
Composing Durable Data Structures
Joseph Izraelevitz

Department of Computer Science
University of Rochester

Rochester, NY
jhi1@cs.rochester.edu

Virendra Marathe
Oracle Labs

Burlington, MA
virendra.marathe@oracle.com

Michael Scott
Department of Computer Science

University of Rochester
Rochester, NY

scott@cs.rochester.edu

Abstract—This paper presents techniques for composing per-
sistent data structures on machines with nonvolatile byte address-
able memory. The techniques are applicable to a wide class of
nonblocking algorithms.

I. INTRODUCTION

The advent of byte addressable, nonvolatile main memory
technologies (such as PCM or STT-MRAM) will affect the
way we build software that manages persistent data, as this
technology enables durable data storage in main memory.

Programmers may wish to move existing in-memory data
structures to nonvolatile storage to allow them to to persist
from one run to another, and survive processor crashes. Several
challenges, however, make the move more difficult than it
might at first appear.

Processor caches and registers are expected to remain
volatile (and the data in them transient) for the foreseeable
future: a power failure means that nonvolatile RAM state
remains but cache and register state is lost. And since cache
lines may be written back to memory in arbitrary order,
the simple load/store interface is not sufficient to ensure the
consistency of persistent state; programs must take steps to
control the order of writes-back.

Several groups have developed concurrent data structures
for a machine model with nonvolatile RAM but volatile
caches. Automated algorithms also exist to transform non-
blocking transient data objects into persistent ones [1]. Ad-
ditional theoretical work has discussed correctness criteria
for concurrent data structures. In particular, most published
designs provide durable linearizability [1], an extension of
the traditional linearizability correctness criterion [2] into
persistence. Put simply, a durably linearizable object ensures
that each of its methods, between its invocation and return, (1)
becomes visible to other threads atomically and (2) reaches
persistence in the same order that it became visible.

Looking beyond individual objects, we would like to be able
to compose operations on pre-existing durably linearizable
objects into into larger failure-atomic sections (i.e., transac-
tions). Such composability might be seen as an extension
of transactional boosting [3], [4], which allows operations
on linearizable data structures (which meet certain interface
criteria) to be treated as primitive operations within larger
atomic transactions.

In this extended abstract, we discuss additional interface re-
quirements for durably linearizable data structures in order for

them to be atomically composable. We also present a simple,
universal, lock-free construction, which we call the chronicle,
for building data structures that meet these requirements.

II. COMPOSITION

Composition is a hallmark of transactional systems, allow-
ing a set of nested actions to have “all-or-nothing” semantics.
The default implementation arranges for all operations to share
a common log of reads and writes, which then commit or abort
together. Unfortunately, this implementation imposes overhead
on every memory access, and can lead to unnecessary serial-
ization when operations that “should” commute are unable
to do so because of conflicting accesses to some individual
memory location internally.

Boosting addresses both of these problems by allow-
ing operations on black-box concurrent objects to serve as
“primitives”—analogues of read and write—from the per-
spective of the transactional system. In a system based on
UNDO logs, memory updates are made “in place” and inverse
operations are entered in an UNDO log. For a write, the inverse
is a write of the previous value. For a higher-level operation,
the inverse depends on the semantics of the object (a push’s
inverse is a pop). In the event of a transaction abort, the log
is played in reverse order, undoing both writes a d higher
level operations using their inverses. For concurrency control,
semantic locks are used to prevent conflicts between operations
that do not commute (e.g., puts to different keys commute, but
puts to the same key do not; transactions that access disjoint
sets of keys can run concurrently).

We aim to extend the boosting of linearizable objects in
(transient) transactional memory so that it works for durably
linearizable objects in persistent transactional memory. To
do so, we must overcome a pair of challenges introduced
by the possibility of crashes. First, transactional boosting
implicitly assumes that a call to a boosted operation will
return in bounded time, having linearized (appeared to happen
instantaneously) sometime in between. While we can assume
that a durably linearizable object will always be consistent
in the wake of a crash (as if any interrupted operation had
either completed or not started), we need for composition to
be able to tell whether it has happened (so we know whether
to undo or redo it as part of a larger operation). Second,
transactional boosting implicitly assumes that we can use the
return value of an operation to determine the proper undo



operation. For composition in a durably linearizable system,
we need to ensure the persistence of the return value, so that,
for example, we know that the inverse of S.pop() is S.push(v),
where v is the value returned by the pop.

III. QUERY-BASED LOGGING

One method of durable boosting employs what we call
“query-based logging,” a technique applicable to both UNDO
and JUSTDO logging [5]. In our design, the boosted durable
data structure is responsible for maintaining sufficient infor-
mation about interrupted operations to ensure both that their
inverses can be computed and that they are executed only once.
An interrupted transaction can query the data structure after
the crash using a unique ID to gather this information.

The query interface is designed as follows. All the normal
exported methods of a boostable data structure take a unique
ID for every invocation (e.g., a thread ID concatenated with
a thread-local counter). There also exists a query method,
which takes a unique ID as argument and returns either NULL,
indicating that the operation never completed, or a struct
containing the operation’s invoked function, corresponding
arguments, and return value.

