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Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.
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What is R?

* A programming
language

— Convenient tool for

common statistical
tasks

— A DSL for statistics

— A general-purpose
language: ability to
implement
algorithms, analyses

ORACLE

* A data analysis
workbench

— Data exploration and
manipulation

— Graphics capabilities
for visualizing data

— Interactions with
typesetting systems
and web servers for
data presentation

* A data science
ecosystem

— Over 11k open source

packages for multiple
purposes

— Application areas:
statistics, geoscience,
bioinformatics, health
sciences, machine
learning, ...
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What is the challenge?

function(x) {
for(iin 1:1
X[I] = 1;

;

return(x);

J

0000) {
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What is the challenge?

function(x) {
for(i in 1:10000) {
X[I] = 1;
;

turn(x);
/}7 N

function
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What is the challenge?

function(x) {
1:1

for(i in 1:10000) {
X[I] = 1;

}
/ return (‘N
}

function function
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What is the challenge?

function(x) {
for(i in 1:10000) {

x[i] = i; 0

/ ietu rnm
}

function

function
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What is the challenge?

function(x) {
for(iin 1:1
x[] %.;

/ ietu rnm
}

function

0000) {

A

function
 Functions can have side effects

— Function re-definition
— Search path alteration
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What is the challenge?

function(x) {
for(i in 1'10000){
x[i] = i; ()
dynamic lookup /7t \
re urn((x\
function / function

* Functions can have side effects
— Function re-definition
— Search path alteration
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What is the challenge? promise

fu nction(x‘}{/

for(i in 1:1000O)£

X[i] s
dynamic lookup /}1 \
return(x);
/}7 &\

function function

* Functions can have side effects
— Function re-definition
— Search path alteration
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What is the challenge? promise

functic_)r)(x {
generic function — fo[g[m 1:10000) {
X

] = i; 1
dynamic lookup /}1 \
return(x);
/}7 <\

* Functions can have side effects

— Function re-definition

function function

— Search path alteration
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What is the challenge? promise

functic_)r)(x {
generic function — fo[g[m 1:10000) {
X

] = i; 1
dynamic lookup /}I \
return(x);
/}7 <\

* Functions can have side effects

— Function re-definition

function function

— Search path alteration

* Generic function’s dispatch depends on X’s metadata (attributes)
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What is FastR?

* An alternative R execution engine, developed under GPL v2 at
Oracle Labs in collaboration with the academia

» Started with Jan Vitek’s group at Purdue

* Drop-in, fully compatible replacement for R’s reference
implementation GNU R

* Focused on improving performance of long-running R code

* Open-source: https://github.com/graalvm/fastr
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System architecture

ORACLE

Truffle framework

Graal compiler

Java Virtual Machine




System architecture

Truffle framework

Graal compiler

Java Virtual Machine
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Graal/Truffle technology stack

* Main components
—Truffle framework to build Abstract Syntax Tree interpreters
—Single Graal compiler to generate native code for all Truffle languages

* Competitive in peak performance to best-of-class of each
language:
—for Java (vs. HotSpot server compiler)
—for dynamic languages (vs. V8)
—for static languages (prototype, vs. GCC)

* Open source: https://github.com/graalvm
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From interpreted AST to native code

AST Rewriting Partial Evaluation

©

Interpreted AST Specialized AST Compiled Code
(responsibility of the (guards for
language creator) deoptimization)
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FastR — R as a Truffle language

* Superior performance without resorting to C and Fortran

—Significant amounts of time are spent converting R to C code for
performance

* Interoperability within the Graal/Truffle ecosystem
—Transparent interop with JS, C, Ruby, ...

