IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX 1

Taming Multi-GPU Greedy Scheduling
Through a Polyglot Runtime

Guido Walter Di Donato, Graduate Student Member, IEEE, Ian Di Dio Lavore, Graduate Student Member, IEEE,
Alberto Parravicini, Francesco Sherzi, Graduate Student Member, IEEE, Marco Arnaboldi, Arnaud Delamare,
Daniele Bonetta, Marco Domenico Santambrogio, Senior Member, IEEE.

Abstract—Multi-GPU systems are increasingly being deployed
in cloud data centers, but using GPUs efficiently from high-
level programming languages remains a challenge. Moreover,
exploiting the full capabilities of multi-GPU systems is an ar-
duous task due to the complex interconnection topology between
available accelerators and the variety of inter-GPU commu-
nication patterns exhibited by different workloads. This work
introduces a novel scheduler for multi-task GPU computations
that provides transparent asynchronous execution on multi-
GPU systems without requiring prior information about the
program dependencies or the underlying system architecture.
Our scheduler integrates with the polyglot GraalVM ecosystem
and is therefore available for multiple high-level languages,
providing a general framework that can significantly lower the
barriers to entry to multi-GPU acceleration. We validate our
work on a set of benchmarks designed to investigate scalability
and inter-GPU communication. Experimental results show how
our scheduler automatically achieves 80-90% peak performance
against hand-optimized CUDA host code on Volta and Ampere
multi-GPU systems.

Index Terms—Heterogeneous Computing, Graphics Processing
Units, Multi-GPU, Task Scheduling, Run-time Systems, Polyglot.

I. INTRODUCTION

ODERN computing systems increasingly rely on

hardware accelerators like Graphics Processing Units
(GPUs) to achieve performance goals. Indeed, their massive
multi-threading ability can provide extremely high throughput
to applications from different domains, such as Deep Learning
and graph analytics [[1]]. Moreover, the increasing demand for
faster computation from data-intensive workloads has driven
the deployment of multi-accelerator servers in shared multi-
tenant environments, such as cloud data centers [2[]. Multi-
GPU systems provide an additional level of parallelism that
can be leveraged to push the performance of accelerated
applications even further. As an example, Figure [I] illustrates
the speedup achieved in different CUDA [3] benchmarks
(presented in §IV-B) by hand-optimizing inter-GPU data trans-
fer and the execution of independent computations, when
running on up to 8§ GPUs. The experimental results show how

G.W. Di Donato, I. Di Dio Lavore, A. Parravicini, and M. D. Santambrogio
are with the Department of Electronic, Information and Bioengineering,
Politecnico di Milano, Milano, IT, 20133. E-mail: {guidowalter.didonato,
ian.didio, alberto.parravicini, marco.santambrogio } @polimi.it

F. Sgherzi is with the XXX, Barcelona Supercomputing Center, Barcelona,
Spain. E-mail: ,

M. Arnaboldi and A. Delamare are with Oracle Labs, Zurich, Switzerland.
D. Bonetta is with Oracle Labs, Amsterdam, Nederland.
E-mail:{marco.arnaboldi, arnaud.d.delamare, daniele.bonetta}@oracle.com

Baseline: ASYNC, 1 GPU
[JSYNC, 1 GPU 02 GPU 4 GPU I8 GPU

CUDA, V100

6.0x
5.0X - 4.82
4.0x4
3.0x+ Cam 5 :) 241
2.0x -t e 174

0.0x-

6.0x
5.0x4
4.0x+
3.0x4
2.0x
1.0x
0.0x—"5 2 48

MEAN

Fig. 1. Performance scaling (speedup) of GPU benchmarks whose scheduling
and data-transfer has been hand-optimized in C++ CUDA, when running on
up to 8 Nvidia Tesla V100s and A100s. While some of them do not fully
benefit from 8 GPUs, all present a speedup when using multiple GPUs.

all the benchmarks present performance improvements when
using multiple GPUs, achieving up to 5.21 x speedup when
running on 8 GPUs. These results clearly capture the benefit
of spreading the computation across multiple accelerators.

Today, major cloud providers such as Amazon, Google, Or-
acle, and others provide multi-GPU systems to their users [4].
In such systems, GPUs are increasingly interconnected in
complex topologies. Despite the development of new inter-
connection technologies, such as NVLink [5] and NVSwitch
[6], the interconnection bandwidth (up to ~ 900 GBs~!) is
still much slower than the global memory bandwidth of
modern GPUs (up to ~ 3900 GB s 1) [7]. Moreover, compute-
intensive workloads are exhibiting a wider variety of inter-
accelerator communication patterns. While exploiting the full
capabilities of a GPU is already an arduous task requir-
ing expert knowledge of asynchronous programming, writing
efficient multi-GPU code is even more complex. In fact,
although employing multiple GPUs can deliver many advan-
tages, it presents new challenges in workload management and
scheduling to obtain optimal performance [2], [4].

To date, the adoption of GPUs is often limited to spe-
cific domains offering libraries or Domain-Specific Languages
(DSLs) that mask the GPU computation [8], [9]. This is
mainly due to the limited integration of GPUs with high-
level programming languages like Java or Python. More-

