
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 1

Taming Multi-GPU Greedy Scheduling
Through a Polyglot Runtime

Guido Walter Di Donato, Graduate Student Member, IEEE, Ian Di Dio Lavore, Graduate Student Member, IEEE,
Alberto Parravicini, Francesco Sherzi, Graduate Student Member, IEEE, Marco Arnaboldi, Arnaud Delamare,

Daniele Bonetta, Marco Domenico Santambrogio, Senior Member, IEEE.

Abstract—Multi-GPU systems are increasingly being deployed
in cloud data centers, but using GPUs efficiently from high-
level programming languages remains a challenge. Moreover,
exploiting the full capabilities of multi-GPU systems is an ar-
duous task due to the complex interconnection topology between
available accelerators and the variety of inter-GPU commu-
nication patterns exhibited by different workloads. This work
introduces a novel scheduler for multi-task GPU computations
that provides transparent asynchronous execution on multi-
GPU systems without requiring prior information about the
program dependencies or the underlying system architecture.
Our scheduler integrates with the polyglot GraalVM ecosystem
and is therefore available for multiple high-level languages,
providing a general framework that can significantly lower the
barriers to entry to multi-GPU acceleration. We validate our
work on a set of benchmarks designed to investigate scalability
and inter-GPU communication. Experimental results show how
our scheduler automatically achieves 80-90% peak performance
against hand-optimized CUDA host code on Volta and Ampere
multi-GPU systems.

Index Terms—Heterogeneous Computing, Graphics Processing
Units, Multi-GPU, Task Scheduling, Run-time Systems, Polyglot.

I. INTRODUCTION

MODERN computing systems increasingly rely on
hardware accelerators like Graphics Processing Units

(GPUs) to achieve performance goals. Indeed, their massive
multi-threading ability can provide extremely high throughput
to applications from different domains, such as Deep Learning
and graph analytics [1]. Moreover, the increasing demand for
faster computation from data-intensive workloads has driven
the deployment of multi-accelerator servers in shared multi-
tenant environments, such as cloud data centers [2]. Multi-
GPU systems provide an additional level of parallelism that
can be leveraged to push the performance of accelerated
applications even further. As an example, Figure 1 illustrates
the speedup achieved in different CUDA [3] benchmarks
(presented in §IV-B) by hand-optimizing inter-GPU data trans-
fer and the execution of independent computations, when
running on up to 8 GPUs. The experimental results show how

G.W. Di Donato, I. Di Dio Lavore, A. Parravicini, and M. D. Santambrogio
are with the Department of Electronic, Information and Bioengineering,
Politecnico di Milano, Milano, IT, 20133. E-mail: {guidowalter.didonato,
ian.didio, alberto.parravicini, marco.santambrogio}@polimi.it

F. Sgherzi is with the XXX, Barcelona Supercomputing Center, Barcelona,
Spain. E-mail: ,

M. Arnaboldi and A. Delamare are with Oracle Labs, Zurich, Switzerland.
D. Bonetta is with Oracle Labs, Amsterdam, Nederland.
E-mail:{marco.arnaboldi, arnaud.d.delamare, daniele.bonetta}@oracle.com

MEAN VEC B&S ML CG MUL
0.0x
1.0x
2.0x
3.0x
4.0x
5.0x
6.0x

0.72 0.53
0.97

0.64 0.42

1.05
1.71 1.53 1.74 1.82 1.86 1.60

2.43
1.87

2.57
3.14 2.81

1.78

2.74

3.42

4.82

2.35

0.68

2.41

CUDA, V100

S 2 4 8 S 2 4 8 S 2 4 8 S 2 4 8 S 2 4 8 S 2 4 8

MEAN VEC B&S ML CG MUL
0.0x
1.0x
2.0x
3.0x
4.0x
5.0x
6.0x

0.56 0.47
0.79

0.39 0.21

0.93

1.72 1.70 1.72 1.84 1.65 1.71

2.49
2.78 3.02

2.65
1.85

2.15

3.21 3.01

3.84

5.21

1.87
2.13

CUDA, A100

S 2 4 8 S 2 4 8 S 2 4 8 S 2 4 8 S 2 4 8 S 2 4 8

Baseline: ASYNC, 1 GPU
SYNC, 1 GPU 2 GPU 4 GPU 8 GPU

Baseline: ASYNC, 1 GPU
SYNC, 1 GPU 2 GPU 4 GPU 8 GPU

Fig. 1. Performance scaling (speedup) of GPU benchmarks whose scheduling
and data-transfer has been hand-optimized in C++ CUDA, when running on
up to 8 Nvidia Tesla V100s and A100s. While some of them do not fully
benefit from 8 GPUs, all present a speedup when using multiple GPUs.

all the benchmarks present performance improvements when
using multiple GPUs, achieving up to 5.21× speedup when
running on 8 GPUs. These results clearly capture the benefit
of spreading the computation across multiple accelerators.

Today, major cloud providers such as Amazon, Google, Or-
acle, and others provide multi-GPU systems to their users [4].
In such systems, GPUs are increasingly interconnected in
complex topologies. Despite the development of new inter-
connection technologies, such as NVLink [5] and NVSwitch
[6], the interconnection bandwidth (up to ∼ 900GB s−1) is
still much slower than the global memory bandwidth of
modern GPUs (up to ∼ 3900GB s−1) [7]. Moreover, compute-
intensive workloads are exhibiting a wider variety of inter-
accelerator communication patterns. While exploiting the full
capabilities of a GPU is already an arduous task requir-
ing expert knowledge of asynchronous programming, writing
efficient multi-GPU code is even more complex. In fact,
although employing multiple GPUs can deliver many advan-
tages, it presents new challenges in workload management and
scheduling to obtain optimal performance [2], [4].

