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ABSTRACT
Many software supply chain attacks exploit the fact that what is in

a source code repository may not match the artifact that is actually

deployed in one’s system. This paper describes a logic-based frame-

work that analyzes a software component and its dependencies to

determine if they are built in a trustworthy fashion. The properties

that are checked include the availability of build provenances and

whether the build and deployment process of an artifact is tamper

resistant. These properties are based on the open-source commu-

nity efforts, such as SLSA, that enable an incremental approach to

improve supply chain security. We evaluate our tool on the top-30

Java, Python, and npm open-source projects and show that the ma-

jority still do not produce provenances. Our evaluation also shows

that a large number of open-source Java and Python projects do

not have a transparent build platform to produce artifacts, which

is a necessary requirement to increase the trust in the published

artifacts. We show that our tool fills a gap in the current software

supply chain security landscape, and by making it publicly available

the open-source community can both benefit from and contribute

to it.

CCS CONCEPTS
• Security and privacy→ Software security engineering.
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supply chain security, program analysis, policies, logic program-
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1 INTRODUCTION
Over the past few years, software supply chain security has re-

ceived much attention because of attacks targeting companies, like

SolarWinds. Several standards and tools have emerged to address

various challenges in supply chain security because attackers target

various links in the software supply chain between source code and

final artifacts. The rapidly evolving nature of software development

lifecycle requires techniques that enable one to specify and verify

new security properties. For this to become a reality, high-level

specifications such as Supply-chain Levels for Software Artifacts

(SLSA) [33], and CIS [4] have been proposed.

SLSA, which is getting traction in the community, is a supply

chain security specification that provides guidelines to improve the

build integrity of software artifacts. It mandates the production of

authentic and verifiable provenance documents that describe the

build process of a software artifact. It also requires the adoption of

provenance generation by both open-source project maintainers

and software package registries. An example of this is the npm

public registry, which has added support for publishing SLSA Build

Level 2 provenances [19].

Because the SLSA requirement of provenance generation is rela-

tively new, few projects currently meet this requirement. Therefore,

we need a solution that also reasons about the software compo-

nents that do not generate provenances. Moreover, certain security

properties cannot be verified solely based on the data collected in a

provenance. For instance, the build scripts obtained from a source

code repository that build an artifact might be contaminated by

attackers [12] and need to be analyzed independently.

So far, we have considered a single software component. How-

ever, the security posture of a software system is not limited to

the main component in question; it is also reliant on the security

posture of the dependencies. Thus, any tool that analyzes software

supply chain security issues, needs to reason about a software

component and all its dependencies, recursively. This can be done

by identifying the dependencies for a software component using

existing Software Bill of Material (SBOM) generators, such as Cy-

cloneDX tools [7]. However, the produced SBOM documents often

miss important properties, such as references to the source code

https://doi.org/10.1145/3605770.3625213
https://doi.org/10.1145/3605770.3625213
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Figure 1: High-Level Architecture

repositories, which makes it difficult to analyze how the depen-

dencies are generated. While a non-forgeable SLSA provenance

can provide the URL to the source code repository reliably, unfor-

tunately, the majority of packages still do not support SLSA (see

Section 5). Therefore, one has to provide techniques to improve

this.

Another challenge in analyzing a software system is that each

of its dependent software components can have a different matu-

rity level. For instance, the main software component and a few

dependencies may meet SLSA Build Level three, but there can

be dependencies that satisfy properties at lower build levels only.

The question of whether or not this is acceptable depends on the

organization consuming the main component. Hence, one needs

a framework where such policies can be expressed and analyzed.

Such policies can build upon the evidenece gathered from the prove-

nances and the analysis of the build systems.

In this paper we describe our solution to the problems identified

above. Our tool, called Macaron, is an extensible checker frame-

work that is tightly integrated with a policy engine, allowing to

validate relevant policies on the stored results. To enable flexibility

and efficiency simultaneously, we distinguish between checks that

gather evidence and the policies defined by the software consumer

to verify claims [10]. This distinction will help the adoption of sup-

ply chain security specifications like SLSA. Our approach takes the

non-trivial guidelines and translates them to enforceable policies.

The separation that is supported by Macaron enables the secu-

rity analyst to write checks as part of trusted evidence gatherers in

an imperative language, such as Python, without requiring them

to make any assumptions about the actual policies specified by

consumers. Figure 1 shows the high-level design of Macaron.