* Research vehicle for data-heavy and parallel applications

—Multi-tenancy, multi-thread execution of R applications, alternative
internal data representations, etc.
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Optimizing R
* Three fundamental optimization techniques

—Caching: inline caches for function calls, but also caching information for
other operations (e.g. argument matching)

—Assumptions: used to monitor low probability events — costly
invalidations but inexpensive (with system support) to check

—Specialization: divide implementation of an operation into smaller pieces
and speculate that only a limited set of code paths will be taken

* These techniques permeate the entire implementation: symbol
lookup, function calls, lazy evaluation, vector accesses, etc.
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Example: lazy evaluation

* R uses a call-by-need lazy argument evaluation strategy
—Each argument is a promise (code snippet + evaluation environment)
—Argument value is computed (promise is forced) as late as possible and
only if needed

* Problems
—Promise creation and indirect argument value access incur overhead

—Environments (variable/value mappings) are virtualized (into native stack
frames) — storing them requires materialization and is expensive

—Each program point where promise can be forced becomes a call site
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Specialized promise implementation categories

* Eager promises — local variable used as parameter
X = 42; foo(x); # extensible to include pure function calls as params
* Indirect promises — non-forced parameters passed to other calls
bar = function(x) { foo(x); }

* Default promises — arbitrarily complex code to be evaluated

foo(x + bar(y))
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Lazy vs. eager evaluation

global environment
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Lazy vs. eager evaluation

global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}
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Lazy vs. eager evaluation

X = 42 global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}
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Lazy vs. eager evaluation

X = 42 global environment
lazy
a==[x] foo = function(a) {
’ X <<-7;
print(a);
}
X =42;
foo(x);
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Lazy vs. eager evaluation

X > 7 global environment

lazy

a==[x] foo = function(a) {
print(a);
}

X =42;
foo(x);
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Lazy vs. eager evaluation

X > 7 global environment
lazy
a== 7 foo = function(a) {
X <<-7;
- print(a);
}
X =42;
foo(x);
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Lazy vs. eager evaluation

X > 7 global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}

X =42;
foo(x); # prints7
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Lazy vs. eager evaluation

X > 7 global environment
lazy eager
foo = function(a) { bar = function(b) {
X <<-7: y <<-7,
print(a); print(b);
} }
X =42;

foo(x); # prints7
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Lazy vs. eager evaluation

Xx=2>7 |y—=>42

global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}

X =42;
foo(x); # prints7

ORACLE

eager

bar = function(b) {
y <<-7,
print(b);

}
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Lazy vs. eager evaluation

x>7 |y=> 42 global environment
lazy eager
foo = function(a) { b==42 bar = function(b) {
X <<-7; y <<- [
print(a); print(b);
} }
X =42; y =42,
foo(x); # prints 7 bar(y);
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Lazy vs. eager evaluation

x>7|ly=>7 global environment
lazy eager
foo = function(a) { b==42 bar = function(b) {
X <<-7; —  \ <<-7;
print(a); print(b);
} }
X =42; y =42,
foo(x); # prints 7 bar(y);
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Lazy vs. eager evaluation

X227 |ly=>7

global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}

X =42;
foo(x); # prints7

ORACLE

eager

b==42 bar = function(b) {
y <<- [
m—p-  Orint(b);

}

y =42;
bar(y);
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Lazy vs. eager evaluation

Xx2>7 |y>7 global environment
lazy eager

foo = function(a) { b==42 bar = function(b) {

X <<-7; y <<- [

print(a); print(b);
} }
X =42; y =42,
foo(x); # prints 7 bar(y); # prints 42
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Eager promises implementation

* Promise caches eager value S

a==|42|foo = function(a) {
— .
print(a);

}

X =42;
foo(x);
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Eager promises implementation

. .