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

over, APIs offering complete control over the GPUs require
tremendous efforts to unleash the full hardware potential,
including extensive debugging and pro ling. In the last few
years, important efforts have been made to integrate GPUs
with high-level programming languages, to lower the barriers
to entry to GPU acceleration [10], [11]. A worthy example
is GrCUDA [1Z2], [13], a polyglot CUDA API based on the
GraalVM ecosystern [14]-[16]. Implemented as a Truf e|[17]
DSL, GrCUDA enables GPU acceleration in all the languages
supported by GraalVM.
Parravicini et al. [[1B] recently extended the open-source
GPU scheduler of GrCUDA to support asynchronous CPU
and GPU execution. The cornerstone of their scheduler F'ra 2. Heatmap of the GPU-GPU and CPU-GPU interconnection bandwidth
a data- ow Directed Acyclic Graph (DAG) built at runtime, of a system equipped with 8 Nvidia V100s or 8 Nvidia A100s. Same-GPU
representing relationships between computations that invo[q@rco_nnection bandwidth is not shown, and it amounts to the GPU's memory
. . bandwidth.
the GPU. Their work focused on space-sharing and transfer-
computation overlap, and it is only suitable for single-GPU
_computatiorjs. In this work, we tac_kle the problem _of schedq&_ Multi-GPU Computations
ing on multi-GPU systems, masking the complexity of inter-
GPU data-transfer management. The problem is signi cantly Given the rapid evolution of GPU hardware, it is very easy
harder than the single-GPU counterpart, as it requires compi@ existing tools and frameworks to have limited portability as
ing data placement and migration costs at run time to identiigrdware and programming languages change. For example,
the optimal scheduling. modern GPU interconnections such as NVLink [5], and even
We propose a novel methodology to schedule multi-GPWore so NVSwitch [6], have made heavy GPU-GPU com-
computations without requiring prior information about thénication feasible. In the past, instead, it was necessary to
program dependencies or the underlying system architectd@sort to the limited bandwidth of PCI Express (PCle) [19],
Our work is implemented as an extension of the asynchrond(igiting multi-GPU computations to processing independent
scheduler proposed in [18], and it enables GrCUDA to becorflta partitions and using GPU-GPU communication mostly

a general framework that can signi cantly lower the barrierr control- ow data [20]. Consequently, tools that optimized
to entry to multi-GPU acceleration. inter-GPU transfer assuming PCle interconnections might no

longer be relevant since the introduction of faster intercon-
)) i nections. In this fast-moving context, GPU runtimes should
1) A greedy multi-GPU schedulerthat integrates directly po ape toadapt to different hardware in a transparent way
with the original GrCUDA architecture, extending thery;s is the main motivation of our work, which is agnostic to
lower-level of the runtime without changing the APl angye \nderlying interconnection technology and automatically
the dependency DAG computatlo_n_ (SIII-A). infers information about inter-device transfer performance by
2) Four multi-GPU scheduling policies able to handle o nically pro ling the system, as discussed in §lIl-B. De-

multi-task workloads of increasing complexity (§l11-B). velopers can expettigh performance in any deploymenbt

3) Five multi-GPU benchmarks designed to highlight the ;¢ o the system where they developed their code. This high
performance pro le of our new scheduler, focusing o%

In summary, the main contributions of this paper are:

Lo A ortability is especially valuable in cloud settings, where the
scalability, mter-G'PU communication, and the bene t o nderlying hardware is often changing based on availability,
transfer-computation overlap (81V-B). _performance needs, and other non-deterministic factors.

4) :cnhi:\gslu;r?g\r;ergfg]ehc?fvéofgcr) Wj%k;eatiuézrrfo?umtgrr?c?gggy S:I'o _capture the cqmplexity of GPU.and CPU interconnec-
hand-optimized CUDA C++ host code (§IV-C, §IV-D {ﬂ)ﬁs in modern multi-GPU systems., Figure 2 sh'ows a heat'map
§IV-E) K 'of the GPU-GPU and CPU-GPU interconnection bandwidth

: of an NVLink-V2 machine with 8 Nvidia V100s and of
an NVSwitch machine with 8 Nvidia A100s, as available
Il. BACKGROUND AND MOTIVATION on the Oracle Cloud Infrastructure (OCI) [21]. In detalil,
it shows the unidirectional bandwidth between each couple
Multi-GPU programming is hard: runtime scheduling i®f devices, obtained experimentally. The bandwidth of any
often sub-optimal, and the lack of support for high-levalevice pair is symmetric. For both the systems, the bandwidth
programming languages makes it dif cult for data scientistsetween CPUs and each GPU appears to be uniform, even
to leverage the power of modern hardware. In this sectitimough we use dual-socket servers where CPUs are connected

we summarize the complexity of multi-GPU computationthrough QPI [22] (NVLink-V2 machine) or In nity Fabric [23]

(81l-A), and we introduce the GrCUDA language bindindNVSwitch machine). Bandwidth on NVSwitch is signi cantly

(811-B) and its runtime extension proposed in [18] (81I-C)higher and more uniform (250 GB s !, unidirectional) than

Then, we describe the rationale behind the development ofldLink (48 GBs 1), as all GPUs are fully connected to

asynchronous and transparent multi-GPU scheduler (8lI-D)the same switch instead of providing a number of NVLink

DI DONATO et al: TAMING MULTI-GPU GREEDY SCHEDULING THROUGH A POLYGLOT RUNTIME 3

C. The GrCUDA Scheduler and Runtime

The original open-source Nvidia GrCUDA runtime has
been extended in [18] to provide asynchronous and transpar-
ent single-GPU scheduling. The main design choice of this
extended GrCUDA runtime is to have two separate layers.
The outer layer provides the interface with the host language
(Figure 3,(2)), the computation of the dependency DAS,
and wraps individual computations supported by GrCUDA
(e.g. GPU kernels) in a way that only details relevant to
the data dependency computations are exposed. GPU kernels,
memory accesses by the CPU device arrays(backed by
CUDA's Uni ed Memory), and functions from libraries such
as cuBLAS [26] or cuSPARSE [27] are all wrapped ictam-
putational elementsThe input (and output) arguments of each
computation may introduce task or data dependencies that may

Fig. 3. The two-layer architecture of GrCUDA and interaction with the hod€SUlt in excessive contention and inef cient synchronization.
language and CUDA runtime. We highlight the components that we addedQuch data and task inter-dependencies may result in severe
extended to provide multi-GPU scheduling. performance degradation, with a very negative impact on the
overall ef ciency (parallelism degree). GrCUDA uses a data-
ow DAG to track these dependencies and guarantee the max-