The framework consists of four components: (1) The dependency

resolver finds dependencies and the corresponding source code

repositories. (2) The checks in Macaron implement the logic for

different specifications. The extensible nature of Macaron helps

keeping it current because it can handle the evolution of supply

chain security requirements; (3) The mapper component transforms

and persists the data produced by the checks as atomic predicates,

which can be enforced by the policy engine; (4) The policy engine

that accepts input policies expressed in Datalog and determines if

the checks gathered in the first step meet those input policies.

As noted, the separation between the checks and the policies

allows policy designers to write policies for security properties

identified by a specification, without requiring them to know or

implement the detection logic. We use Soufflé Datalog [29] because

of its support for recursive rules, stratified negation, and data aggre-

gation. Thus, policies involving transitive dependencies, as well as

excluding certain dependencies from satisfying a requirement are

easy to express. Also, Soufflé can generate proof trees [38], which

can be used to understand why a software component satisfies

an organization policy. Finally, because the evidence gathered by

checks is persisted, it is possible to specify policies for different

versions of the components. For example, one can write policies to

detect regressions over time for a software component, which is

crucial for supply chain security.

In summary, this paper makes the following contributions:

• A flexible and extensible framework for checking and vali-

dating policies for software artifacts, which is open sourced

and available to the community.
1

• Decoupling evidence collection from the policy validation

phase that allows flexible policies.

• Persisting the collected evidence to support incremental anal-

ysis and detect regressions.

1
https://github.com/oracle/macaron
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• Macaron is able to reason about dependencies, some of

which might not produce SLSA provenances.

• We have identified atomic predicates for build integrity using

the SLSA specification, and designed two checks to reason

about them.

• We have conducted an evaluation on the top-30 projects

from three ecosystems: Java, Python, and npm.

Finally, to evaluate Macaron we ask the following research

questions:

• RQ1: How effective is the check to detect hosted build plat-

forms?

• RQ2: What is the SLSA provenance generation status for top

open-source projects?

• RQ3: How effective is mapping dependencies to the source

code repositories when SLSA provenances are not available?

• RQ4: Is it possible to define a policy for an organization that

uses software components with different maturity levels?

2 RELATEDWORK
Several supply chain security tools and frameworks are published

with differing goals in the past three years. In this section, we pro-

vide an overview of the closely related works, focusing on checking

software component analysis and properties, policy verification,

and SBOM generation.

2.1 Security checkers and verifiers
Scorecard [24] and Legitify [16] are open-source tools that use the

public information of a software repository, assess a number of

security heuristics, and compute a score based on the results. The

checks used in these tools are rather generic to be suitable for a wide

range of repositories, and focus on the repository configurations,

e.g., branch protection rules, rather than build-specific properties.

Chainbench [3] is an auditing tool, similar to Scorecard, that runs

health checks on a repository. It uses the CIS [4] framework as

a guideline. OSSGadget [21], is another open-source project that

provides a collection of tools, such as oss-health that calculates

health metrics similar to Scorecard for a project, with difference in

analyzing packages as well as repositories.

GUAC [13] aggregates software security metadata into a graph

database. It collects data, such as VEX [35], SLSA, and SBOMs

from multiple sources, and allows querying whether a software

component and its transitive dependencies have any known vulner-

abilities, SBOM, etc. GUAC complements Macaron as it can be a

source of evidence collected for a software component and used by

Macaron checks. Similar to GUAC, Macaron analyzes a software

component and its dependencies to check certain metadata, such

as SLSA provenances if available. However, we take a step further

by analyzing the corresponding source code repository at a specific

commit hash for various security properties. Macaron can also

feed its results back to GUAC in future for software components

that do not produce SLSA provenances for instance.

SLSA Verifier [27] verifies SLSA provenances that are generated

by SLSA compliant tools, such as the GitHub SLSA provenance

generator [26]. It verifies a signed provenance against an artifact by

looking up the corresponding Rekor [23] log entry and verifying

the signature; verifying the builder identity based on the signing

certificate; and checking that the provenance information matches

the provided source code repository. Macaron invokes SLSA ver-

ifer as part of the checks to analyze provenances, and transforms

the results to atomic predicates to be used by the policy engine.

2.2 Policy engines
Rego [22] is a policy language inspired by Datalog that allows

queries on the data stored in Open Policy Agent (OPA). However,

unlike Datalog, Rego has limited support for transitive rules, which

is especially necessary for analyzing transitive dependencies. More-

over, Macaron makes a distinction between software consumer

policies and the checks that collect evidence. This distinction al-

lows software consumers to focus on the compliance rules in a

project, delegating the detection logic to security analysts who

design checks.

