needed anymore, irrespective
of whether it has been freed or not. We plan to add
support for detecting objects that have not been freed
by having a background thread that is notified when
the garbage collector collects an object (using Java’s
PhantomReferences). When this thread receives a noti-
fication, we can check whether the object has been man-
ually freed to print an error in case it has not. This
approach is comparable with Purify, which uses a user-
callable conservative garbage collector [15].

Detection of uninitialized memory reads. Valgrind,
Purify, Dr. Memory, and MSan [32] (but not ASan)
detect reads of uninitialized memory. Currently, we
zero-initialize all data structures and do not detect such
bugs. We have already successfully investigated com-
bining our approach with a shadow memory approach to
yield an exact shadow memory tool. Our idea is to store
shadow memory inside each object, so that it cannot be
confused to belong to another object.

Replace Clang as a front end. As we have demon-
strated, Clang (and other C compilers) can optimize
away code with undefined behavior even with disabled

optimizations. We cannot exclude the possibility that
Clang optimized away other bugs that could then no
longer be found by ASan, Valgrind, and Safe Sulong. To
address this issue, we want to implement a C front end
that does not perform any optimizations based on unde-
fined behavior.

7 Conclusion

In this paper, we presented a novel bug finding tool for
C programs that is based on abstraction from the under-
lying machine. We implemented our approach in a tool
called Safe Sulong, which discovered several errors in
open source projects that current bug finding tools could
not find. By using dynamic compilation, Safe Sulong
reaches a peak performance that is comparable to the
performance of Clang -O0, and even Clang -O3 in some
cases.

References
[1] BARRETT, E., BOLZ, C. F., KILLICK, R., KNIGHT, V.,

MOUNT, S., AND TRATT, L. Virtual machine warmup blows
hot and cold. ICOOOLPS 2016 (2016).

[2] BLACKBURN, S. M., CHENG, P., AND MCKINLEY, K. S.
Myths and realities: The performance impact of garbage collec-
tion. ACM SIGMETRICS Performance Evaluation Review 32, 1
(2004), 25–36.

[3] BRUENING, D., AND ZHAO, Q. Practical memory checking
with dr. memory. In Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization
(2011), IEEE Computer Society, pp. 213–223.

[4] CHIPOUNOV, V., AND CANDEA, G. Dynamically translating
x86 to llvm using qemu. Tech. rep., École polytechnique fédérale
de Lausanne, 2010.

[5] CLIFFORD, D., PAYER, H., STANTON, M., AND TITZER, B. L.
Memento mori: Dynamic allocation-site-based optimizations. In
ACM SIGPLAN Notices (2015), vol. 50, ACM, pp. 105–117.

[6] COWAN, C., BARRINGER, M., BEATTIE, S., KROAH-
HARTMAN, G., FRANTZEN, M., AND LOKIER, J. Formatguard:
Automatic protection from printf format string vulnerabilities. In
USENIX Security Symposium (2001), vol. 91, Washington, DC.

14

[7] COWAN, C., WAGLE, F., PU, C., BEATTIE, S., AND WALPOLE,
J. Buffer overflows: Attacks and defenses for the vulnerability of
the decade. In DARPA Information Survivability Conference and
Exposition, 2000. DISCEX’00. Proceedings (2000), vol. 2, IEEE,
pp. 119–129.

[8] DI FEDERICO, A., AND AGOSTA, G. A jump-target identifi-
cation method for multi-architecture static binary translation. In
Proceedings of the International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems (2016), ACM,
p. 17.

[9] DINABURG, A., AND RUEF, A. Mcsema: Static translation of
x86 instructions to llvm. In ReCon 2014 Conference, Montreal,
Canada (2014).

[10] EIGLER, F. C. Mudflap: Pointer use checking for c/c+. Proceed-
ings of the First Annual GCC Developers Summit (2003), 57–70.

[11] EVANS, D., AND LAROCHELLE, D. Improving security us-
ing extensible lightweight static analysis. IEEE software 19, 1
(2002), 42–51.

[12] FINK, S. J., AND QIAN, F. Design, implementation and eval-
uation of adaptive recompilation with on-stack replacement. In
Proceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimization
(2003), CGO ’03, pp. 241–252.

[13] GODEFROID, P., LEVIN, M. Y., MOLNAR, D. A., ET AL. Au-
tomated whitebox fuzz testing. In NDSS (2008), vol. 8, pp. 151–
166.

[14] GRIMMER, M., SCHATZ, R., SEATON, C., WÜRTHINGER, T.,
AND MÖSSENBÖCK, H. Memory-safe execution of c on a java
vm. In Proceedings of the 10th ACM Workshop on Programming
Languages and Analysis for Security (2015), ACM, pp. 16–27.

[15] HASTINGS, R., AND JOYCE, B. Purify: Fast detection of mem-
ory leaks and access errors. In In proc. of the winter 1992 usenix
conference (1991), Citeseer.

[16] HÖLZLE, U., CHAMBERS, C., AND UNGAR, D. Optimizing
dynamically-typed object-oriented languages with polymorphic
inline caches. In ECOOP’91 (1991), pp. 21–38.

[17] HÖLZLE, U., CHAMBERS, C., AND UNGAR, D. Debugging
optimized code with dynamic deoptimization. In ACM Sigplan
Notices (1992), vol. 27, pp. 32–43.