; h ; . tim amount of task-level parallelism while preserving cor-
bandwidth of NVSwitch, one can aggressively parallelize tas S P P g

bet devi it st GPU-GPU cati ctness. It automatically infers data dependencies and models
elween devices, even 1 strong i communica '?Heén through a DAG, instead of having the user manually

IS presgnt. On the other hapd, when using a Systgm bag cify dependencies. The managed execution environment of
on NVLink, one has to consider the heterogeneous intercon-

tion topol d the af nitv betw devices: GPU rCUDA makes inferring dependencies possible. Inputs are
nection topology and the arnity between devices. S aceehcapsulated into objects, removing the risk of pointer aliasing
not equivalent, and using a speci ¢ set of GPUs for a giv

i iaht be better th ther. Indeed. d d ical of native languages (multiple pointers that refer to
computation might be betier than another. Indeed, depen same memory area). GrCUDA's object-oriented memory
on where data is located, transferring the same amount

S . i del also ensures that all valid inputs to a CUDA kernel
data results in different transfer times depending on whereﬁ €GrCUDA are tracked correctly: one cannot pass arbitrary
GPUs are located in the system architecture. Thus, mod

. . . Slnters to other objects.

_technlques f_or multi-GPU scheduling ‘must be aware of t € The inner layer (Figure 3@) to (7)) interacts with the

interconnection topology between devices [2], [4]. CUDA runtime, and it leverages the information extracted
from the dependency DAG and the status of the available
devices to assign streams to GPU computations, synchro-

B. The GrCUDA Language Binding nize computations when necessary, and transparently provide

GICUDA [12] is a GPU programming framework initiall asynchronous execution. GrCUDA’s original layers, providing
brog 9 yspace—sharing and transfer-computation overlap for single-

developed by Nvidia targeting the GraalvM platform [14]'GPU computations, are extensively explained in [18]. §llI-A

It consists of a CUDA language binding implemented as .
. . . resents the enhancements we propose to enable the ef cient
a language-independent library using the Trufe Ianguaie

plmentaion amenor 17
Figure 3 shows a high-level representation of GrCUDA‘E ty g '

components. Thanks to its design, GrCUDA is used as a

domain-speci ¢ guest language and can be exposed to dpy The Case for Greedy Multi-GPU Scheduling

of the host languages supported by GraalVM (including Schedulingin our context, means identifying the best GPU

JavaScript, Python, Ruby, WASM, etc.) transparently. Thenh which to execute the GPU kernels of a target appli-

Truf e's interoperability layer (Figure 3(2)) exposes to the cation, and maximize asynchronous computations and data

host language the basic elements of GrCUDA, such as Gidvements to minimize the overall execution time of the

arrays or executable GPU kernelsiateroperable objectsso application. This optimization process requires knowledge of

that the host language can manipulate these elements as if ieytarget architecture and infrastructure, and an understanding

were objects of the host language itself. For example, the hesthe data dependencies in the target application and possibly

language can declare and access arrays used by the GPlhf@ie computations themselves. For this reason, writing multi-

execute GPU kernels like any other function. GPU programs by hand is error-prone, with frequent non-
At its lowest level, GrCUDA directly interacts with thedeterministic issues introduced by asynchronous behaviors that

NVRTC compiler [24] and with CUDA's runtime and driver are hard to debug.

APIs [25] (8), which schedule and manage the execution of We say that a scheduling processgieedyif it does not

computations on the GPUs available in the sys{@n require the user to specify in advance the structure of the com-

connections that depends on the GPU pair. With the abund

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

putations (in terms of data dependencies, data sizes, and other
constraints). Non-greedy schedulers need prior information
speci ed at compile-time or with some explicttompilation
function in the code, like CUDA Graphs [28] or the original
TensorFlow [8]. When the structure of the computation is
fully de ned in advance, this information can be leveraged
to produce high-quality schedules and holistic optimizations.
However, greedy scheduling provides clear advantages overall.

First, greedy scheduling offersxibility with respect to the
structure of the program not being known in advance. Control
ow can change dynamically, and there is no need to know in
advance the value of conditional expressions or loop iterations
to optimize the scheduling. We observe how a similar approach
has made PyTorch [9] the prevalent Deep Learning (DL)
framework in research, where exibility is paramount, and
that TensorFlow has introduced eager execution to address the
same needs [29]. However, these libraries provide parallelism
mostly in the form of dividing data across devices, instead of
relying on more advanced scheduling optimizations.

Second, greedy scheduling opens the doojust-in-time
scheduling optimizations For example, if the output size
of a computation is not known in advance (as it occurs
in database workloads), it might be impossible to optimize
fully the scheduling of other computations that require this
output, since the transfer time of this data to other devices
depends on its own size. While this situation is less prevalent
in DL applications, GrCUDA is not specialized for a single
domain and aims to be solution for general-purpose GPU
programming

This work extends the GrCUDA low-prole runtime to
automatically leverage multiple GPUs in multi-task computarig. 4. Detailed architecture of the multi-GPU GrCUDA architecture. New
tions. Our scheduler aims to transparently provide speedifh§Xtended components are highlighted.
comparable to what an expert programmer can achieve by
hand, making multi-GPU computations easier to approach

while minimizing performance compromises. The main components of our multi-GPU scheduler for Gr-

CUDA, as shown in Figure 3 and Figure 4, are the following:

[1l. W ORKLOAD SCHEDULING ACROSSMULTIPLE GPUs Dependency DAG: GrCUDA tracks data dependencies
between computations using a DAG. For each computa-
tion, we infer what input and output arguments can create
data dependencies and update the DAG as computations
nish execution or new computations are scheduled.

Computation scheduling (Stream manager): GrCUDA
achieves asynchronous execution by assigning GPU
computations to different CUDA streams [30]. This
component selects the target stream with heuristics
provided by thepolicy manager and it coordinates
streams using CUDA events [31].