To date, the adoption of GPUs is often limited to spe-
cific domains offering libraries or Domain-Specific Languages
(DSLs) that mask the GPU computation [8], [9]. This is
mainly due to the limited integration of GPUs with high-
level programming languages like Java or Python. More-

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

over, APIs offering complete control over the GPUs require
tremendous efforts to unleash the full hardware potential,
including extensive debugging and pro�ling. In the last few
years, important efforts have been made to integrate GPUs
with high-level programming languages, to lower the barriers
to entry to GPU acceleration [10], [11]. A worthy example
is GrCUDA [12], [13], a polyglot CUDA API based on the
GraalVM ecosystem [14]–[16]. Implemented as a Truf�e [17]
DSL, GrCUDA enables GPU acceleration in all the languages
supported by GraalVM.

Parravicini et al. [18] recently extended the open-source
GPU scheduler of GrCUDA to support asynchronous CPU
and GPU execution. The cornerstone of their scheduler is
a data-�ow Directed Acyclic Graph (DAG) built at runtime,
representing relationships between computations that involve
the GPU. Their work focused on space-sharing and transfer-
computation overlap, and it is only suitable for single-GPU
computations. In this work, we tackle the problem of schedul-
ing on multi-GPU systems, masking the complexity of inter-
GPU data-transfer management. The problem is signi�cantly
harder than the single-GPU counterpart, as it requires comput-
ing data placement and migration costs at run time to identify
the optimal scheduling.

We propose a novel methodology to schedule multi-GPU
computations without requiring prior information about the
program dependencies or the underlying system architecture.
Our work is implemented as an extension of the asynchronous
scheduler proposed in [18], and it enables GrCUDA to become
a general framework that can signi�cantly lower the barriers
to entry to multi-GPU acceleration.

In summary, the main contributions of this paper are:

1) A greedy multi-GPU schedulerthat integrates directly
with the original GrCUDA architecture, extending the
lower-level of the runtime without changing the API and
the dependency DAG computation (§III-A).

2) Four multi-GPU scheduling policies able to handle
multi-task workloads of increasing complexity (§III-B).

3) Five multi-GPU benchmarks designed to highlight the
performance pro�le of our new scheduler, focusing on
scalability, inter-GPU communication, and the bene�t of
transfer-computation overlap (§IV-B).

4) An evaluation of how our scheduler automatically
achieves an average of 80–90 % peak performance against
hand-optimized CUDA C++ host code (§IV-C, §IV-D,
§IV-E).

II. BACKGROUND AND MOTIVATION

Multi-GPU programming is hard: runtime scheduling is
often sub-optimal, and the lack of support for high-level
programming languages makes it dif�cult for data scientists
to leverage the power of modern hardware. In this section
we summarize the complexity of multi-GPU computations
(§II-A), and we introduce the GrCUDA language binding
(§II-B) and its runtime extension proposed in [18] (§II-C).
Then, we describe the rationale behind the development of an
asynchronous and transparent multi-GPU scheduler (§II-D).

Fig. 2. Heatmap of the GPU-GPU and CPU-GPU interconnection bandwidth
of a system equipped with 8 Nvidia V100s or 8 Nvidia A100s. Same-GPU
interconnection bandwidth is not shown, and it amounts to the GPU's memory
bandwidth.

A. Multi-GPU Computations

Given the rapid evolution of GPU hardware, it is very easy
for existing tools and frameworks to have limited portability as
hardware and programming languages change. For example,
modern GPU interconnections such as NVLink [5], and even
more so NVSwitch [6], have made heavy GPU-GPU com-
munication feasible. In the past, instead, it was necessary to
resort to the limited bandwidth of PCI Express (PCIe) [19],
limiting multi-GPU computations to processing independent
data partitions and using GPU-GPU communication mostly
for control-�ow data [20]. Consequently, tools that optimized
inter-GPU transfer assuming PCIe interconnections might no
longer be relevant since the introduction of faster intercon-
nections. In this fast-moving context, GPU runtimes should
be able toadapt to different hardware in a transparent way.
This is the main motivation of our work, which is agnostic to
the underlying interconnection technology and automatically
infers information about inter-device transfer performance by
dynamically pro�ling the system, as discussed in §III-B. De-
velopers can expecthigh performance in any deployment, not
just on the system where they developed their code. This high
portability is especially valuable in cloud settings, where the
underlying hardware is often changing based on availability,
performance needs, and other non-deterministic factors.

To capture the complexity of GPU and CPU interconnec-
tions in modern multi-GPU systems, Figure 2 shows a heatmap
of the GPU-GPU and CPU-GPU interconnection bandwidth
of an NVLink-V2 machine with 8 Nvidia V100s and of
an NVSwitch machine with 8 Nvidia A100s, as available
on the Oracle Cloud Infrastructure (OCI) [21]. In detail,
it shows the unidirectional bandwidth between each couple
of devices, obtained experimentally. The bandwidth of any
device pair is symmetric. For both the systems, the bandwidth
between CPUs and each GPU appears to be uniform, even
though we use dual-socket servers where CPUs are connected
through QPI [22] (NVLink-V2 machine) or In�nity Fabric [23]
(NVSwitch machine). Bandwidth on NVSwitch is signi�cantly
higher and more uniform (� 250 GB s� 1, unidirectional) than
NVLink (� 48 GB s� 1), as all GPUs are fully connected to
the same switch instead of providing a number of NVLink

DI DONATO et al.: TAMING MULTI-GPU GREEDY SCHEDULING THROUGH A POLYGLOT RUNTIME 3

Fig. 3. The two-layer architecture of GrCUDA and interaction with the host
language and CUDA runtime. We highlight the components that we added or
extended to provide multi-GPU scheduling.

connections that depends on the GPU pair. With the abundant
bandwidth of NVSwitch, one can aggressively parallelize tasks
between devices, even if strong GPU-GPU communication
is present. On the other hand, when using a system based
on NVLink, one has to consider the heterogeneous intercon-
nection topology and the af�nity between devices: GPUs are
not equivalent, and using a speci�c set of GPUs for a given
computation might be better than another. Indeed, depending
on where data is located, transferring the same amount of
data results in different transfer times depending on where the
GPUs are located in the system architecture. Thus, modern
techniques for multi-GPU scheduling must be aware of the
interconnection topology between devices [2], [4].