[18] HÖLZLE, U., AND UNGAR, D. Optimizing dynamically-
dispatched calls with run-time type feedback. In ACM SIGPLAN
Notices (1994), vol. 29, ACM, pp. 326–336.

[19] HOLZMANN, G. J. Static source code checking for user-defined
properties. In Proc. IDPT (2002), vol. 2.

[20] KOTZMANN, T., WIMMER, C., MÖSSENBÖCK, H., RO-
DRIGUEZ, T., RUSSELL, K., AND COX, D. Design of the java
hotspot client compiler for java 6. ACM Transactions on Archi-
tecture and Code Optimization (TACO) 5, 1 (2008), 7.

[21] LATTNER, C., AND ADVE, V. Llvm: a compilation frame-
work for lifelong program analysis transformation. In CGO 2004
(March 2004), pp. 75–86.

[22] MATZ, M., HUBICKA, J., JAEGER, A., AND MITCHELL, M.
System v application binary interface. AMD64 Architecture Pro-
cessor Supplement, Draft v0 99 (2013).

[23] MEMARIAN, K., MATTHIESEN, J., LINGARD, J., NIENHUIS,
K., CHISNALL, D., WATSON, R. N., AND SEWELL, P. Into the
depths of c: elaborating the de facto standards. In PLDI 2016
(2016), pp. 1–15.

[24] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM Sigplan
notices (2007), vol. 42, ACM, pp. 89–100.

[25] RIGGER, M., GRIMMER, M., WIMMER, C., WÜRTHINGER, T.,
AND MÖSSENBÖCK, H. Bringing low-level languages to the
jvm: Efficient execution of llvm ir on truffle. In Proceedings
of the 8th International Workshop on Virtual Machines and Inter-
mediate Languages (New York, NY, USA, 2016), VMIL 2016,
ACM, pp. 6–15.

[26] ROSE, J. Jep 243: Java-level jvm compiler interface, 2014.

[27] SANS. Cwe/sans top 25 most dangerous software errors, 2011.

[28] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND
VYUKOV, D. Addresssanitizer: A fast address sanity checker.
In USENIX Annual Technical Conference (2012), pp. 309–318.

[29] SEWARD, J., AND NETHERCOTE, N. Using valgrind to detect
undefined value errors with bit-precision. In USENIX Annual
Technical Conference, General Track (2005), pp. 17–30.

[30] SHEN, B.-Y., CHEN, J.-Y., HSU, W.-C., AND YANG, W. Llbt:
an llvm-based static binary translator. In Proceedings of the 2012
international conference on Compilers, architectures and synthe-
sis for embedded systems (2012), ACM, pp. 51–60.

[31] STADLER, L., WÜRTHINGER, T., AND MÖSSENBÖCK, H. Par-
tial escape analysis and scalar replacement for java. In Proceed-
ings of CGO ’14 (2014), pp. 165–174.

[32] STEPANOV, E., AND SEREBRYANY, K. Memorysanitizer: fast
detector of uninitialized memory use in c++. In Code Generation
and Optimization (CGO), 2015 IEEE/ACM International Sympo-
sium on (2015), IEEE, pp. 46–55.

[33] VAN DER VEEN, V., DUTT SHARMA, N., CAVALLARO, L., AND
BOS, H. Memory errors: The past, the present, and the future. In
Proceedings of RAID’12 (2012), pp. 86–106.

[34] WANG, X., CHEN, H., CHEUNG, A., JIA, Z., ZELDOVICH, N.,
AND KAASHOEK, M. F. Undefined behavior: what happened
to my code? In Proceedings of the Asia-Pacific Workshop on
Systems (2012), ACM, p. 9.

[35] WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND SOLAR-
LEZAMA, A. Towards optimization-safe systems: Analyzing
the impact of undefined behavior. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (2013),
ACM, pp. 260–275.

[36] WARREN, H. S. Hacker’s delight. Pearson Education, 2013.

[37] WIMMER, C., AND WÜRTHINGER, T. Truffle: A self-
optimizing runtime system. In Proceedings of the 3rd Annual
Conference on Systems, Programming, and Applications: Soft-
ware for Humanity (2012), SPLASH ’12, pp. 13–14.

[38] WÖSS, A., WIRTH, C., BONETTA, D., SEATON, C., HUMER,
C., AND MÖSSENBÖCK, H. An object storage model for the
truffle language implementation framework. In Proceedings of
the 2014 International Conference on Principles and Practices
of Programming on the Java platform: Virtual machines, Lan-
guages, and Tools (2014), ACM, pp. 133–144.

[39] WÜRTHINGER, T., WIMMER, C., AND MÖSSENBÖCK, H. Ar-
ray bounds check elimination for the java hotspot client compiler.
In Proceedings of the 5th international symposium on Principles
and practice of programming in Java (2007), ACM, pp. 125–133.

[40] WÜRTHINGER, T., WIMMER, C., WÖSS, A., STADLER, L.,
DUBOSCQ, G., HUMER, C., RICHARDS, G., SIMON, D., AND
WOLCZKO, M. One vm to rule them all. In Proceedings of
the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software (New
York, NY, USA, 2013), Onward! 2013, ACM, pp. 187–204.

[41] WÜRTHINGER, T., WIMMER, CHRISTIAN HUMER, C., WÖSS,
A., STADLER, L., SEATON, C., DUBOSCQ, G., SIMON, D.,
AND GRIMMER, M. Practical partial evaluation for high-
performance dynamic language runtimes. In PLDI (Tentatively
accepted) (2017).

15