) . Policy manager: CUDA streams are uniquely associated

A. The Multi-GPU GrCUDA Architecture to a GPU. As such, we modi ed the scheduling heuristics

Our multi-GPU scheduler for GrCUDA integrates directly of GrCUDA to select the best device for each new com-
with the original architecture, extending the lower level of the putation, using information such as data locality and the
runtime without changing the API and the dependency DAG current load of the device. This component encapsulates
computation. As such, users do not have to modify their ex- all these heuristics, further de ned in §l11-B3.

isting code to leverage multi-GPU scheduling. Moreover, any Devices manager:this new component encapsulates the

future improvement to GrCUDA's outer layer (e.g. the DAG status of the multi-GPU system. It tracks the currently

computation or the user-facing API) can be done transparently active GPUs, the streams and the currently active com-
to multi-GPU scheduling, resulting in higher exibility and putations associated with each GPU, and what data is
forward compatibility. up-to-date on each device (including the CPUs)

To simplify the approach to multi-GPU programming, this
work brings ef cient transparent multi-GPU scheduling to
GraalVM. In this section, we describe the architecture of
the GrCUDA multi-GPU scheduler we obtained by extending
the asynchronous scheduler proposed in [18] (8llI-A). Then,
8lII-B presents the methodology we employ in our scheduler
to select the right GPU for each computation, by tracking
data locality and employing multiple scheduling policies that
implement different heuristics.

DI DONATO et al: TAMING MULTI-GPU GREEDY SCHEDULING THROUGH A POLYGLOT RUNTIME 5

CUDA runtime interface: this component provides ac-load, two faces of the same coin. On the one hand, we need
cess to the CUDA API. We extended it with APIs forto minimize data transfer between devices, as interconnection
selecting and managing multiple GPUs. bandwidth is at least one order of magnitude lower than the

Figure 4 provides a more detailed view of Figure 3 bPUs' memory bandwidth. On the other hand, we want to
showing the execution ow of a GrCUDA computation schedmaximize the number of GPUs that we use to evenly distribute
uled from the host language. The outer layer of GrCUD#e computational load in our system. Moreover, there is
is unmodi ed from the original single-GPU asynchronousgiot a single universal scheduling strategy that can provide
scheduler proposed in [18]. Users call a GrCUDA computatiaptimal results for every workload and multi-GPU system. As
in the host language like a regular function (Figure(®). such, we propose an array of different automated multi-GPU
This computation is wrapped into a computational elemes¢heduling policies, and provide heuristics that can balance
and passed to thexecution contexfor scheduling2). The the optimization of transfer time and computational load.
execution context infers data dependencies for the new comUsing UM simpli es maintaining data coherence between
putation based on its input and output arguments, and wvices and lifts us from the burden of scheduling explicit data
dates the DAG that tracks the global execution stdB)s transfers for small synchronization updates. However, CUDAs
To infer data dependencies, GrCUDA associates with ealefuristics to synchronize data between devices are opaque and
computational element a dependency set that initially contaieagnnot be completely relied upon if the goal is to maximize
all arguments of the computational element. An argumeperformance. Moreover, data transfer through UM relies on
is removed from the set if a subsequent computation ugeage faults and virtual address translation, adding a small over-
and modi es that argument, de ning a data dependency dread to each transaction between devices. This overhead can
it. Once a set is empty, the corresponding element can become signi cant when transferring small amounts of data
longer introduce dependencies to subsequent computatioepeatedly, for example, when synchronizing results between
The scheduler uses optional argument annotationsr{pat , computations partitioned on multiple devices [33]. The choice
const) to optimize computations with read-only argument®f the right GPU for a given computation is thus extremely
which are ignored in the dependency computations, if possibieportant, as even in situations where the device selection
GrCUDA accomplishes these steps without any notion of tisgems to be irrelevant, the heterogeneous topology of the
underlying GPUs status. Instead, the DAG is provided as ingytstem’s interconnections mixed with the black box CUDASs
to GrCUDA's inner layer, which is responsible for mapping théeuristics, can greatly skew the result. For example, if two
abstract data dependencies into a concrete stream and degiadces require to transfer the same amount of bytes, it could
assignment4), and for synchronizing previous computations iétill happen that one has better bandwidth thanks to its faster
necessary to guarantee correct results. The stream and dewitgrconnections with the other devices where data are present.
used for the computation are chosen by the policy mar&jer To overcome the lack of details about CUDA's heuristics to
which combines information about the status of each G®U synchronize data between devices, we made our scheduler
with information about the data required by the computaticmble to prefetch data transparently to the user, leveraging the
(from the DAG). Details about the implemented schedulinigferred data dependencies. This choice aims to minimize the
policies are provided in §lII-B3. Finally, the stream is assignetumber of data transfer and synchronization events relying on
to the computatiori7), and the computation is scheduled fopage faults. To achieve that, CUDA API calls that manage

execution using the CUDA ARB). and migrates memory region (i.&MlemPrefetchAsync |,
_ _ MemAdvise, and StreamAttachMemAsync) are added
B. Selecting the Right GPU to the computational DAG by the runtime. Moreover, we

As introduced in 8llI-A, in our scheduler, each CUDAalso expose those CUDA APIs to GrCUDA developers, so
stream is uniquely associated with a GPU. When using a singfiey can explicitly leverage them to eventually improve their
GPU, all streams are functionally equivalent, while in thapplications' performance.
case of multi-GPU scheduling, the choice of a CUDA stream 2) Tracking Data Locality: The optimal computation-
also implies the selection of a GPU. In this subsection, wikevice mapping is strongly dependent on maximizing data
rst describe the challenges we had to face while developirigcality, i.e. scheduling computations on GPUs that already
our greedy multi-GPU scheduler, providing observations abatontain the up-to-date data required as input for the computa-
how the behavior of the Unied Memory (UM) impactstion. Maximizing data locality has the effect of minimizing
the device selection [32]. Then, we explain how our systethe time spent transferring data between devices, a major
tracks data locality and handles data transfers to optimize lwitleneck of multi-GPU workloads. This observation holds
application's performance while guaranteeing correct resultsue as well for data transfer between the CPUs and the GPUs.
Finally, we illustrate how our scheduler assigns a stream toTe structure of the PCle tree penalizes concurrent transfers of
computation, leveraging different device selection policies. the same data to multiple devices as the total PCle bandwidth