The in-toto framework is designed to verify that each task in the

software supply chain is carried out by authorized personnel only,

and that the product is not tampered with in transit [14]. It also

defines a standard format for attestations, which is used in SLSA

provenances [33]. in-toto requires a project owner to create a layout,

consisting of the sequence of steps of the software supply chain, and

the functionaries authorized to perform these steps. in-toto gathers

information about the build execution in a link metadata file and

validates it against the steps defined in the layout. In comparison,

Macaron provides a logic-based framework that gathers various

types of evidence, including existing attestations, and maps them

to atomic predicates to be used in expressive policies that allow

recursion for dependencies.

PolyLog [10] is the closest work to Macaron. The purpose of

PolyLog is to reason about authorisation in the context of limited

trust for supply chain security. It uses an authorization logic based

on SecPal [1]. However, we do not fix any particular logic. Our

policy language, i.e., Soufflé Datalog, is more general and any set

of rules that can be expressed in Datalog is permitted. Note that

PolyLog [10] translates the policies to Soufflé Datalog ultimately.

Moreover, PolyLog needs wrappers for different tools to collect

the information and evidence (e.g., provenance expressed in the

in-toto format [14]), while Macaron achieves a clean separation

by decoupling the checker framework from the policy engine.

2.3 Provenance generation
Witness [37] wraps a build command and records various types

of information in a provenance document as the build execution

happens. It also enables the enforcement of policies using Rego [22].

Macaron can be extended to verify provenances generated by

Witness, while getting benefit from other build-specific checks.

The GitHub SLSA provenance generator [26] provides a set of

tools that can produce SLSA provenances for projects hosted on

GitHub. The tools provide trusted builders as well as a generic

provenance generator to produce a provenance for a given artifact.

While the generic provenance generator does not give any guaran-

tees about the security posture of the build commands, it establishes

a non-forgeable link from an artifact to the source code repository

and the pipeline that has produced it. The checks in Macaron con-

siders these provenance generators trusted and verifies the security

properties accordingly.
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2.4 SBOM generation
An SBOM is a formal, machine-readable inventory of software

components and dependencies, information about those compo-

nents, and their hierarchical relationships [20]. CycloneDX [7] and

SPDX [30] are the two widely known standards, providing specifi-

cations and tools to assist generating SBOMs. Macaron uses the

CycloneDX tools to automatically generate SBOMs (if not avail-

able). However, generating an SBOM can be challenging because

reproducing the build environment in a generic way is not always

feasible. Macaron takes a best-effort approach to generate SBOMs.

Unfortunately, SBOMs do not always contain the necessary meta-

data and information, making it challenging to detect dependencies

of a software component and map them to the source code reposito-

ries. Recently, Synk has open sourced Parlay [28] to add additional

information to an existing SBOM. It obtains the additional infor-

mation from existing services, such as Ecosyste.ms [9] that index

repositories and artifacts. Parlay also relies on an external service,

and the tool becomes non-functional if the service is not avail-

able. Macaron, on the other hand analyzes the configuration files,

such as pom.xml to map artifacts to source code repositories. In

future, we plan to use tools like Parlay as a fall-back solution to

add additional information to SBOMs.

3 APPROACH
Figure 1 shows the architecture diagram of Macaron, which con-

sists of two main phases: evidence collection and policy validation.

In the evidence collection phase, given a software component as in-

put, Macaron first determines its dependencies by either running

an existing SBOM generator [7], or taking an SBOM document as

input. Next, the checks will collect evidence for the security proper-

ties of interest and provide the outputs to the mapper component.

The mapper transforms the collected data into atomic predicates

and persists them to a database.

In the second phase, the policy engine verifies the policy specified

in the Datalog logic programming language over the persisted

atomic predicates and reports whether it is satisfied or not. Such

policies can be provided by the software consumer or a compliance

organization. The overhead introduced by the policy engine is

relatively small because it uses the persisted data and does not need

to analyze the build system.

We describe the main components in Figure 1 in more detail in

the rest of this section.

3.1 Dependency resolution and finding source
code repositories

By default Macaron analyzes the main software component as

well as its direct dependencies. Note that if enough resources are

available, Macaron can be run on all dependencies. SBOM gen-

erators are integrated to automatically detect the dependencies.

To run an SBOM generator plugin, Macaron identifies the build

directory inside a repository at a specific commit hash. If there

are multiple build directories in a repository, the dependency re-

solver aggregates the dependencies from all the SBOM files. It is

also possible to provide an SBOM document as input if it is trusted.