B. The GrCUDA Language Binding

GrCUDA [12] is a GPU programming framework initially
developed by Nvidia targeting the GraalVM platform [14].
It consists of a CUDA language binding implemented as
a language-independent library using the Truf�e language
implementation framework [17].

Figure 3 shows a high-level representation of GrCUDA's
components. Thanks to its design, GrCUDA is used as a
domain-speci�c guest language and can be exposed to any
of the host languages supported by GraalVM (including
JavaScript, Python, Ruby, WASM, etc.) transparently. The
Truf�e's interoperability layer (Figure 3,2) exposes to the
host language the basic elements of GrCUDA, such as GPU
arrays or executable GPU kernels asinteroperable objects, so
that the host language can manipulate these elements as if they
were objects of the host language itself. For example, the host
language can declare and access arrays used by the GPU, or
execute GPU kernels like any other function.

At its lowest level, GrCUDA directly interacts with the
NVRTC compiler [24] and with CUDA's runtime and driver
APIs [25] 8 , which schedule and manage the execution of
computations on the GPUs available in the system9 .

C. The GrCUDA Scheduler and Runtime

The original open-source Nvidia GrCUDA runtime has
been extended in [18] to provide asynchronous and transpar-
ent single-GPU scheduling. The main design choice of this
extended GrCUDA runtime is to have two separate layers.
The outer layer provides the interface with the host language
(Figure 3, 2), the computation of the dependency DAG3 ,
and wraps individual computations supported by GrCUDA
(e.g. GPU kernels) in a way that only details relevant to
the data dependency computations are exposed. GPU kernels,
memory accesses by the CPU todevice arrays(backed by
CUDA's Uni�ed Memory), and functions from libraries such
as cuBLAS [26] or cuSPARSE [27] are all wrapped intocom-
putational elements. The input (and output) arguments of each
computation may introduce task or data dependencies that may
result in excessive contention and inef�cient synchronization.
Such data and task inter-dependencies may result in severe
performance degradation, with a very negative impact on the
overall ef�ciency (parallelism degree). GrCUDA uses a data-
�ow DAG to track these dependencies and guarantee the max-
imum amount of task-level parallelism while preserving cor-
rectness. It automatically infers data dependencies and models
them through a DAG, instead of having the user manually
specify dependencies. The managed execution environment of
GrCUDA makes inferring dependencies possible. Inputs are
encapsulated into objects, removing the risk of pointer aliasing
typical of native languages (multiple pointers that refer to
the same memory area). GrCUDA's object-oriented memory
model also ensures that all valid inputs to a CUDA kernel
in GrCUDA are tracked correctly: one cannot pass arbitrary
pointers to other objects.

The inner layer (Figure 3,4 to 7) interacts with the
CUDA runtime, and it leverages the information extracted
from the dependency DAG and the status of the available
devices to assign streams to GPU computations, synchro-
nize computations when necessary, and transparently provide
asynchronous execution. GrCUDA's original layers, providing
space-sharing and transfer-computation overlap for single-
GPU computations, are extensively explained in [18]. §III-A
presents the enhancements we propose to enable the ef�cient
scheduling of multi-GPU applications by masking the com-
plexity of inter-GPU data-transfer management.

D. The Case for Greedy Multi-GPU Scheduling

Scheduling, in our context, means identifying the best GPU
on which to execute the GPU kernels of a target appli-
cation, and maximize asynchronous computations and data
movements to minimize the overall execution time of the
application. This optimization process requires knowledge of
the target architecture and infrastructure, and an understanding
of the data dependencies in the target application and possibly
of the computations themselves. For this reason, writing multi-
GPU programs by hand is error-prone, with frequent non-
deterministic issues introduced by asynchronous behaviors that
are hard to debug.

We say that a scheduling process isgreedyif it does not
require the user to specify in advance the structure of the com-

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

putations (in terms of data dependencies, data sizes, and other
constraints). Non-greedy schedulers need prior information
speci�ed at compile-time or with some explicitcompilation
function in the code, like CUDA Graphs [28] or the original
TensorFlow [8]. When the structure of the computation is
fully de�ned in advance, this information can be leveraged
to produce high-quality schedules and holistic optimizations.
However, greedy scheduling provides clear advantages overall.

First, greedy scheduling offers�exibility with respect to the
structure of the program not being known in advance. Control
�ow can change dynamically, and there is no need to know in
advance the value of conditional expressions or loop iterations
to optimize the scheduling. We observe how a similar approach
has made PyTorch [9] the prevalent Deep Learning (DL)
framework in research, where �exibility is paramount, and
that TensorFlow has introduced eager execution to address the
same needs [29]. However, these libraries provide parallelism
mostly in the form of dividing data across devices, instead of
relying on more advanced scheduling optimizations.

Second, greedy scheduling opens the door tojust-in-time
scheduling optimizations. For example, if the output size
of a computation is not known in advance (as it occurs
in database workloads), it might be impossible to optimize
fully the scheduling of other computations that require this
output, since the transfer time of this data to other devices
depends on its own size. While this situation is less prevalent
in DL applications, GrCUDA is not specialized for a single
domain and aims to be asolution for general-purpose GPU
programming.

This work extends the GrCUDA low-pro�le runtime to
automatically leverage multiple GPUs in multi-task computa-
tions. Our scheduler aims to transparently provide speedups
comparable to what an expert programmer can achieve by
hand, making multi-GPU computations easier to approach
while minimizing performance compromises.

III. W ORKLOAD SCHEDULING ACROSSMULTIPLE GPUS

To simplify the approach to multi-GPU programming, this
work brings ef�cient transparent multi-GPU scheduling to
GraalVM. In this section, we describe the architecture of
the GrCUDA multi-GPU scheduler we obtained by extending
the asynchronous scheduler proposed in [18] (§III-A). Then,
§III-B presents the methodology we employ in our scheduler
to select the right GPU for each computation, by tracking
data locality and employing multiple scheduling policies that
implement different heuristics.