1) Challenges of Multi-GPU SchedulingGiven amulti- is split among devices. Moreover, multi-socket GPU systems
task workload i.e. a GPU application composed of multipleequire data transfer between CPUs when moving data from
computations, and a multi-GPU system, our goal is to schedaleCPU to a GPU connected to another CPU.
each computation on a specic GPU and minimize the total As such, for each argument involved in the computation,
execution time of the workload. This optimization problem dawe track which devices (including the CPU) have up-to-date
mands balancingnter-device data-transfeandcomputational values through austom MSI-like coherence protoc®hrough

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

be free by the time the new computation starts, and not reusing
one of the existing streams would not provide any bene t.
Finally, creating new streams instead of reusing existing ones
also introduce small overheads. While the overheads of these
operations are in the order of milliseconds at worst and are
often negligible, it is better to avoid them whenever possible
by reusing the parents' streams [30].

Thus, in our multi-GPU scheduler, assigning a stream to a
computation requires the following operations, presented in
fglngure 5. First, we distinguish between computations with
parents and computations with no parents (Figurély, If

the computation does not have parents, we rst select the GPU
this information, the policy manager can optimize the deviaghere the computation will run, using one of the policies
selection by minimizing the amount of data to transfer or thiescribed belov2). After selecting the device, we select one
estimated transfer time. If an argument (e.g. an array) is usafdits unused streams (if it exists), or create a new stream
by a computation, the device where the computation is schedherwise(3). If the computation has parent computations,
uled is the only one having up-to-date values for the argumente can leverage information about them and possibly reuse
If the argument is marked agad-only (e.g. when the CPU one of their stream&). For this step, we adopt the follow-
reads the result of a kernel), we do not reset the list of existiimg heuristic. We retrieve the set of GPUs associated with
up-to-date locations, but add the device where the computatitve parents' streams. Then, we compute the optimal device
is scheduled to the list. We update the data locality statamong the retrieved GPUs using the same policy for GPU
of arguments as soon as the computation is scheduled $efection, explained below. We might not be able to reuse
execution, not after the computation has nished executioaxisting streams, for example, if other children computations
The choice of updating the status as early as possible enswaes already waiting to start on those same streams (e.g. two
that we avoid unnecessary repeated transfers, as consecutdraputations that share the same three children; only two of
computations have immediate access to the current locattbem can reuse the parents' streams). In this case, we employ
status instead of having to wait for a synchronization th#tte same strategy used for computations without par@nts
might happen much later in the execution. Independently of Regardless of which policy is chosen, the computational
size, each argument is treated as a whole, always considegment is provided with a CUDA stream and an associated
the entire allocation block associated with that argument. TH&PU where the computation will run. It is worth noticing that
is motivated by the fact that CUDA does not expose the statile assignment to a CUDA stream happens when the task is
of individual pages, and tracking them ourselves would be tast scheduled. We schedule workloads based on the estimated
expensive. Moreover, such an approach aligns with our choitensfer size (or time), which is inferred by looking at the
of letting users control the logic of data partitions in theimput and output arguments' sizes that are known at schedule
applications, which is better motivated in §IV-E. Finally, it igime (without waiting for dependee tasks to complete). This
worth mentioning that the device manager does not needapproach also allows to prefetch data that are required by the
explicitly handle which data to evict when a device runs out afependent task but not by the dependee, while the dependee
memory since CUDA's UM automatically handles that issuesk is still running.
with page fault handling [34]. We implemented 4 different policies for device selection

3) Multi-GPU Scheduling Policies:For any given GPU to guarantee a certain level of exibility to our scheduler,
computation, our scheduler has to select the device that eaed to investigate the impact of more informed heuristics on
cutes this computation and the CUDA stream (on this devicdje runtime performance of various workloads. In detail, we
to which the computation is assigned. While selecting the derovide the following policies:
vice requires considerations about data locality and workload Round-Robin: simply rotate the scheduling between
distribution, the choice of the stream also requires inspecting GPUs. Used as a baseline and as an initialization strategy
the parentsof the computations, i.e. the computations from of other policies.
which there is a data-dependency into the current computation Stream-Aware: assign the computation to the device with
(the in-neighbors of the computation in the DAG). That's the fewest busy streams. As each stream can run at most
because computations scheduled on the same stream (and thus,a computation at a time, this policy is equivalent to
on the same device) are implicitly synchronized (i.e. a new selecting the device with fewer ongoing computations. It
computation starts only after the previous one on the same tries to distribute the workload evenly between devices.
stream has nished), while computations on different streams Minimum Transfer Size: select the device that requires
require the GrCUDA runtime to perform synchronizations the least amount of bytes to be transferred, maximizing
using CUDA events [31]. Moreover, we know that the com- data locality.
putation can start only after its parents have nished running Min-Max Transfer Time: considering just the amount of
to avoid data conicts and that GrCUDA always schedules data to be transferred is often misleading due to the
independent computations on different streams. As such, it is devices'heterogeneous interconnection topolofyen if
likely that parents' streams (and their associated devices) will a GPU requires more bytes to be transferred than other

Fig. 5. Sequence of operations taken by our multi-GPU scheduler to ass
a device and a CUDA stream to an input GPU computation.