The dependency resolver component parses the SBOM file, detects

direct dependencies, and maps them to the source repository, using

externalReferences attributes. It also performs validation on the

URLs, such as checking whether the host part is within an allow

list.

As noted earlier, not all generated SBOMs have the external ref-

erences. For such cases, the dependency resolver finds the source

code repository associated with the software component. A soft-

ware component is identified by a Package URL (PURL) string.

For instance, by obtaining the group, artifact, and version of a

particular Java dependency PURL string, it is possible to retrieve

the POM file from a package registry (e.g., Maven Central). POMs

discovered in this way can then be analyzed to extract the source

control management (SCM) metadata, which often contains the

source repository URLs. Macaron currently uses the latest commit

in the corresponding repository for a dependency. In future, we

plan to find the exact commit used to create an artifact.

To prevent the repeated polling of a package registry, the discov-

ered URLs are added to the Macaron’s database, allowing faster

retrieval of missing URLs for artifacts.

3.2 Collecting evidence through checks
Macaron provides an extensible checker platform to facilitate

collecting evidence for a specific security property. Before running

the checks, it creates abstractions and intermediate representations

for the build-related code obtained from the mapped repository as

follows:

Defining a new check. The extensible design of Macaron makes

it easy to define a new check. The platform provides a callback

method with the representations constructed from the initial pro-

cessing tasks, such as callgraph, as a parameter. The security analyst

can use an imperative language like Python, to specify the logic

of the check, or call other tools and online knowledge bases that

provide evidence. For instance, a check can download an artifact

and its corresponding provenance document from a GitHub release,

and run the SLSA Verifier tool [27] to verify that the artifact meets

the isolated and non-forgeable SLSA properties.

Moreover, a check can define a relationship with another check

to skip running or run only if the other check has failed or passed.

Such a dependency relation is especially helpful for specifications,

such as SLSA, that have maturity levels, with some properties being

stronger than others. For instance, if a check at level three is passed,

certain checks at lower levels can be skipped to avoid repetition

and improve performance. Consider, as an example, the provenance

verification check. If this check passes successfully, another check

can compare expected values against the verified provenance and

report if the artifact is built as expected.

3.3 Mapping evidence to atomic predicates
The evidence gathered by the checks can be in any format and is not

directly consumable by a policy engine. The mapper component in

Macaron decouples the checks from policy engine by transforming

the check results and evidence to atomic predicates. Moreover,

it persists the predicates in a local database, which has several

benefits:

• Incremental analysis: Because a software component that

is analyzed once does not need to be analyzed again, the
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results can be reused when the component is used as a de-

pendency of another software component. Note that the

granularity level for persisted results can be adjusted to

atomic predicates in principle.

• Temporal behavior: The policies can check for behavior

over time, such as regression over a given time interval.

• Performance of policy engine: The policy verification can

be used even when performance is critical. This is because,

once the checks are run, the policy engine can use the lo-

cally cached atomic properties thereby reducing the runtime

overhead.

3.4 Enforcing policies using logical rules
Specifying policies using a logic programming language, such as

Datalog is not new [8, 10]. Datalog programs are sufficiently expres-

sive with precise semantics to support a wide variety of policies.

Datalog is monotonic, i.e., if a fact is derivable, it will continue to be

derivable after the addition of new rules. It also supports stratifiable

negation which is essential for specifying exceptions in policies.

For instance, a rule in a policy might not be needed for a certain

software component, while other rules should be checked over

multiple components and dependencies. In practice, such policies

need to be refined based on the collected evidence to exempt a

dependency from a requirement using negations, which cannot be

known ahead of time.

While our policy engine is agnostic to the actual algorithm used

to execute the Datalog rules, Soufflé’s bottom-up computation is

suitable for our approach. In general bottom-up computation is

shown to perform well compared to top-down [34]. Moreover, if

users know ahead of time that certain predicates are not necessary

to be computed, our design allows checks to be run selectively on a

software component and its dependencies in the evidence collection

phase. Therefore, the bottom-up evaluation can be guided towards

the solution of the original problem if necessary.

It is possible to write expressive Datalog policies provided that

the associated facts are generated. The example below shows a

policy that ensures all the software components are hosted on

github.com.

1 Policy("hosted-on-github", repo) :-
2 repository_attribute(repo,"remote_path",url),
3 match("^https://github.com.*$",url).
4

5 apply_policy_to("hosted-on-github", repo) :-
6 is_repo(repo).

