Optimizing R Language Execution via
Aggressive Speculation

Lukas Stadler, Adam Welc, Christian Humer, Mick Jordan
Oracle Labs

O c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: : -
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What is R?

* A programming
language

— Convenient tool for

common statistical
tasks

— A DSL for statistics

— A general-purpose
language: ability to
implement
algorithms, analyses

ORACLE

* A data analysis
workbench

— Data exploration and
manipulation

— Graphics capabilities
for visualizing data

— Interactions with
typesetting systems
and web servers for
data presentation

* A data science
ecosystem

— Over 11k open source

packages for multiple
purposes

— Application areas:
statistics, geoscience,
bioinformatics, health
sciences, machine
learning, ...

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What is the challenge?

function(x) {
for(iin 1:1
X[I] = 1;

;

return(x);

J

0000) {

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

What is the challenge?

function(x) {
for(i in 1:10000) {
X[I] = 1;
;

turn(x);
/}7 N

function

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

What is the challenge?

function(x) {
1:1

for(i in 1:10000) {
X[I] = 1;

}
/ return (‘N
}

function function

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

What is the challenge?

function(x) {
for(i in 1:10000) {

x[i] = i; 0

/ ietu rnm
}

function

function

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

What is the challenge?

function(x) {
for(iin 1:1
x[] %.;

/ ietu rnm
}

function

0000) {

A

function
 Functions can have side effects

— Function re-definition
— Search path alteration

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

What is the challenge?

function(x) {
for(i in 1'10000){
x[i] = i; ()
dynamic lookup /7t \
re urn((x\
function / function

* Functions can have side effects
— Function re-definition
— Search path alteration

O c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

What is the challenge? promise

fu nction(x‘}{/

for(i in 1:1000O)£

X[i] s
dynamic lookup /}1 \
return(x);
/}7 &\

function function

* Functions can have side effects
— Function re-definition
— Search path alteration

: : ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

What is the challenge? promise

functic_)r)(x {
generic function — fo[g[m 1:10000) {
X

] = i; 1
dynamic lookup /}1 \
return(x);
/}7 <\

* Functions can have side effects

— Function re-definition

function function

— Search path alteration

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What is the challenge? promise

functic_)r)(x {
generic function — fo[g[m 1:10000) {
X

] = i; 1
dynamic lookup /}I \
return(x);
/}7 <\

* Functions can have side effects

— Function re-definition

function function

— Search path alteration

* Generic function’s dispatch depends on X’s metadata (attributes)

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What is FastR?

* An alternative R execution engine, developed under GPL v2 at
Oracle Labs in collaboration with the academia

» Started with Jan Vitek’s group at Purdue

* Drop-in, fully compatible replacement for R’s reference
implementation GNU R

* Focused on improving performance of long-running R code

* Open-source: https://github.com/graalvm/fastr

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

System architecture

ORACLE

Truffle framework

Graal compiler

Java Virtual Machine

System architecture

Truffle framework

Graal compiler

Java Virtual Machine

R CI_E CCCCC ight © 2016 , Oracle and /or its affiliates. All rights reserved .

Graal/Truffle technology stack

* Main components
—Truffle framework to build Abstract Syntax Tree interpreters
—Single Graal compiler to generate native code for all Truffle languages

* Competitive in peak performance to best-of-class of each
language:
—for Java (vs. HotSpot server compiler)
—for dynamic languages (vs. V8)
—for static languages (prototype, vs. GCC)

* Open source: https://github.com/graalvm

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

From interpreted AST to native code

AST Rewriting Partial Evaluation

©

Interpreted AST Specialized AST Compiled Code
(responsibility of the (guards for
language creator) deoptimization)

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

FastR — R as a Truffle language

* Superior performance without resorting to C and Fortran

—Significant amounts of time are spent converting R to C code for
performance

* Interoperability within the Graal/Truffle ecosystem
—Transparent interop with JS, C, Ruby, ...

* Research vehicle for data-heavy and parallel applications

—Multi-tenancy, multi-thread execution of R applications, alternative
internal data representations, etc.

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Optimizing R
* Three fundamental optimization techniques

—Caching: inline caches for function calls, but also caching information for
other operations (e.g. argument matching)

—Assumptions: used to monitor low probability events — costly
invalidations but inexpensive (with system support) to check

—Specialization: divide implementation of an operation into smaller pieces
and speculate that only a limited set of code paths will be taken

* These techniques permeate the entire implementation: symbol
lookup, function calls, lazy evaluation, vector accesses, etc.