DI DONATO et al: TAMING MULTI-GPU GREEDY SCHEDULING THROUGH A POLYGLOT RUNTIME 7

GPUs, this device could still be optimal if it has fastecreate new streams and associate them with computations. For
interconnections to the devices from which data is copieexample, one could introduce domain-speci ¢ memory man-
As the heuristic used by CUDA to transfer data in UMagement policies (e.g., for sparse and graph computations), if
is not publicly known, we assume that data is copieilis known that some classes of applications present distinctive
from the data sources with the lowest bandwidth, and waovement patterns that can be leveraged.

select the device for which the total transfer time would

be minimum. In other words, the policy minimizes the IV. EXPERIMENTAL EVALUATION

maximum possible transfer time. Assuming that data is Our performance evaluation relies on a set of multi-GPU

cpp|ed from the data source with the largest bandw'dmenchmarks exhibiting task-level parallelism and leveraging
did not.show. performgnce dlffe.rences. , CUDA kernels taken or derived from open-source implemen-
To formalize this last policy, consider two devic@sdj 2 (aions. We explicitly designed such a benchmark suite to
D = fCPUGPUy;GPUy;::;GPUv g By is the band- 5nav7e the performance of our novel multi-GPU GrCUDA
)) ! scheduler under different workloads. In 8IV-B, we provide
is the set of arguments required by the computation t0 Beyorkioad characterization for each benchmark, measuring
scheduled.S, is the size in bytes of arguments 2 A. he gmount of data transferred between different devices (both
AssumeBj = 1, andBj = Bji. The Min-max Trans- cpys and GPUs) available in the systems. Then, we evaluate
fer Time poligy selects a devicely & CPU such that e gcqlapility of both CUDA & and GrCUDA implementa-
argming, oo f 454 Sa=ming 2o fBjj gg. Information about jqns (using Python and Java as host languages) when running
interconnection topology and speed is rstly computed during, up to 8 GPUs, and we compare the performance of
the installation of GrCUDA on a speci ¢ multi-GPU systems.cypa against the CUDA & API, showing how we can
and then retrieved at runtime. Such information is encoded iRnhieve 80-90 % of the peak performance while signi cantly
a dense interconnection graph with bandwidth-weighted edggg;ering the development effort (81V-C). In §IV-D we analyze
between all couples of (?ewces in the archltectu_re, and it can{pg impact of the proposed scheduling policies on the achieved
updated upon the user's request, even at runtime. Indeed, \etqrmance, showing the advantages of more re ned policies
support multiple architectures and interconnection topologigs; \yorkioads exhibiting complex data movement patterns.
(e.g., NVLink, NVSwitch) without any explicit optimization. inajy we demonstrate the bene ts of separating logical from
All these new scheduling policies integrate smoothly W't‘Bhysical data partitioning, supporting our design choice of

the existing GrCUDA scheduling options, such as the abilifjgying ysers control the partitioning logic but lifting them from
to reuse free streams or prefetch data to optimize large dala onerous task of managing individual devices
transfer. It is worth noticing that scheduling is a serial process.

Thus, policies aiming at reducing data transfer size or time i
could suffer from early convergence and, consequently, loAd EXPerimental Setup
imbalance. To avoid such a scenario, we have implementedAll experiments are conducted on two different machines
an exploration-exploitation heuristic in the two data-aware available on the OCI platform. The two servers were chosen
policies, where we do not consider devices with an amount loécause they featumifferent GPU architecturesind - more
already available data inferior to a threshold percentage. In pemportantly - different interconnection technologieallowing
ticular, we used a threshold value of 10% in our experimentss to evaluate the capabilities of our scheduler to adapt
described in §IV. This means that if a device has less thtm various system topologies. In detail, the rst machine is
10% of the total amount of data required by the computati@guipped with 8 Nvidia Volta V100 GPUs (84 SM$6 GB
we are scheduling, we consider that it has no data availallebal memory) paired with dual Intel Xeon Platinum 8167M
at all. This choice prevents the early saturation of the GPU@GPUs and768 GB of RAM. Since each V100 GPU only
where the rst computational elements were scheduled, whitlas 6 NVLinks, the GPUs are connected in a hybrid cube-
would result in the under-utilization of the available devicesiesh network topology, where each GPU is connected to
and, consequently, in sub-optimal performance. two GPUs through a double NVLink-V2 (50GBs ! of

To help users to alleviate hot spots and congestion thatidirectional bandwidth), and to other two GPUs through a
some applications might introduce, we allow developers gingle NVLink-V2 (25GBs !). The communication with
export the computation DAG of their applications, as obtainether GPUs in the system relies on PCle 3.0 {GBs 1).
with the selected scheduling policy. This information caihe second machine is equipped with 8 Nvidia Ampere A100
be leveraged to better understand the achieved performagd@Us (128 SMsA0GB global memory) paired with dual
and to compare the schedules derived from different policiesMD EPYC 7542 CPUs an@048 GB of RAM. Here, each
Moreover, independently of the selected policy, poorly writcPU is connected to the CPU through PCle 4.0, and the 8
ten applications will result in DAGs with low-level of taskGPUs are fully connected via NVSwitch, leveraging the 12
parallelism, suggesting designers to change their applicatiohd/Links (300GBs 1) in each A100. We used Ubuntu
logic. 20.04 LTS, CUDA 11.7, and GraalvVM CE 21.2.0 for all our

Another important aspect is that we offer users the ability #xperiments. All experiments were repeated 30 times. Our
pro le the execution and track historical information to helpplots report results for each benchmark in terms of arithmetic
the creation ofnovel optimizationson top of our scheduler. mean over 27 executions, excluding the rst 3 executions
Users can easily add different policies to ffliicy manageto for each benchmark (we use them for warm-up). Instead, the

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

Fig. 6. Amount of bytes transferred between GPUs for each employed benchmark (hand-optifiz&€UDA version), running on 8 Nvidia Tesla V100s

(top) and A100s (bottom), with visual representations inspired by Li et al. [20]. Data transfer is represented by orange lines, where thicker and darker lines
identify more data transfer. For the V100s, solid and dashed lines represent dual and single NVLink connections, respectively, whereas in the A100s, the solid
line is an NVSwitch network.