A. The Multi-GPU GrCUDA Architecture

Our multi-GPU scheduler for GrCUDA integrates directly
with the original architecture, extending the lower level of the
runtime without changing the API and the dependency DAG
computation. As such, users do not have to modify their ex-
isting code to leverage multi-GPU scheduling. Moreover, any
future improvement to GrCUDA's outer layer (e.g. the DAG
computation or the user-facing API) can be done transparently
to multi-GPU scheduling, resulting in higher �exibility and
forward compatibility.

Fig. 4. Detailed architecture of the multi-GPU GrCUDA architecture. New
or extended components are highlighted.

The main components of our multi-GPU scheduler for Gr-
CUDA, as shown in Figure 3 and Figure 4, are the following:

Dependency DAG: GrCUDA tracks data dependencies
between computations using a DAG. For each computa-
tion, we infer what input and output arguments can create
data dependencies and update the DAG as computations
�nish execution or new computations are scheduled.

Computation scheduling (Stream manager):GrCUDA
achieves asynchronous execution by assigning GPU
computations to different CUDA streams [30]. This
component selects the target stream with heuristics
provided by the policy manager, and it coordinates
streams using CUDA events [31].

Policy manager: CUDA streams are uniquely associated
to a GPU. As such, we modi�ed the scheduling heuristics
of GrCUDA to select the best device for each new com-
putation, using information such as data locality and the
current load of the device. This component encapsulates
all these heuristics, further de�ned in §III-B3.

Devices manager:this new component encapsulates the
status of the multi-GPU system. It tracks the currently
active GPUs, the streams and the currently active com-
putations associated with each GPU, and what data is
up-to-date on each device (including the CPUs)

DI DONATO et al.: TAMING MULTI-GPU GREEDY SCHEDULING THROUGH A POLYGLOT RUNTIME 5

CUDA runtime interface: this component provides ac-
cess to the CUDA API. We extended it with APIs for
selecting and managing multiple GPUs.

Figure 4 provides a more detailed view of Figure 3 by
showing the execution �ow of a GrCUDA computation sched-
uled from the host language. The outer layer of GrCUDA
is unmodi�ed from the original single-GPU asynchronous
scheduler proposed in [18]. Users call a GrCUDA computation
in the host language like a regular function (Figure 4,1).
This computation is wrapped into a computational element
and passed to theexecution contextfor scheduling 2 . The
execution context infers data dependencies for the new com-
putation based on its input and output arguments, and up-
dates the DAG that tracks the global execution status3 .
To infer data dependencies, GrCUDA associates with each
computational element a dependency set that initially contains
all arguments of the computational element. An argument
is removed from the set if a subsequent computation uses
and modi�es that argument, de�ning a data dependency on
it. Once a set is empty, the corresponding element can no
longer introduce dependencies to subsequent computations.
The scheduler uses optional argument annotations (i.e.input ,
const) to optimize computations with read-only arguments,
which are ignored in the dependency computations, if possible.
GrCUDA accomplishes these steps without any notion of the
underlying GPUs status. Instead, the DAG is provided as input
to GrCUDA's inner layer, which is responsible for mapping the
abstract data dependencies into a concrete stream and device
assignment4 , and for synchronizing previous computations if
necessary to guarantee correct results. The stream and device
used for the computation are chosen by the policy manager5 ,
which combines information about the status of each GPU6
with information about the data required by the computation
(from the DAG). Details about the implemented scheduling
policies are provided in §III-B3. Finally, the stream is assigned
to the computation7 , and the computation is scheduled for
execution using the CUDA API8 .

B. Selecting the Right GPU

As introduced in §III-A, in our scheduler, each CUDA
stream is uniquely associated with a GPU. When using a single
GPU, all streams are functionally equivalent, while in the
case of multi-GPU scheduling, the choice of a CUDA stream
also implies the selection of a GPU. In this subsection, we
�rst describe the challenges we had to face while developing
our greedy multi-GPU scheduler, providing observations about
how the behavior of the Uni�ed Memory (UM) impacts
the device selection [32]. Then, we explain how our system
tracks data locality and handles data transfers to optimize an
application's performance while guaranteeing correct results.
Finally, we illustrate how our scheduler assigns a stream to a
computation, leveraging different device selection policies.

1) Challenges of Multi-GPU Scheduling:Given a multi-
task workload, i.e. a GPU application composed of multiple
computations, and a multi-GPU system, our goal is to schedule
each computation on a speci�c GPU and minimize the total
execution time of the workload. This optimization problem de-
mands balancinginter-device data-transferandcomputational

load, two faces of the same coin. On the one hand, we need
to minimize data transfer between devices, as interconnection
bandwidth is at least one order of magnitude lower than the
GPUs' memory bandwidth. On the other hand, we want to
maximize the number of GPUs that we use to evenly distribute
the computational load in our system. Moreover, there is
not a single universal scheduling strategy that can provide
optimal results for every workload and multi-GPU system. As
such, we propose an array of different automated multi-GPU
scheduling policies, and provide heuristics that can balance
the optimization of transfer time and computational load.

Using UM simpli�es maintaining data coherence between
devices and lifts us from the burden of scheduling explicit data
transfers for small synchronization updates. However, CUDA's
heuristics to synchronize data between devices are opaque and
cannot be completely relied upon if the goal is to maximize
performance. Moreover, data transfer through UM relies on
page faults and virtual address translation, adding a small over-
head to each transaction between devices. This overhead can
become signi�cant when transferring small amounts of data
repeatedly, for example, when synchronizing results between
computations partitioned on multiple devices [33]. The choice
of the right GPU for a given computation is thus extremely
important, as even in situations where the device selection
seems to be irrelevant, the heterogeneous topology of the
system's interconnections mixed with the black box CUDA's
heuristics, can greatly skew the result. For example, if two
devices require to transfer the same amount of bytes, it could
still happen that one has better bandwidth thanks to its faster
interconnections with the other devices where data are present.
To overcome the lack of details about CUDA's heuristics to
synchronize data between devices, we made our scheduler
able to prefetch data transparently to the user, leveraging the
inferred data dependencies. This choice aims to minimize the
number of data transfer and synchronization events relying on
page faults. To achieve that, CUDA API calls that manage
and migrates memory region (i.e.MemPrefetchAsync ,
MemAdvise , and StreamAttachMemAsync) are added
to the computational DAG by the runtime. Moreover, we
also expose those CUDA APIs to GrCUDA developers, so
they can explicitly leverage them to eventually improve their
applications' performance.