Boosting using query-based UNDO logging is straightfor-
ward. The transaction is executed sequentially, and acquires
the appropriate read, write, and semantic locks as needed.
Before a boosted operation, we log our intended operation
in the UNDO log. After the operation returns, we mark the
operation completed in the UNDO log, and, if appropriate,
record its return value. If the operation is interrupted, we can
use the query interface to determine if the operation completed
and what its return value would be. Using this information, we
can complete (or ignore) the UNDO entry, then roll back the
transaction in reverse using the normal UNDO protocol and
each operation’s inverse. JUSTDO logging works similarly,
but rolls forward from the interrupted operation.

A. The Chronicle

To facilitate the use of query-based logging, we present a
lock-free universal construction, called the chronicle, which
creates a queryable, durably linearizable version of any data
structure that linearizes at one of a statically known set of
compare-and-swap (CAS) instructions, each of which oper-
ates on a statically known location. This condition is met
by, for example, any object emerging from Herlihy’s classic
nonblocking constructions [6]. In our construction, each CAS-
ed location is modified indirectly through a State object.
Instead of using a CAS to modify the original location, an
operation creates a new global State object and appends it
to the previous version. By ensuring that all previous States
have been written to persistent storage before appending the
new State, we can ensure that all previous operations have
linearized and persisted. By attaching all method call data to
the State object associated with its linearization point, we can
always determine the progress of any ongoing operation.

To demonstrate the utility of the chronicle, Fig. 1 presents a
variant of the non-blocking Treiber stack [7]. Like the original,

1 class Node{
2 Object val;
3 // the stored object
4 Node* down;
5 // the next node down
6 };
7 class State{
8 State* next;
9 // the next State in

10 // the chronicle
11 Node* head;
12 // the head Node
13 int method;
14 // method invoked
15 int uid;
16 // a unique id for op
17 void* ret;
18 // return value of op
19 };
20 class Stack{
21 State* chronicle;
22 Stack(){chronicle=
23 new State(NULL,NULL,
24 INIT,0,NULL);}
25 };
26 State* Stack::flushChronicle
27 (State* fromHereForward){
28 State* s = fromHereForward;
29 while (s→next6= NULL){
30 flush(s);
31 s = s→next;
32 }
33 State* realState = s;
34 flush(realState);
35 // now chronicle is
36 // entirely flushed
37 return realState;

38 }
39 Object Stack::pop(int uid){
40 State* s = chronicle;
41 while(true){
42 s = flushChronicle(s);
43 Object x = h→head→val;
44 Node n = s→head→down;
45 s_new =
46 new State(NULL,n,POP,uid,x);
47 // append new State to the
48 // stack and chronicle
49 if(CAS(&s→next,NULL,s_new)){
50 flush(s);
51 // flush CAS to s→next
52 return x;
53 }
54 }
55 }
56 int Stack::push
57 (Object x, int uid){
58 State* s = chronicle;
59 while(true){
60 s = flushChronicle(s);
61 Node* n = new Node(x,s→head);
62 flush(n)
63 s_new =
64 new State(NULL,n,
65 PUSH,uid,SUCCESS);
66 flush(s_new);
67 // append new State to the
68 // stack and chronicle
69 if(CAS(&s→next,NULL,s_new)){
70 flush(s);
71 // flush change to s→next
72 return SUCCESS;
73 }
74 }
75 }

Fig. 1. Treiber Stack Chronicle Implementation

this version is a linearizable concurrent data structure. Unlike
the original, it provides durable linearizability and a queryable
interface. While the version here flushes the entire chronicle on
every operation, simple optimizations can be used to flush only
the incremental updates, and to garbage collect old entries.

REFERENCES

[1] J. Izraelevitz, H. Mendes, and M. L. Scott, “Linearizability of persistent
memory objects under a full-system-crash failure model,” in Proc. of the
30th Intl. Conf. on Distributed Computing, ser. DISC ’16, Paris, France,
2016, pp. 313–327.

[2] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Trans. on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, Jul. 1990.

[3] M. Herlihy and E. Koskinen, “Transactional boosting: A methodology
for highly-concurrent transactional objects,” in Proc. of the 13th ACM
SIGPLAN Symp. on Principles and Practice of Parallel Programming,
ser. PPoPP ’08, Salt Lake City, UT, USA, 2008, pp. 207–216.

[4] A. Hassan, R. Palmieri, and B. Ravindran, “Optimistic transactional
boosting,” in Proc. of the 19th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, ser. PPoPP ’14, Orlando, FL, USA,
2014, pp. 387–388.

[5] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via JUSTDO logging,” in Proc. of the 21st Intl. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems,
ser. ASPLOS XXI, Atlanta, GA, USA, 2016.

[6] M. P. Herlihy, “A methodology for implementing highly concurrent data
objects,” ACM Trans. on Programming Languages and Systems, vol. 15,
no. 5, pp. 745–770, Nov. 1993.

[7] R. K. Treiber, “Systems programming: Coping with parallelism,” IBM
Almaden Research Center, Tech. Rep. RJ 5118, Apr. 1986.