Promise caches eager value .S a5
* Truffle assumption associated with an

environment slot to monitor updates |

a==|42|foo = function(a) {
— .
print(a);

}

X =42;
foo(x);
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Eager promises implementation

. .
Promise caches eager value .S a5
* Truffle assumption associated with an

environment slot to monitor updates

X

—Assumption checked before argument a is a==[42|foo = function(a) {
used for the first time = print(a);
* If valid — use cached value }
* If invalid — re-evaluate promise
X =42;
foo(x);
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Eager promises implementation

. .
Promise caches eager value .S a5
* Truffle assumption associated with an

environment slot to monitor updates

X

—Assumption checked before argument a is a==[42|foo = function(a) {
used for the first time = print(a);
* |f valid — use cached value }
* If invalid — re-evaluate promise
—No-cost assumption check in compiled code - 42,’
foo(x);
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Eager promises implementation

* Promise caches eager value

* Truffle assumption associated with an
environment slot to monitor updates

—Assumption checked before argument a is
used for the first time

* If valid — use cached value
* If invalid — re-evaluate promise

—No-cost assumption check in compiled code
* Assumption “knows” the code to invalidate if needed

a::

X =2 42

X

42

P Yo
'foo = function(a) {

— Drint(a);
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Eager promises implementation

* Promise caches eager value

* Truffle assumption associated with an
environment slot to monitor updates

—Assumption checked before argument a is
used for the first time

* If valid — use cached value
* If invalid — re-evaluate promise

—No-cost assumption check in compiled code
* Assumption “knows” the code to invalidate if needed

—Compiler can unbox cached eager value

a::

X =2 42

X

42

P Yo
'foo = function(a) {

— Drint(a);
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One more problem...

* We don’t want a pointer to environment (to allow virtualization)
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One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

foo = function(a) {
print(a);
}

bar = function(a) {
foo(a);

}

X =42;
bar(x)
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One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

foo = function(a) {
t(a)
}prm (a); o global env (depth 1)

bar = function(a) {
foo(a);

}

X =42;
—-  DAr(X)
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One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

—-

ORACLE

foo = function(a) {
print(a);

}

bar = function(a) {
foo(a);

}

X =42;
bar(x)

X > 42

global env (depth 1)

bar() env (depth 2)



One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

foo = function(a) {

—  Drint(a);

ORACLE

}

bar = function(a) {
foo(a);

}

X =42;
bar(x)

X > 42

global env (depth 1)

bar() env (depth 2)

foo() env (depth 3)



One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

foo = function(a) {
print(a);

} D global env (depth 1)
bar = function(a) {

}fOO(a); bar() env (depth 2)
X =42, foo() env (depth 3)
bar(x)

* Store environment depth with a promise
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Other promises

* Default promises
—Environment stored with a promise

—Inline caches used to reduce overhead of evaluating promises carrying
the same code snippets

* Indirect promises
—Technically — instance of eager promises (no costly meta data)
—Practically — wrappers around other promise types
—Evaluation cost the same as of the promise they are wrapping
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Lazy evaluation optimization results

* Two benchmark suites
—B25: matrix calculations + simple R computation tasks
—Shootout: small applications consisting mostly of R code

* Estimated optimization potential measured in number of promises

* Three configurations to measure impact of the optimizations
(peak performance plotted on logarithmic scale)

—Eager promises optimization only
—Caching for default promises only
—Eager promises and caching combined
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Promise statistics
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Impact of lazy evaluation optimizations

O EAGER ONLY
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Overall system performance

* Same two benchmark suites — b25 and shootout

* Five runtime configurations
—GNU R “base” (default configuration)
—GNU R “BC” (bytecode compiler)
—Renjin (alternative R implementation from BeDataDriven)
—TERR (alternative R implementation from TIBCO)
—FastR

* Plotted peak performance on a logarithmic scale
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Shootout benchmark suite
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FastR’s average speedup: ~208.7 (geometric mean: ~30.8)
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B25 benchmark suite
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speedup over GNU R "base"
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FastR’s average speedup: ~15.7 (geometric mean: ~2.4)
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Project status

* Implemented all important language features, including lazy
evaluation, calls to C/Fortran, S3 and S4 object models

* FastR can load over 2000 unmodified CRAN packages and run
selected production applications in parallel

* Missing features include portions of native interface and selected
builtins

* Bottom line — semantic compatibility is high but work ongoing on
completeness and experimental features (e.g. autoparallelization)
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