2) Tracking Data Locality: The optimal computation-
device mapping is strongly dependent on maximizing data
locality, i.e. scheduling computations on GPUs that already
contain the up-to-date data required as input for the computa-
tion. Maximizing data locality has the effect of minimizing
the time spent transferring data between devices, a major
bottleneck of multi-GPU workloads. This observation holds
true as well for data transfer between the CPUs and the GPUs.
The structure of the PCIe tree penalizes concurrent transfers of
the same data to multiple devices as the total PCIe bandwidth
is split among devices. Moreover, multi-socket GPU systems
require data transfer between CPUs when moving data from
a CPU to a GPU connected to another CPU.

As such, for each argument involved in the computation,
we track which devices (including the CPU) have up-to-date
values through acustom MSI-like coherence protocol. Through

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

Fig. 5. Sequence of operations taken by our multi-GPU scheduler to assign
a device and a CUDA stream to an input GPU computation.

this information, the policy manager can optimize the device
selection by minimizing the amount of data to transfer or the
estimated transfer time. If an argument (e.g. an array) is used
by a computation, the device where the computation is sched-
uled is the only one having up-to-date values for the argument.
If the argument is marked asread-only (e.g. when the CPU
reads the result of a kernel), we do not reset the list of existing
up-to-date locations, but add the device where the computation
is scheduled to the list. We update the data locality status
of arguments as soon as the computation is scheduled for
execution, not after the computation has �nished execution.
The choice of updating the status as early as possible ensures
that we avoid unnecessary repeated transfers, as consecutive
computations have immediate access to the current location
status instead of having to wait for a synchronization that
might happen much later in the execution. Independently of its
size, each argument is treated as a whole, always considering
the entire allocation block associated with that argument. This
is motivated by the fact that CUDA does not expose the status
of individual pages, and tracking them ourselves would be too
expensive. Moreover, such an approach aligns with our choice
of letting users control the logic of data partitions in their
applications, which is better motivated in §IV-E. Finally, it is
worth mentioning that the device manager does not need to
explicitly handle which data to evict when a device runs out of
memory since CUDA's UM automatically handles that issue
with page fault handling [34].

3) Multi-GPU Scheduling Policies:For any given GPU
computation, our scheduler has to select the device that exe-
cutes this computation and the CUDA stream (on this device)
to which the computation is assigned. While selecting the de-
vice requires considerations about data locality and workload
distribution, the choice of the stream also requires inspecting
the parentsof the computations, i.e. the computations from
which there is a data-dependency into the current computation
(the in-neighbors of the computation in the DAG). That's
because computations scheduled on the same stream (and thus,
on the same device) are implicitly synchronized (i.e. a new
computation starts only after the previous one on the same
stream has �nished), while computations on different streams
require the GrCUDA runtime to perform synchronizations
using CUDA events [31]. Moreover, we know that the com-
putation can start only after its parents have �nished running
to avoid data con�icts and that GrCUDA always schedules
independent computations on different streams. As such, it is
likely that parents' streams (and their associated devices) will

be free by the time the new computation starts, and not reusing
one of the existing streams would not provide any bene�t.
Finally, creating new streams instead of reusing existing ones
also introduce small overheads. While the overheads of these
operations are in the order of milliseconds at worst and are
often negligible, it is better to avoid them whenever possible
by reusing the parents' streams [30].

Thus, in our multi-GPU scheduler, assigning a stream to a
computation requires the following operations, presented in
Figure 5. First, we distinguish between computations with
parents and computations with no parents (Figure 5,1). If
the computation does not have parents, we �rst select the GPU
where the computation will run, using one of the policies
described below2 . After selecting the device, we select one
of its unused streams (if it exists), or create a new stream
otherwise 3 . If the computation has parent computations,
we can leverage information about them and possibly reuse
one of their streams4 . For this step, we adopt the follow-
ing heuristic. We retrieve the set of GPUs associated with
the parents' streams. Then, we compute the optimal device
among the retrieved GPUs using the same policy for GPU
selection, explained below. We might not be able to reuse
existing streams, for example, if other children computations
are already waiting to start on those same streams (e.g. two
computations that share the same three children; only two of
them can reuse the parents' streams). In this case, we employ
the same strategy used for computations without parents5 .
Regardless of which policy is chosen, the computational
element is provided with a CUDA stream and an associated
GPU where the computation will run. It is worth noticing that
the assignment to a CUDA stream happens when the task is
�rst scheduled. We schedule workloads based on the estimated
transfer size (or time), which is inferred by looking at the
input and output arguments' sizes that are known at schedule
time (without waiting for dependee tasks to complete). This
approach also allows to prefetch data that are required by the
dependent task but not by the dependee, while the dependee
task is still running.

We implemented 4 different policies for device selection
to guarantee a certain level of �exibility to our scheduler,
and to investigate the impact of more informed heuristics on
the runtime performance of various workloads. In detail, we
provide the following policies:

Round-Robin: simply rotate the scheduling between
GPUs. Used as a baseline and as an initialization strategy
of other policies.

Stream-Aware: assign the computation to the device with
the fewest busy streams. As each stream can run at most
a computation at a time, this policy is equivalent to
selecting the device with fewer ongoing computations. It
tries to distribute the workload evenly between devices.

Minimum Transfer Size: select the device that requires
the least amount of bytes to be transferred, maximizing
data locality.