The policy relies on Macaron generating a fact associated with

the location of the repository, which is called remote_path. The value

associated with this attribute is then checked to make sure it is on

github.com. The rule apply_policy_to states that the policy "hosted-

on-github" should apply to all source code repositories of software

components (i.e., any item marked as a repo should satisfy the

policy).

4 DESIGNING CHECKS AND POLICIES FOR
SLSA SPECIFICATION

In this section, we describe two checks designed to analyze the

build integrity properties of a software component. This is based

on two main requirements from SLSA v1.0 [33], namely, hosted

build platform, and availability of provenances. We also describe

a policy (expressed in Datalog) that uses the results of these two

checks.

4.1 Detecting hosted build platform
One of the important prerequisites for build integrity and trans-

parency is to have a hosted and automated build and deployment

platform [33], which corresponds to SLSA level two. Note that these

two properties are the basis of increasing the trustworthiness of the

built artifacts, where the build and deployment process is carried

out by a build service, with no manual inputs or intervention. Such

an isolated build process prevents separate runs, even within the

same project, from influencing each other. Note that hardened build

platforms are required to satisfy level three properties; but that is

not the focus of this check.

We describe the check, whether a project has a hosted deploy-

ment workflow, using Horn clauses [17], although in principle

the functionality can be implemented in any language. The check,

shown in Listing 1, is based on the following facts that can be

generated by analyzing the source code of the repository:

• InvokeCommand: Identifies the command running a build

tool, such as Gradle, Maven, Pip, and Poetry, and the ac-

ceptable command arguments for deployment of an artifact,

which is called from a shell script. This information is ob-

tained by examining the source files in a repository that are

used for building and deploying a project, such as pom.xml,
and pyproject.toml, and the command is determined by

parsing the shell script.

• InvokeScript: Identifies whether a shell script calls another
shell script, which can be inlined as part of a CI workflow

step, or a bash script file.

• InvokeWorkflow: Identifies the relevant CI workflow file,

such as GitHub Actions workflow, or GitLab CI file calling

another CI workflow file.

• InvokeWorkflowScript: Is related to the above CI workflow
and determines if there are calls to an inlined shell script as

a workflow step.

Using these facts, we define clauses that determine if a deploy-

ment command is reachable from the workflow entrypoint. More

specifically, the Reachable clause computes a callgraph and de-

termines if a node, which can be a CI workflow, or a shell script

is reachable from another node. The ReachableDeploy rule deter-

mines if a reachable node invokes a deployment command, hence

indicating that the software component is built and deployed using

a hosted build platform.

Finally, the result computed by the ReachableDeploy clause is
transformed by the mapper component described in 3.3 into an

atomic predicate (BuildPlatform) with "passed" or "failed" as

the status, and made available to the policy engine along with

some of the facts as justifications for the result. The details of the

mapping are omitted for brevity.

4.2 Discovering and verifying SLSA provenances
The SLSA specification [33] demands that a build process has to

generate a provenance. This is a fundamental requirement and is
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Listing 1: The predicates computed for the build platform
check.

1 // Facts.
2 InvokeCommand(script, command)
3 InvokeScript(caller_script, callee_script)
4 InvokeWorkflow(caller_workflow, callee_workflow)
5 InvokeWorkflowScript(caller_workflow, callee_script)
6

7 // Clauses to compute the check results.
8 InvokeNode(caller, callee) ←
9 InvokeScript(caller, callee) ∨
10 InvokeWorkflow(caller, callee) ∨
11 InvokeWorkflowScript(caller, callee)
12

13 Reachable(caller, deploy_node) ←
14 Reachable(caller, node) ∧
15 InvokeNode(node, deploy_node)
16 Reachable(caller, deploy_node) ←
17 InvokeNode(caller, deploy_node)
18

19 ReachableDeploy(caller, deploy_command) ←
20 Reachable(caller, script) ∧
21 InvokeCommand(script, deploy_command)

Listing 2: The predicates computed for the provenance
check.

1 // Facts.
2 Artifact(name, release_url, digest, digest_algorithm,

software_component)
3 Provenance(name, digest, digest_algorithm, software_component)
4

5 // The clause to compute the check results.
6 ProvenanceVerified(component) ←
7 Artifact(name, release_url, digest, digest_algorithm,

component) ∧
8 Provenance(name, digest, digest_algorithm, component)

independent of the actual maturity level. Depending on how the

provenance is created and what it contains, it can be compliant

with different SLSA levels. For instance, if an artifact is built in an

isolated environment that the project maintainer cannot influence,

and the provenance is generated and signed by a control plane,

which is also isolated from the build environment, it reaches Build

Level three. We have designed a check in Macaron that searches

for a provenance of an artifact (e.g., in the corresponding GitHub

release assets) and analyzes it to determine its level.