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Example: lazy evaluation

* R uses a call-by-need lazy argument evaluation strategy
—Each argument is a promise (code snippet + evaluation environment)
—Argument value is computed (promise is forced) as late as possible and
only if needed

* Problems
—Promise creation and indirect argument value access incur overhead

—Environments (variable/value mappings) are virtualized (into native stack
frames) — storing them requires materialization and is expensive

—Each program point where promise can be forced becomes a call site

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Specialized promise implementation categories

* Eager promises — local variable used as parameter
X = 42; foo(x); # extensible to include pure function calls as params
* Indirect promises — non-forced parameters passed to other calls
bar = function(x) { foo(x); }

* Default promises — arbitrarily complex code to be evaluated

foo(x + bar(y))

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Lazy vs. eager evaluation

global environment

o c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}

o c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

X = 42 global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}

O c ®
R Cl—e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

X = 42 global environment
lazy
a==[x] foo = function(a) {
’ X <<-7;
print(a);
}
X =42;
foo(x);

O c ®
R Cl—e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

X > 7 global environment

lazy

a==[x] foo = function(a) {
print(a);
}

X =42;
foo(x);

O c ®
R Cl—e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

X > 7 global environment
lazy
a== 7 foo = function(a) {
X <<-7;
- print(a);
}
X =42;
foo(x);

O c ®
R Cl—e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

X > 7 global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}

X =42;
foo(x); # prints7

O c ®
R Cl—e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

X > 7 global environment
lazy eager
foo = function(a) { bar = function(b) {
X <<-7: y <<-7,
print(a); print(b);
} }
X =42;

foo(x); # prints7

O c ®
R Cl—e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

Xx=2>7 |y—=>42

global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}

X =42;
foo(x); # prints7

ORACLE

eager

bar = function(b) {
y <<-7,
print(b);

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

x>7 |y=> 42 global environment
lazy eager
foo = function(a) { b==42 bar = function(b) {
X <<-7; y <<- [
print(a); print(b);
} }
X =42; y =42,
foo(x); # prints 7 bar(y);

O c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

x>7|ly=>7 global environment
lazy eager
foo = function(a) { b==42 bar = function(b) {
X <<-7; — \ <<-7;
print(a); print(b);
} }
X =42; y =42,
foo(x); # prints 7 bar(y);

O c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

X227 |ly=>7

global environment

lazy

foo = function(a) {
X <<-7;
print(a);

}

X =42;
foo(x); # prints7

ORACLE

eager

b==42 bar = function(b) {
y <<- [
m—p- Orint(b);

}

y =42;
bar(y);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy vs. eager evaluation

Xx2>7 |y>7 global environment
lazy eager

foo = function(a) { b==42 bar = function(b) {

X <<-7; y <<- [

print(a); print(b);
} }
X =42; y =42,
foo(x); # prints 7 bar(y); # prints 42

o c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Eager promises implementation

* Promise caches eager value S

a==|42|foo = function(a) {
— .
print(a);

}

X =42;
foo(x);

o c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Eager promises implementation

. .

Promise caches eager value .S a5
* Truffle assumption associated with an

environment slot to monitor updates |

a==|42|foo = function(a) {
— .
print(a);

}

X =42;
foo(x);

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Eager promises implementation

. .
Promise caches eager value .S a5
* Truffle assumption associated with an

environment slot to monitor updates

X

—Assumption checked before argument a is a==[42|foo = function(a) {
used for the first time = print(a);
* If valid — use cached value }
* If invalid — re-evaluate promise
X =42;
foo(x);

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserve

d.

Eager promises implementation

. .
Promise caches eager value .S a5
* Truffle assumption associated with an

environment slot to monitor updates

X

—Assumption checked before argument a is a==[42|foo = function(a) {
used for the first time = print(a);
* |f valid — use cached value }
* If invalid — re-evaluate promise
—No-cost assumption check in compiled code - 42,’
foo(x);

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserve

d.

Eager promises implementation

* Promise caches eager value

* Truffle assumption associated with an
environment slot to monitor updates

—Assumption checked before argument a is
used for the first time

* If valid — use cached value
* If invalid — re-evaluate promise

—No-cost assumption check in compiled code
* Assumption “knows” the code to invalidate if needed

a::

X =2 42

X

42

P Yo
'foo = function(a) {

— Drint(a);

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Eager promises implementation

* Promise caches eager value

* Truffle assumption associated with an
environment slot to monitor updates

—Assumption checked before argument a is
used for the first time

* If valid — use cached value
* If invalid — re-evaluate promise

—No-cost assumption check in compiled code
* Assumption “knows” the code to invalidate if needed

—Compiler can unbox cached eager value

a::

X =2 42

X

42

P Yo
'foo = function(a) {

— Drint(a);

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

One more problem...

* We don’t want a pointer to environment (to allow virtualization)

O c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

foo = function(a) {
print(a);
}

bar = function(a) {
foo(a);

}

X =42;
bar(x)

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

foo = function(a) {
t(a)
}prm (a); o global env (depth 1)

bar = function(a) {
foo(a);

}

X =42;
—- DAr(X)

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

—-

ORACLE

foo = function(a) {
print(a);

}

bar = function(a) {
foo(a);

}

X =42;
bar(x)

X > 42

global env (depth 1)

bar() env (depth 2)

One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

foo = function(a) {

— Drint(a);

ORACLE

}

bar = function(a) {
foo(a);

}

X =42;
bar(x)

X > 42

global env (depth 1)

bar() env (depth 2)

foo() env (depth 3)

One more problem...