Min-Max Transfer Time: considering just the amount of
data to be transferred is often misleading due to the
devices'heterogeneous interconnection topology. Even if
a GPU requires more bytes to be transferred than other

DI DONATO et al.: TAMING MULTI-GPU GREEDY SCHEDULING THROUGH A POLYGLOT RUNTIME 7

GPUs, this device could still be optimal if it has faster
interconnections to the devices from which data is copied.
As the heuristic used by CUDA to transfer data in UM
is not publicly known, we assume that data is copied
from the data sources with the lowest bandwidth, and we
select the device for which the total transfer time would
be minimum. In other words, the policy minimizes the
maximum possible transfer time. Assuming that data is
copied from the data source with the largest bandwidth
did not show performance differences.

To formalize this last policy, consider two devicesdi ; dj 2
D = f CPU; GPU0; GPU1; : : : ; GPUN g. B ij is the band-
width betweendi and dj , while A = f A1; A2; : : : ; AN g
is the set of arguments required by the computation to be
scheduled.Sa is the size in bytes of argumentsa 2 A .
AssumeB ii = 1 , and B ij = B ji . The Min-max Trans-
fer Time policy selects a devicedj 6= CPU such that
argmindj 2D f

P
a2A Sa=mindi 2D f B ij gg. Information about

interconnection topology and speed is �rstly computed during
the installation of GrCUDA on a speci�c multi-GPU system
and then retrieved at runtime. Such information is encoded in
a dense interconnection graph with bandwidth-weighted edges
between all couples of devices in the architecture, and it can be
updated upon the user's request, even at runtime. Indeed, we
support multiple architectures and interconnection topologies
(e.g., NVLink, NVSwitch) without any explicit optimization.

All these new scheduling policies integrate smoothly with
the existing GrCUDA scheduling options, such as the ability
to reuse free streams or prefetch data to optimize large data
transfer. It is worth noticing that scheduling is a serial process.
Thus, policies aiming at reducing data transfer size or time
could suffer from early convergence and, consequently, load
imbalance. To avoid such a scenario, we have implemented
an exploration-exploitation heuristic in the two data-aware
policies, where we do not consider devices with an amount of
already available data inferior to a threshold percentage. In par-
ticular, we used a threshold value of 10% in our experiments,
described in §IV. This means that if a device has less than
10% of the total amount of data required by the computation
we are scheduling, we consider that it has no data available
at all. This choice prevents the early saturation of the GPU(s)
where the �rst computational elements were scheduled, which
would result in the under-utilization of the available devices
and, consequently, in sub-optimal performance.

To help users to alleviate hot spots and congestion that
some applications might introduce, we allow developers to
export the computation DAG of their applications, as obtained
with the selected scheduling policy. This information can
be leveraged to better understand the achieved performance
and to compare the schedules derived from different policies.
Moreover, independently of the selected policy, poorly writ-
ten applications will result in DAGs with low-level of task
parallelism, suggesting designers to change their applications'
logic.

Another important aspect is that we offer users the ability to
pro�le the execution and track historical information to help
the creation ofnovel optimizationson top of our scheduler.
Users can easily add different policies to thepolicy managerto

create new streams and associate them with computations. For
example, one could introduce domain-speci�c memory man-
agement policies (e.g., for sparse and graph computations), if
it is known that some classes of applications present distinctive
movement patterns that can be leveraged.

IV. EXPERIMENTAL EVALUATION

Our performance evaluation relies on a set of multi-GPU
benchmarks exhibiting task-level parallelism and leveraging
CUDA kernels taken or derived from open-source implemen-
tations. We explicitly designed such a benchmark suite to
analyze the performance of our novel multi-GPU GrCUDA
scheduler under different workloads. In §IV-B, we provide
a workload characterization for each benchmark, measuring
the amount of data transferred between different devices (both
CPUs and GPUs) available in the systems. Then, we evaluate
the scalability of both CUDA C++ and GrCUDA implementa-
tions (using Python and Java as host languages) when running
on up to 8 GPUs, and we compare the performance of
GrCUDA against the CUDA C++ API, showing how we can
achieve 80–90 % of the peak performance while signi�cantly
lowering the development effort (§IV-C). In §IV-D we analyze
the impact of the proposed scheduling policies on the achieved
performance, showing the advantages of more re�ned policies
for workloads exhibiting complex data movement patterns.
Finally, we demonstrate the bene�ts of separating logical from
physical data partitioning, supporting our design choice of
letting users control the partitioning logic but lifting them from
the onerous task of managing individual devices.

A. Experimental Setup

All experiments are conducted on two different machines
available on the OCI platform. The two servers were chosen
because they featuredifferent GPU architecturesand - more
importantly - different interconnection technologies, allowing
us to evaluate the capabilities of our scheduler to adapt
to various system topologies. In detail, the �rst machine is
equipped with 8 Nvidia Volta V100 GPUs (84 SMs,16 GB
global memory) paired with dual Intel Xeon Platinum 8167M
CPUs and768 GB of RAM. Since each V100 GPU only
has 6 NVLinks, the GPUs are connected in a hybrid cube-
mesh network topology, where each GPU is connected to
two GPUs through a double NVLink-V2 (� 50 GB s� 1 of
unidirectional bandwidth), and to other two GPUs through a
single NVLink-V2 (� 25 GB s� 1). The communication with
other GPUs in the system relies on PCIe 3.0 (� 7 GB s� 1).
The second machine is equipped with 8 Nvidia Ampere A100
GPUs (128 SMs,40 GB global memory) paired with dual
AMD EPYC 7542 CPUs and2048 GB of RAM. Here, each
GPU is connected to the CPU through PCIe 4.0, and the 8
GPUs are fully connected via NVSwitch, leveraging the 12
NVLinks (� 300 GB s� 1) in each A100. We used Ubuntu
20.04 LTS, CUDA 11.7, and GraalVM CE 21.2.0 for all our
experiments. All experiments were repeated 30 times. Our
plots report results for each benchmark in terms of arithmetic
mean over 27 executions, excluding the �rst 3 executions
for each benchmark (we use them for warm-up). Instead, the

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

Fig. 6. Amount of bytes transferred between GPUs for each employed benchmark (hand-optimized C++ CUDA version), running on 8 Nvidia Tesla V100s
(top) and A100s (bottom), with visual representations inspired by Li et al. [20]. Data transfer is represented by orange lines, where thicker and darker lines
identify more data transfer. For the V100s, solid and dashed lines represent dual and single NVLink connections, respectively, whereas in the A100s, the solid
line is an NVSwitch network.