The check downloads the artifact and its provenance if avail-

able. Similar to the check in Section 4.1, Listing 2 shows the logic

of this check using Horn clauses. The ProvenanceVerified rule
determines if a provenance associated with an artifact can be veri-

fied using the output of the SLSA Verifier tool [27]. SLSA Verifier

verifies the provenance’s cryptographic signatures and makes sure

it was created by the expected builder.

Once the check collects the results, the mapper component,

described earlier, transforms the result to ProvenanceAvailable
atomic predicate, and persists it along with the facts to the database

to be used by the policy engine.

Listing 3: Example policy for SLSA expressed in Datalog.
1 Policy("SLSA2-transitive",parent) :-
2 Dependency(parent, child),
3 SLSA2(parent),
4 SLSA2(child)
5

6 SLSA2(component) :-
7 ProvenanceAvailable(component, "SLSA2"),
8 BuildPlatform(component, "passed")
9

10 apply_policy_to("SLSA2-transitive", component) :-
11 is_component(component).

4.3 Example policy for SLSA checks
An example policy based on the results of the two checks described

in this section is to verify that a software component and all its

dependencies either produce non-forgeable and verifiable prove-

nances or pass the hosted build platform. Because Macaron pro-

vides all the necessary predicates as to the policy engine automati-

cally, the final policy can be specified in few lines of code expressed

in Datalog as shown in Listing 3. In this policy, BuildPlatform
and ProvenanceAvailable correspond to the derived predicates

described in Sections 4.1 and 4.2, respectively.

5 IMPLEMENTATION AND EVALUATION
Macaron is primarily written in Python and the checks are written

as Python modules. The mapper component uses SQLAlchemy’s

ORM mappings [31] to transform the results of the checks and

evidence to atomic predicates. These atomic predicates are then

stored in a SQLite [32] database to be used by the policy engine,

which uses the Soufflé Datalog engine to determine if the Datalog

policies are satisfied. Macaron is open sourced and available on

GitHub.
2
We use version 0.2.0 of Macaron for the evaluations in

this section.

To evaluate Macaron, we have collected the top 90 open-source

projects for Maven, Python, and npm ecosystems, containing 30

projects each. The first 15 projects are collected from the Census

II dataset [2], published by Harvard Laboratory for Innovation

Science (LISH) and the Open Source Security Foundation (OpenSSF)

for the top open-source libraries usage in production applications.

The second 15 projects are collected from the Criticality Score

project [6].

5.1 RQ1: How effective is the check to detect
hosted build platforms?

Table 2 shows the evaluation results for the hosted build platform

check described in Section 4.1. Currently, this check supports only

Java and Python build systems. Hence the evaluation is conducted

on the public GitHub Python and Java repositories in our dataset.

Among the 60 projects, Macaron correctly reports that 17 projects

have a hosted build platform for building and deploying artifacts,

while 32 projects do not have a transparent build platform. Mac-

aron does not produce any false positives. It produces false nega-

tives for 11 projects which are due to a lack of support for specific

package and environment management systems, such as Conda [5]

2
https://github.com/oracle/macaron
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Table 1: Finding dependencies and their corresponding source code repositories in Java projects. Note that if a row contains
zero, it is due to the SBOM generator failing to generate an SBOM.

External references in SBOM Repo Finder’s additional findings
Repo found Repo not found

Alluxio/alluxio 79 48 25

apache/camel 227 259 143

apache/cloudstack 68 62 30

apache/commons-io 9 0 0

apache/commons-lang 7 1 0

apache/commons-logging 1 4 0

apache/flink 94 55 25

apache/hadoop 103 72 31

apache/httpcomponents-core 9 2 2

apache/kafka 0 0 0

apache/maven 27 15 13

apereo/cas 0 0 0

eclipse/jetty.project 78 56 29

FasterXML/jackson-annotations 1 0 0

FasterXML/jackson-core 5 0 0

FasterXML/jackson-databind 7 1 0

google/gson 8 1 0

google/guava 10 5 0

hibernate/hibernate-orm 16 26 18

junit-team/junit4 2 0 0

mockito/mockito 2 6 2

neo4j/neo4j 74 22 8

OpenAPITools/openapi-generator 50 63 58

qos-ch/logback 21 5 1

qos-ch/slf4j 3 4 0

quarkusio/quarkus 193 105 80

raphw/byte-buddy 9 16 4

spring-projects/spring-framework 0 0 0

spring-projects/spring-security 0 0 0

Total 1103 828 469

Table 2: Results for the hosted build platform check on
public Github Python and Java repositories.