MEAN section in the plots reports the geometric mean, whigberformance. Indeed, for each benchmark, the same settings
is more appropriate for combining the results of differerfitave been used for the CUDA baseline and the GrCUDA
benchmarks. implementation.
In the rest of the paper, we will use the GPU model (A100 The heterogeneity of the benchmarks is shown in Figure 6,
and V100) to refer to the respective server con guration. where we present the amount of data transfer for each bench-
mark running on the full set of 8 GPUs, for both the V100
B. Workloads Characterization and A100 systems. The data underlying Figure 6 are taken
In our experiment, we employed 5 different multi-gpuUrom the baseline CUDA € implementations, so they are the

benchmarks that we implemented to evaluate different aspe@Btimized” data movements. We can classify the benchmarks
of a multi-GPU architecture. First, we extended three of tH 0oking at which devices the majority of data transfer is

benchmarks proposed in [18] to exploit all the GPUs preseiidressed: B&S has no inter-GPUs transfer, while CG is at the
in the system. In particular, we adapted Wector Squares opposite end of the spectrum with negligible transfer from and

(VEC) benchmark, which computes the sum of differencé8 the CPUs. The other penchmarks present a combination of
of two squared vectors and requires intensive data transfaf two behaviors, requiring both CPU-GPU and GPU-GPU
between CPUs and GPUs; thelack & Scholes (B&S) Communication to different extents. Figure 6 also highlights

equation, a streaming benchmark with multiple independef@W the system equipped with V100s has an an heteroge-
kernels that can be overlapped: and Machine Learning N€OUS GPU-GPU interconnection based on NVLink, while the

Ensemble (ML), a realistic ML pipeline that shows executionA100S provide a more homogeneous interconnection based
time imbalance in its computation graph. Then, we extend&d NV_SW'tCh- Since our automatic SCheduIe_r for GrCUDA
our suite with two additional benchmarksCanjugate Gra- IS designed to work with all the possible interconnection
dient (CG) solver, a traditional HPC workload with heavyScenarios, we obtain positive results with both the multi-GPU
communication between different GPUs (inspired by [35]fYStéms used for our tests.
and aMatrix Vector Multiplication (MUL) routine, which .
performs a multiplication between a dense matrix and a derfse Scaling the Number of GPUs
vector, ef ciently leveraging data partitioning. To establish a baseline, we rst analyzed the performance
Our benchmarks leverage both open-source kernels awlability of the hand-optimized+€ CUDA version of the
kernels written by us. We wrote the host code for all theenchmarks, when running on up to 8 GPUs. Figure 1 depicts
benchmarks, and we employed UM both in the CUDA+C the speedups of the 5 benchmark with respect to an asyn-
and the GrCUDA versions to have a fair comparison betweehronous version on a single-GPU system. The rst bar of
the two implementations. The CUDA+E code was hand- each group (SYNC, 1 GPU) also provides the performance
optimized with CUDA API calls that manage and migratef an unoptimized synchronous CUDA version of the bench-
memory regions to replicate - as much as possible - whagrks. The MEAN section for both the A100 and the V100
would happen with manual memory management. For whatn gurations in Figure 1 shows that most of the considered
concern the kernels' con guration, the number of blocks andenchmarks can scale across multiple GPUs. However, the
number of threads per block have been optimized for ea@PU architecture, as well as the communication patterns, have
benchmark to get the best performance in the CUDA baselinassubstantial impact on the achieved performance. When using
In benchmarks with partitioned data, the number of partitiotbe V100 system, ML and CG were not capable of taking
is constant across input sizes and numbers of GPUs, auVantage of the full 8 GPUs, resulting in slowdowns due
it has also been chosen to optimize the CUDA baselings the required data transfer between GPU couples with low

DI DONATO et al: TAMING MULTI-GPU GREEDY SCHEDULING THROUGH A POLYGLOT RUNTIME 9

g. 9. Relative performance (speedup) of our automatic GrCUDA scheduler
Fig. 7. Relative performance (speedup) of our automatic GrCUDA SChEdU{%’ hand-optimized € CUDA. We automatically achieve 80-90% of the
from Python vs. Java host code. Our scheduler shows consistent results icat CUDA peak performance, with only VEC showing a noticeable perfor-
benchmarks when employed from both host languages. mance gap.