MEAN section in the plots reports the geometric mean, which
is more appropriate for combining the results of different
benchmarks.

In the rest of the paper, we will use the GPU model (A100
and V100) to refer to the respective server con�guration.

B. Workloads Characterization

In our experiment, we employed 5 different multi-GPU
benchmarks that we implemented to evaluate different aspects
of a multi-GPU architecture. First, we extended three of the
benchmarks proposed in [18] to exploit all the GPUs present
in the system. In particular, we adapted theVector Squares
(VEC) benchmark, which computes the sum of differences
of two squared vectors and requires intensive data transfer
between CPUs and GPUs; theBlack & Scholes (B&S)
equation, a streaming benchmark with multiple independent
kernels that can be overlapped; and theMachine Learning
Ensemble (ML), a realistic ML pipeline that shows execution-
time imbalance in its computation graph. Then, we extended
our suite with two additional benchmarks: aConjugate Gra-
dient (CG) solver, a traditional HPC workload with heavy
communication between different GPUs (inspired by [35]),
and aMatrix Vector Multiplication (MUL) routine, which
performs a multiplication between a dense matrix and a dense
vector, ef�ciently leveraging data partitioning.

Our benchmarks leverage both open-source kernels and
kernels written by us. We wrote the host code for all the
benchmarks, and we employed UM both in the CUDA C++
and the GrCUDA versions to have a fair comparison between
the two implementations. The CUDA C++ code was hand-
optimized with CUDA API calls that manage and migrate
memory regions to replicate - as much as possible - what
would happen with manual memory management. For what
concern the kernels' con�guration, the number of blocks and
number of threads per block have been optimized for each
benchmark to get the best performance in the CUDA baselines.
In benchmarks with partitioned data, the number of partitions
is constant across input sizes and numbers of GPUs, and
it has also been chosen to optimize the CUDA baselines'

performance. Indeed, for each benchmark, the same settings
have been used for the CUDA baseline and the GrCUDA
implementation.

The heterogeneity of the benchmarks is shown in Figure 6,
where we present the amount of data transfer for each bench-
mark running on the full set of 8 GPUs, for both the V100
and A100 systems. The data underlying Figure 6 are taken
from the baseline CUDA C++ implementations, so they are the
“optimized” data movements. We can classify the benchmarks
by looking at which devices the majority of data transfer is
addressed: B&S has no inter-GPUs transfer, while CG is at the
opposite end of the spectrum with negligible transfer from and
to the CPUs. The other benchmarks present a combination of
the two behaviors, requiring both CPU-GPU and GPU-GPU
communication to different extents. Figure 6 also highlights
how the system equipped with V100s has an an heteroge-
neous GPU-GPU interconnection based on NVLink, while the
A100s provide a more homogeneous interconnection based
on NVSwitch. Since our automatic scheduler for GrCUDA
is designed to work with all the possible interconnection
scenarios, we obtain positive results with both the multi-GPU
systems used for our tests.

C. Scaling the Number of GPUs

To establish a baseline, we �rst analyzed the performance
scalability of the hand-optimized C++ CUDA version of the
benchmarks, when running on up to 8 GPUs. Figure 1 depicts
the speedups of the 5 benchmark with respect to an asyn-
chronous version on a single-GPU system. The �rst bar of
each group (SYNC, 1 GPU) also provides the performance
of an unoptimized synchronous CUDA version of the bench-
marks. The MEAN section for both the A100 and the V100
con�gurations in Figure 1 shows that most of the considered
benchmarks can scale across multiple GPUs. However, the
GPU architecture, as well as the communication patterns, have
a substantial impact on the achieved performance. When using
the V100 system, ML and CG were not capable of taking
advantage of the full 8 GPUs, resulting in slowdowns due
to the required data transfer between GPU couples with low

DI DONATO et al.: TAMING MULTI-GPU GREEDY SCHEDULING THROUGH A POLYGLOT RUNTIME 9

Fig. 7. Relative performance (speedup) of our automatic GrCUDA scheduler
from Python vs. Java host code. Our scheduler shows consistent results in all
benchmarks when employed from both host languages.

Fig. 8. Multi-GPU scaling of benchmarks when using our automatic GrCUDA
scheduler, on up to 8 Tesla V100s and A100s. Speedups closely resemble the
ones for hand-optimized scheduling C++ CUDA (Figure 1).

interconnection bandwidth. Instead, the homogeneous high-
bandwidth interconnection provided by the NVSwitch enables
the ML benchmark to perform signi�cantly better with the
full set of GPUs on the A100 system, achieving a 5.2�
speedup. On the other hand, when using the full set of
A100s, CG only achieved the same performance as with fewer
GPUs. This is due to the fact that CG is bound by heavy
inter-GPU communication involving always the same device.
Consequently, once the band of that device is saturated, the
benchmark cannot bene�t from a higher number of GPUs.

Given that our novel scheduler targets GrCUDA, we com-
pared the performance of GrCUDA against the CUDA C++
API. We also compared the performance obtained when scal-
ing the number of GPUs with both the Python and Java
versions of the GrCUDA benchmarks. Figure 7 shows that
there are only negligible differences in the achieved results,
demonstrating that our solution providesconsistent behavior
from different host languages supported by GraalVM. In
the remainder of the Section, we will refer to results obtained
with Python host code, but our considerations hold for the
Java implementations as well.