PASSED FAILED

TP FP TN FN

Python repos 9 0 17 4

Java repos 8 0 15 7

Total 17 0 32 11

for Python, which we plan to add in future. Another source of

false negatives is the partial support for Jenkins CI services [15]

compared to GitHub Actions CI in Macaron. Overall, Macaron

achieves high precision and reports that a large number of popular

projects do not have a transparent hosted build platform, which is

necessary to adopt SLSA.

5.2 RQ2: What is the SLSA provenance
generation status for top open-source
projects?

To understand the current state of SLSA provenance generation in

open-source projects, we run the check described in Section 4.2 on

the 90 projects in our benchmark. We observed that two Python

projects generate SLSA provenances using GitHub SLSA prove-

nance generator [26], which are Flask [11] and MarkupSafe [18].

Even though the npm public registry has added support for

publishing SLSA Build Level 2 provenances [19], only one npm

project (Semver [25]) in our dataset, is generating provenances

using this feature.
3

5.3 RQ3: How effective is finding source code
repositories when SLSA provenances are not
available?

To check and verify certain security properties of a software compo-

nent, we need to find the source code repository at a specific commit

3
When npm projects are built on GitHub Actions, they can enable generating and

publishing provenances on the npm registry by adding –provenance flag to the npm

publish command.
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hash from which the component is built. A SLSA provenance links

a software component to the corresponding commit hash reliably.

However, as observed in Section 5.2, the adoption of SLSA is still

in early stages and we need alternative solutions meanwhile. We

evaluate the effectiveness of the technique described in Section 3.1

in this section on Java projects in our dataset. Support for other

ecosystems will be added in the future.

Table 1 shows the results for finding source code repositories for

software components. The "External references in SBOM" column

shows the number of dependencies in the generated SBOM that

had external references to repositories ("Repo found") or missed

references ("Repo not found"). The last column shows the additional

repositories found by Macaron using the technique described in

Section 3.1. Overall, we were able to find 469 additional repositories

for software components. Note that if a row contains zero, it is due

to the SBOM generator failing to generate an SBOM. By default

Macaron looks for the bom.json files generated by the SBOM

generator. If a project is configured to generate SBOMs with custom

names, we manually rename the output files to help Macaron

discover them.

In terms of execution time, when a source code repository for a

software component is missing in the SBOM, it takes Macaron 1.43

seconds on average to find it, which is mostly due to the overhead

of API call to the package registry. Once the repository is found and

stored in the database, the overhead decreases to two milliseconds

on average.

Finally, it is worth noting that because this technique relies on

the Source Control Management (SCM) metadata provided by the

projects’ maintainers in their project configurations, they need to

be verified further to ensure they are reliable.

5.4 RQ4: Is it possible to define a policy for an
organization that uses software components
with different maturity levels?

In this section, we present a case study to useMacaron as a checker

and policy engine to help an organization determine its supply

chain security posture and determine if its policies are satisfied.

The goal of this case study is to understand if Macaron allows

flexible policies for a complex software system in an organization.

We use the SLSA for organizations recommendations [33] as the

reference guideline in this case study.

According to the guidelines, the organization should choose a

target SLSA level, and select tools that support the desired SLSA

level. We choose level two for the build track, and assume the

project produces SLSA provenances using the trusted, off the shelf,

generator [26]. We also use Macaron to check and verify the build

pipeline.

The organization in this study involves both a producer of soft-

ware artifacts and a software consumer that uses different software

artifacts. We assume that they rely on both open-source and propri-

etary dependencies. The software producer must build the artifacts

on a hosted build platform that generates signed provenances, while

the software consumer, demands that all dependencies should meet

SLSA Build Level two. Therefore, they should use a hosted build

platform that produces provenances.

Listing 4: Example transitive Datalog policy for SLSA with
an exception rule.

1 Policy("SLSA2-transitive",parent) :-
2 Dependency(parent, child),
3 SLSA2(parent)
4 !violate_SLSA2(parent).
5

6 // Detect dependencies that violate SLSA2 rule.
7 .decl violate_SLSA2(parent: SoftwareComponent)
8 violate_SLSA2(parent) :-
9 Dependency(parent, child),
10 !SLSA2(child),
11 !exception_dependencies(dependency).
12

13 // Exceptions for violating dependencies.
14 .decl exception_dependencies(dependency: SoftwareComponent)
15 exception_dependencies(dependency) :-
16 Component(dependency, "A").
17 exception_dependencies(dependency) :-
18 Component(dependency, "B").
19

20 // SLSA Build Level 2 rules.
21 .decl SLSA2(component: SoftwareComponent)
22 SLSA2(component) :-
23 ProvenanceAvailable(component, "SLSA2").
24 SLSA2(component) :-
25 !ProvenanceAvailable(component, "SLSA2"),
26 BuildPlatform(component, "passed").
27

28 apply_policy_to("SLSA2-transitive", component) :-
29 is_component(component).