* We don’t want a pointer to environment (to allow virtualization)

* Fortunately, environments can be counted!

foo = function(a) {
print(a);

} D global env (depth 1)
bar = function(a) {

}fOO(a); bar() env (depth 2)
X =42, foo() env (depth 3)
bar(x)

* Store environment depth with a promise

o c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Other promises

* Default promises
—Environment stored with a promise

—Inline caches used to reduce overhead of evaluating promises carrying
the same code snippets

* Indirect promises
—Technically — instance of eager promises (no costly meta data)
—Practically — wrappers around other promise types
—Evaluation cost the same as of the promise they are wrapping

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lazy evaluation optimization results

* Two benchmark suites
—B25: matrix calculations + simple R computation tasks
—Shootout: small applications consisting mostly of R code

* Estimated optimization potential measured in number of promises

* Three configurations to measure impact of the optimizations
(peak performance plotted on logarithmic scale)

—Eager promises optimization only
—Caching for default promises only
—Eager promises and caching combined

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Promise statistics

1e+06 —
8e+05 —
6e+05 —

4e+05 —

promises / time

2e+05 —

Oe+00 —

bt
fn
fa
fr
kn
ma
nb

ORACLE

pd

rd

4e+06

rc

o 9 38 T 8 = & 2
E €E E € € & & E

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

mf4
mf5

pr1

pr2

pr3

pr4

pr5

Impact of lazy evaluation optimizations

O EAGER ONLY
O CACHE ONLY
5 — B EAGER & CACHE

“&I“ R J]EEI H:IEEHH] mtﬁmmm[l[ﬂ
g 3 o ¢ ERR ST

= -
« S

speedup over unoptimized

bt
fn
fa
fr
kn
ma

< o

O e ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Overall system performance

* Same two benchmark suites — b25 and shootout

* Five runtime configurations
—GNU R “base” (default configuration)
—GNU R “BC” (bytecode compiler)
—Renjin (alternative R implementation from BeDataDriven)
—TERR (alternative R implementation from TIBCO)
—FastR

* Plotted peak performance on a logarithmic scale

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Shootout benchmark suite

=8 1e+03 - O GNURBC
s OE RENJIN
2 B TERR
X 1e+02 — m FASTR
)
Z
QO 1e+01
()
>
(@)
% . 1l H_IH_' Hlm | B
o
()
S
2 1e01
o) = Y = £ g = 8 © o S (>D 8

< o

FastR’s average speedup: ~208.7 (geometric mean: ~30.8)

O c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

B25 benchmark suite

1e+02 — O GNURBC
OE RENJIN
B TERR
1e+01 —| W FASTR

speedup over GNU R "base"

1e+00 < --- IR~ T~ - Tl T B -
1e01
102 — L L L

N

£

FastR’s average speedup: ~15.7 (geometric mean: ~2.4)

O c ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

mc1
mc2
mc3
mc4
mcd
mf1
mf3
mf4
mf5
pri
pr2
pr3
pr4
pr5

AVG
GEO

Project status

* Implemented all important language features, including lazy
evaluation, calls to C/Fortran, S3 and S4 object models

* FastR can load over 2000 unmodified CRAN packages and run
selected production applications in parallel

* Missing features include portions of native interface and selected
builtins

* Bottom line — semantic compatibility is high but work ongoing on
completeness and experimental features (e.g. autoparallelization)

: : -
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Acknowledgements

Oracle

Danilo Ansaloni
Stefan Anzinger
Cosmin Basca
Daniele Bonetta
Matthias Brantner
Petr Chalupa
Jurgen Christ
Laurent Daynes
Gilles Duboscq
Martin Entlicher
Bastian Hossbach
Christian Humer
Mick Jordan

Vojin Jovanovic
Peter Kessler
David Leopoldseder
Kevin Menard
Jakub Podlesak
Aleksandar Prokopec
Tom Rodriguez

ORACLE

Oracle (continued)
Roland Schatz

Chris Seaton

Doug Simon

Sté&pan Sindelar
Zbynék Slajchrt
Lukas Stadler
Codrut Stancu

Jan Stola

Jaroslav Tulach
Michael Van De Vanter
Adam Welc
Christian Wimmer
Christian Wirth

Paul Wogerer
Mario Wolczko
Andreas WoR
Thomas Wirthinger

Oracle Interns
Brian Belleville
Miguel Garcia
Shams Imam
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash

David Piorkowski
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Alumni

Erik Eckstein
Michael Haupt
Christos Kotselidis
Hyunjin Lee

David Leibs

Chris Thalinger
Till Westmann

JKU Linz

Prof. Hanspeter M&ssenbdck

Benoit Daloze
Josef Eisl

Thomas Feichtinger
Matthias Grimmer
Christian Haubl
Josef Haider
Christian Huber
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of Edinburgh
Christophe Dubach

Juan José Fumero Alfonso
Ranjeet Singh

Toomas Remmelg

LaBRI
Floréal Morandat

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

University of California, Irvine
Prof. Michael Franz

Gulfem Savrun Yeniceri

Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj

Lei Zhao

T. U. Dortmund

Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland
Prof. Walter Binder

Sun Haiyang

Yudi Zheng

ORACLE