Figure 8 shows the results of scaling the number of GPUs
when using our multi-GPU GrCUDA scheduler with the

Fig. 9. Relative performance (speedup) of our automatic GrCUDA scheduler
vs. hand-optimized C++ CUDA. We automatically achieve 80–90% of the
C++ CUDA peak performance, with only VEC showing a noticeable perfor-
mance gap.

most informed scheduling policy (Min-max Transfer Time).
We compare the timings obtained with our solution to the
asynchronous extension of GrCUDA in [18], which supported
only a single GPU and is used as the baseline for speedup
computation. We also provide the performances of the original
synchronous single-GPU version of GrCUDA, which always
performed worse than the asynchronous one, with up to� 80 %
slowdown in the case of CG on the A100 architecture. Figure 8
shows that our novel scheduler can ef�ciently leverage the
available accelerators: when running on 8 GPUs, it achieves
up to 4.7� speedup on the V100server, andup to 4.6�
speedup on the A100one. More importantly, the speedups
obtained by our multi-GPU scheduler closely resemble their
hand-optimized CUDA C++ counterpart (Figure 1), for both
the tested systems.

We further explore this aspect in Figure 9, where we
compare the relative speedup of our novel GrCUDA scheduler
against the pure CUDA versions, when employing a certain
number of GPU on both the V100 and A100 systems. Here a
speedup close to 1.0� highlights that our solution introduces
minimal overhead compared to a meticulously optimized na-
tive CUDA version of the software. The �gure shows how,
on average, weautomatically achieve 80 % of the hand-
optimized C++ CUDA peak performance on the A100
system, and90 % on the V100 system, with only VEC
showing a noticeable performance gap on both the tested
architectures. VEC highlights a corner case where hand-tuned
optimizations can still outmatch automatic scheduling. This
benchmark performs three simple but interdependent linear
algebra operations and is fully interconnection-bound. Optimal
scheduling requires knowledge of both the execution time and
the data movement patterns of each computation. As a conse-
quence, VEC is noticeably worse in GrCUDA because in our
scheduler there is some unnecessary GPU-GPU movement,
while the hand-optimized version has none. History-driven
or ML-based schedulers can, in principle, address this issue,
although their additional overheads and complexity might

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

Fig. 10. Relative execution time of our automatic GrCUDA scheduler vs.
hand-optimized C++ CUDA, divided by input size. Our scheduler shows
consistent results when increasing the benchmarks' memory footprint from
� 10 % to � 90 %.

make them unwieldy under most circumstances.
To investigate the robustness of our scheduler with respect to

the size of the input data, we studied the performance of each
benchmark when scaling the input size. Figure 10 presents
the results of our analysis, with input size scaling linearly
from � 10 % to� 90 % of the memory available on each GPU.
This allows us to clearly visualize if any hardware bottleneck
impacts performance as input size exceeds a certain threshold.
The �gure shows that all the obtained results are consistent
with respect to the �ndings presented in Figure 8. This indi-
cates that our new greedy GrCUDA scheduler for multi-GPU
computations is indeed capable of handling different types of
workloads in multiple scenarios, andcan adapt to different
input data sizes without performance degradation.

Overall, our proposed scheduler is capable of relieving the
developer of the time-consuming need to write optimized
CUDA C++ host code to exploit a multi-GPUs system.

D. Impact of the Scheduling Policies

Having introduced a set of multi-GPU scheduling policies
in GrCUDA, we now analyze how more re�ned schedul-
ing techniques can result in better overall performance. In
Figure 11, we compare our policies against the Min-Max
Transfer Time policy, our best-performing policy on average.
Results are measured on an 8-GPUs system. The simple
Round-Robin policy obtains a33 % slowdown on average, and
shows signi�cant performance degradation for benchmarks
with signi�cant GPU–GPU communication, such as ML and
the CG. Their complex data movement patterns, shown in Fig-
ure 6, require more re�ned scheduling policies. The Stream-
Aware policy shows a18 % slowdown on average, mainly due

Fig. 11. Ablation study for our scheduling policies in GrCUDA, with speedup
(higher is better). Computations with complex dependency DAGs, such as ML,
greatly bene�t from transfer-aware policies, with the simplest Round-Robin
policy being 33 % slower on average.

Fig. 12. The DAGs obtained when executing the VEC benchmark on 2 GPUs,
with two different scheduling policies (Round-Robin and Min-Max Transfer
Time). For the sake of simplicity, in this example, we divide the data into 4
partitions only.

to the performance degradation of the ML benchmark. For
such a benchmark, the Stream-Aware policy performs better
than Round-Robin on the A100 system with homogeneous
interconnection, while it performs worse on the V100 system
with heterogeneous interconnection. The two simplest policies
evenly distribute the workload across GPUs but are unaware
of the data locality and of heterogeneous connections between
the devices in the systems. They cannot ef�ciently handle
workloads with complex data dependencies like VEC and ML.
These results highlight theneed for more informed scheduling
techniques, like our Min Transfer Size and the Min-Max
Transfer Time policies. Figure 11 shows that, on average,
the two data-aware policies performed better than the
simpler ones. Moreover, they performed comparably in all
the benchmarks, except for the ML one, where the Min-Max
Transfer Time is signi�cantly better.

To better understand the performance obtained with our
ablation study, Figure 12 shows the schedules obtained when
executing the VEC benchmark (with four partitions) on two

	Introduction
	Background and Motivation
	Multi-GPU Computations
	The GrCUDA Language Binding
	The GrCUDA Scheduler and Runtime
	The Case for Greedy Multi-GPU Scheduling

	Workload Scheduling Across Multiple GPUs
	The Multi-GPU GrCUDA Architecture
	Selecting the Right GPU
	Challenges of Multi-GPU Scheduling
	Tracking Data Locality
	Multi-GPU Scheduling Policies

	Experimental Evaluation
	Experimental Setup
	Workloads Characterization
	Scaling the Number of GPUs
	Impact of the Scheduling Policies
	Disjoining Logical and Physical Data Partitioning

	Related Works
	Conclusion and Future Work
	References
	Biographies
	Guido Walter Di Donato
	Ian Di Di Lavore
	Alberto Parravicini
	Francesco Sgherzi
	Marco Arnaboldi
	Arnaud Delamare
	Daniele Bonetta
	Marco Domenico Santambrogio