most informed scheduling policy (Min-max Transfer Time).
We compare the timings obtained with our solution to the
asynchronous extension of GrCUDA in [18], which supported
only a single GPU and is used as the baseline for speedup
computation. We also provide the performances of the original
synchronous single-GPU version of GrCUDA, which always
performed worse than the asynchronous one, with up30 %
slowdown in the case of CG on the A100 architecture. Figure 8
shows that our novel scheduler can ef ciently leverage the
available accelerators: when running on 8 GPUs, it achieves
Fig. 8. Multi-GPU scaling of benchmarks when using our aultomr;mc GrClélljﬁ‘E to 4.7 speedup on the V100server, andup to 4.6
zﬁgidf‘gf[]:n”d”opp:ﬁn?;zs'si%ﬂ%?;g_@é&ggs(sgf;dE;’sCoseyresem & Sgdup on the A100one. More importantly, the speedups
obtained by our multi-GPU scheduler closely resemble their
hand-optimized CUDA €+ counterpart (Figure 1), for both
interconnection bandwidth. Instead, the homogeneous highe tested systems.
bandwidth interconnection provided by the NVSwitch enables We further explore this aspect in Figure 9, where we
the ML benchmark to perform signi cantly better with thecompare the relative speedup of our novel GrCUDA scheduler
full set of GPUs on the A100 system, achieving a 5.2 against the pure CUDA versions, when employing a certain
speedup. On the other hand, when using the full set efimber of GPU on both the V100 and A100 systems. Here a
A100s, CG only achieved the same performance as with fewgreedup close to 1.0 highlights that our solution introduces
GPUs. This is due to the fact that CG is bound by heawinimal overhead compared to a meticulously optimized na-
inter-GPU communication involving always the same devicéive CUDA version of the software. The gure shows how,
Consequently, once the band of that device is saturated, e average, weautomatically achieve 80% of the hand-
benchmark cannot bene t from a higher number of GPUs. optimized C+ CUDA peak performance on the A100
Given that our novel scheduler targets GrCUDA, we consystem, and90% on the V100 system, with only VEC
pared the performance of GrCUDA against the CUDA+C showing a noticeable performance gap on both the tested
API. We also compared the performance obtained when scatehitectures. VEC highlights a corner case where hand-tuned
ing the number of GPUs with both the Python and Jawptimizations can still outmatch automatic scheduling. This
versions of the GrCUDA benchmarks. Figure 7 shows thbenchmark performs three simple but interdependent linear
there are only negligible differences in the achieved resultdgebra operations and is fully interconnection-bound. Optimal
demonstrating that our solution providesnsistent behavior scheduling requires knowledge of both the execution time and
from different host languages supported by GraalVM In the data movement patterns of each computation. As a conse-
the remainder of the Section, we will refer to results obtainegflience, VEC is noticeably worse in GrCUDA because in our
with Python host code, but our considerations hold for ttezheduler there is some unnecessary GPU-GPU movement,
Java implementations as well. while the hand-optimized version has none. History-driven
Figure 8 shows the results of scaling the number of GPlds ML-based schedulers can, in principle, address this issue,
when using our multi-GPU GrCUDA scheduler with thealthough their additional overheads and complexity might

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 20XX

Fig. 11. Ablation study for our scheduling policies in GrCUDA, with speedup
(higher is better). Computations with complex dependency DAGs, such as ML,
greatly benet from transfer-aware policies, with the simplest Round-Robin
policy being 33 % slower on average.

Fig. 10. Relative execution time of our automatic GrCUDA scheduler vs.

hand-optimized €+ CUDA, divided by input size. Our scheduler shows

consistent results when increasing the benchmarks' memory footprint from
10%to 90%.

make them unwieldy under most circumstances.
To investigate the robustness of our scheduler with respect to
the size of the input data, we studied the performance of each
benchmark when scaling the input size. Figure 10 presents
the results of our analysis, with input size scaling linearly
from 10% to 90 % of the memory available on each GPU.
This allows us to clearly visualize if any hardware bottleneck
impacts performance as input size _exceeds a certain thre_ShQild.'lz The DAGs obtained when executing the VEC benchmark on 2 GPUs,
The gure shows that all the obtained results are C0n5|5te\M?h two different scheduling policies (Round-Robin and Min-Max Transfer
with respect to the ndings presented in Figure 8. This indifime). For the sake of simplicity, in this example, we divide the data into 4
cates that our new greedy GrCUDA scheduler for multi-GPefritions only.
computations is indeed capable of handling different types of

workloads in multiple scenarios, ardn adapt to different to the performance degradation of the ML benchmark. For

input data sizes without performange degradation . such a benchmark, the Stream-Aware policy performs better
Overall, our proposed scheduler is capable of relieving ﬂ?ﬁan Round-Robin on the A100 system with homogeneous
developer of the time-consuming need to write optimizelﬂ

. . terconnection, while it performs worse on the V100 system
CUDA C#+ host code to exploit a multi-GPUs system. with heterogeneous interconnection. The two simplest policies

evenly distribute the workload across GPUs but are unaware

D. Impact of the Scheduling Policies of the data locality and of heterogeneous connections between

Having introduced a set of multi-GPU scheduling policiethe devices in the systems. They cannot ef ciently handle
in GrCUDA, we now analyze how more re ned schedulworkloads with complex data dependencies like VEC and ML.
ing techniques can result in better overall performance. Trhese results highlight theeed for more informed scheduling
Figure 11, we compare our policies against the Min-Matechniques like our Min Transfer Size and the Min-Max
Transfer Time policy, our best-performing policy on averag@ransfer Time policies. Figure 11 shows that, on average,
Results are measured on an 8-GPUs system. The simiple two data-aware policies performed better than the
Round-Robin policy obtains 33 % slowdown on averagand simpler ones Moreover, they performed comparably in all
shows signi cant performance degradation for benchmarkise benchmarks, except for the ML one, where the Min-Max
with signi cant GPU-GPU communication, such as ML andransfer Time is signi cantly better.
the CG. Their complex data movement patterns, shown in Fig-To better understand the performance obtained with our
ure 6, require more re ned scheduling policies. The Strearablation study, Figure 12 shows the schedules obtained when
Aware policy shows d8 % slowdown on averagenainly due executing the VEC benchmark (with four partitions) on two

	Introduction
	Background and Motivation
	Multi-GPU Computations
	The GrCUDA Language Binding
	The GrCUDA Scheduler and Runtime
	The Case for Greedy Multi-GPU Scheduling

	Workload Scheduling Across Multiple GPUs
	The Multi-GPU GrCUDA Architecture
	Selecting the Right GPU
	Challenges of Multi-GPU Scheduling
	Tracking Data Locality
	Multi-GPU Scheduling Policies

	Experimental Evaluation
	Experimental Setup
	Workloads Characterization
	Scaling the Number of GPUs
	Impact of the Scheduling Policies
	Disjoining Logical and Physical Data Partitioning

	Related Works
	Conclusion and Future Work
	References
	Biographies
	Guido Walter Di Donato
	Ian Di Di Lavore
	Alberto Parravicini
	Francesco Sgherzi
	Marco Arnaboldi
	Arnaud Delamare
	Daniele Bonetta
	Marco Domenico Santambrogio

