

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Maximizing Performance
with

Thomas Wuerthinger (@thomaswue)
Senior Research Director
Oracle Labs
June 25, 2019

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement
The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, timing, and pricing of any
features or functionality described for Oracle’s products may change and remains at the
sole discretion of Oracle Corporation.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Startup Time Peak Throughput

Memory Footprint Max Latency

Packaging Size

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

standalone

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

native-image MyMainClass
./mymainclass

JIT AOT
java MyMainClass

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

GraalVM AOT for Native Images

Ahead-of-Time
CompilationApplication

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs JIT: Startup Time

• JIT
– Load JVM executable
– Load classes from file system
– Verify bytecodes
– Start interpreting
– Run static initializers
– First tier compilation (C1)
– Gather profiling feedback
– Second tier compilation (GraalVM or C2)
– Finally run with best machine code

• AOT
– Load executable with prepared heap
– Immediately start with best machine code

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs JIT: Startup Time

940 ms

2101 ms

988 ms

16 ms

37 ms

35 ms

0 ms 500 ms 1000 ms 1500 ms 2000 ms 2500 ms

Quarkus

Micronaut

Helidon

GraalVM AOT GraalVM JIT

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Java Flight Recorder Compilation Information

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs JIT: Memory Footprint

• JIT
– Loaded JVM executable

– Application data

– Loaded bytecodes

– Reflection meta-data

– Code cache

– Profiling data

– JIT compiler data structures

• AOT
– Loaded application executable

– Application data

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

121 MB

180 MB

106 MB

17 MB

41 MB

31 MB

0 MB 20 MB 40 MB 60 MB 80 MB 100 MB 120 MB 140 MB 160 MB 180 MB 200 MB

Quarkus

Micronaut

Helidon

GraalVM AOT GraalVM JIT

AOT vs JIT: Memory Footprint

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Web Server Startup and Memory Footprint

• JIT 800ms / 350Mb • AOT 8ms / 13Mb

Starting up and serving 2 requests in the first 10s

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Which is fastest?

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance is hard to measure

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs JIT: Throughput

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

1,000 10,000 100,000 1,000,000 10,000,000
Cumulative number of requests sent by ApacheBench

Native Image (CE)

JDK 8, Java HotSpot VM

Handled requests per second

GraalVM AOT

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Profile-Guided Optimizations (PGO)

native-image
--pgo-instrument

Instrumented
Binary

native-image --pgo Optimized
Binary

Profiles (.iprof)

Relevant
Workloads

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs JIT: Throughput

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

1,000 10,000 100,000 1,000,000 10,000,000
Cumulative number of requests sent by ApacheBench

Native Image (EE with PGO)

Native Image (CE)

JDK 8, Java HotSpot VM

Handled requests per second

GraalVM AOT with PGO

GraalVM AOT

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs JIT: Peak Performance

• JIT
– Profiling at startup enabled better

optimizations

– Can make optimistic assumptions about
the profile and deoptimize

• AOT
– Needs to handle all cases in machine code

– Profile-guided optimizations help

– Predictable performance

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

More Benchmarks…

• Optimizing a compiler for too few benchmarks results in typical
overfitting problems

• Therefore we started together with academic collaborators
https://renaissance.dev

• All benchmark data can be interesting; careful with conclusions though.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Rennaissance.dev

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs JIT: Max Latency

• JIT
–Many low latency GC options available
• G1
• CMS
• ZGC
• Shenandoah

• AOT
–Only regular stop© collector
– Assumes small heap configuration
– Can quickly restart; could use load

balancer instead of GC

• Peak vs max latency trade-offs:
– Loop safepoints
– Parallel stop-the-world GC

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs JIT: Packaging Size

• JIT
– Use jlink for smaller package
– Lightweight docker image

(e.g., alpine linux)

• AOT
– Everything in single binary
– Can run on bare metal docker
– Substantially smaller constant overhead

• Peak vs packaging trade-offs:
– Inlining
– Code duplication

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Startup TimePeak Throughput

Memory FootprintMax Latency

Packaging Size

GraalVM JIT GraalVM AOT

No Configuration

Can AOT get better?
– Collecting profiles up-front
– Low-latency GC option
– Tracing agent for configuration

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

GraalVM can do much more…

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Multiplicative Value-Add of GraalVM Ecosystem

Languages GraalVM Embeddings* *
Java

JavaScript

Ruby

R

Python

C/C++. FORTRAN, …

HotSpot JVM

Oracle RDBMS

Node.js

Standalone

Spark

…

Optimizations

Tooling

Interoperability

Security

Add your own language or emedding or language-agnostic tools!

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

GraalVM Community
• https://www.graalvm.org
• Open source on GitHub at

https://github.com/oracle/graal

https://www.graalvm.org/
https://github.com/oracle/graal

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

@thomaswue

Q/A
@graalvm

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