The first step in this process is to specify the above policy that per-

mits the consumption of the artifact produced by the main project

if it reaches SLSA Build Level two. Listing 3 in Section 4.3 presents

the policy using Datalog. While this policy allows reducing the

attack surface by ensuring that all the software components have

the same level of maturity, in reality not all dependencies satisfy the

SLSA level two rule. Hence the consumer can add exceptions. This

is possible because we have broken down the SLSA requirements

to atomic predicates. This enables the specification of fine-grained

policies including the addition of exceptions at the atomic predicate

level for a subset of dependencies. For instance, Listing 4 shows a

more flexible policy, where dependencies A and B do not need to

satisfy the SLSA2 rule. Macaron then runs the checks that collect

evidence for the main project and the dependencies and executes

the policy engine with the specified policy.

Detecting regressions. Another useful policy is to detect regres-

sions over time for a software component, which is crucial for

supply chain security. Because the evidence gathered by the checks

is persisted, it is possible to specify policies for “temporal” behavior.

We can use the policy engine to make sure the checks that passed

historically do not fail on later analyses. Listing 5 presents a policy

that detects such regressions for the ProvenanceAvailable checks.
Given a reference timestamp, if the ProvenanceAvailable check
fails on any subsequent analysis, the policy fails.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented Macaron to analyze software

components for software supply chain security issues. Macaron

uses well-defined frameworks, such as SLSA, to check that key

properties of both the main component and all its dependencies
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Listing 5: Example transitive Datalog policy for SLSA with
an exception rule.

1 Policy("no-regression", repo) :-
2 reference_timestamp = REFERENCE_TIMESTAMP,
3 analysis(reference_timestamp, ref_component),
4 // There are no ProvenanceAvailable checks that passed at

the refernce timestamp that did not pass subsequently.
5 0 = count : {
6 repository_component(repo, component),
7 ProvenanceAvailable(ref_component, "SLSA2"),
8 !ProvenanceAvailable(component, "SLSA2")
9 }.
10

11 apply_policy_to("no-regression", repo) :-
12 reference_timestamp = REFERENCE_TIMESTAMP,
13 // Enforce the policy any time we analyze the same

repository in a subsequent analysis.
14 analysis(reference_timestamp, ref_component), // Reference

analysis.
15 repository_component(repo, ref_component),
16 analysis(timestamp, component), // Other analysis.
17 repository_component(repo, component),
18 greater(timestamp, reference_timestamp).

are satisfied. Macaron also supports analysis and validation of

organization-level supply chain security policies.We have evaluated

our tool on the top-30 Java, Python, and npm open-source projects.

Our results show that the majority still do not produce provenances,

while a large number of open-source Java and Python projects do

not have a transparent build platform to produce artifacts.

Currently, only two checks related to build integrity are sup-

ported. We plan to extend Macaron with more properties that are

identified by SLSA and other frameworks. Furthermore, as noted,

Macaron needs to be extended with better support for different

build and packaging systems.

While our approach is designed to analyze software components

and their corresponding source code, some components cannot be

linked to the source code accurately. When a provenance is not

present or if a commit hash is not provided, we are currently using

the latest commit in the corresponding repository. In future, we

plan to find the exact commit used to create an artifact. We are

also assuming that the metadata, such as source code repository

URLs provided by the package developers is correct. However, that

might not always be the case [36] and provenances are required to

verifiably link an artifact to its source. We are planning to extend

Macaron with the extra analyses required for this verification.

Macaron prioritizes verifiable provenances to determine SLSA

levels. When such provenances are not present, the checks per-

form static analysis and use heuristics to infer security properties.

Such checks can have false positives and false negatives. The pred-

icates derived by checks are labelled explicitly to help the policy

designer interpret the results and make an informed decision. As

future work, we plan to improve the labels by providing confidence

scores. Moreover, given that Macaron performs static analysis on

build-related systems, well understood static analysis techniques,

such as dataflow analysis for build systems, package managers and

deployment techniques need to be developed in future.
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