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Safe Harbor Statement
The following is intended to outline our general product direction. It is intended for 
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon 
in making purchasing decisions. The development, release, timing, and pricing of any 
features or functionality described for Oracle’s products may change and remains at the 
sole discretion of Oracle Corporation.
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standalone



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  |



Copyright © 2019, Oracle and/or its affiliates. All rights reserved.  |

native-image MyMainClass
./mymainclass

JIT AOT
java MyMainClass
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GraalVM AOT for Native Images

Ahead-of-Time
CompilationApplication

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input: 
All classes from application, 

libraries, and VM

Iterative analysis until 
fixed point is reached

Code in 
Text Section

Image Heap in 
Data SectionImage Heap 

Writing

Output: 
Native executable
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AOT vs JIT: Startup Time

• JIT
– Load JVM executable
– Load classes from file system
– Verify bytecodes
– Start interpreting
– Run static initializers
– First tier compilation (C1)
– Gather profiling feedback
– Second tier compilation (GraalVM or C2)
– Finally run with best machine code

• AOT
– Load executable with prepared heap
– Immediately start with best machine code
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AOT vs JIT: Startup Time
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Java Flight Recorder Compilation Information
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AOT vs JIT: Memory Footprint

• JIT
– Loaded JVM executable

– Application data

– Loaded bytecodes

– Reflection meta-data

– Code cache

– Profiling data

– JIT compiler data structures

• AOT
– Loaded application executable

– Application data
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AOT vs JIT: Memory Footprint
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Web Server Startup and Memory Footprint

• JIT 800ms / 350Mb • AOT 8ms / 13Mb

Starting up and serving 2 requests in the first 10s
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Which is fastest?
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Performance is hard to measure
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AOT vs JIT: Throughput
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Profile-Guided Optimizations (PGO)

native-image 
--pgo-instrument

Instrumented 
Binary

native-image --pgo Optimized 
Binary

Profiles (.iprof)

Relevant 
Workloads
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AOT vs JIT: Throughput
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AOT vs JIT: Peak Performance

• JIT
– Profiling at startup enabled better 

optimizations

– Can make optimistic assumptions about 
the profile and deoptimize

• AOT
– Needs to handle all cases in machine code

– Profile-guided optimizations help

– Predictable performance
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More Benchmarks…

• Optimizing a compiler for too few benchmarks results in typical 
overfitting problems

• Therefore we started together with academic collaborators 
https://renaissance.dev

• All benchmark data can be interesting; careful with conclusions though.
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Rennaissance.dev
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AOT vs JIT: Max Latency

• JIT
–Many low latency GC options available
• G1
• CMS
• ZGC
• Shenandoah

• AOT
–Only regular stop&copy collector
– Assumes small heap configuration
– Can quickly restart; could use load 

balancer instead of GC

• Peak vs max latency trade-offs:
– Loop safepoints
– Parallel stop-the-world GC
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AOT vs JIT: Packaging Size

• JIT
– Use jlink for smaller package
– Lightweight docker image

(e.g., alpine linux)

• AOT
– Everything in single binary
– Can run on bare metal docker
– Substantially smaller constant overhead

• Peak vs packaging trade-offs:
– Inlining
– Code duplication
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Startup TimePeak Throughput
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No Configuration

Can AOT get better?
– Collecting profiles up-front
– Low-latency GC option
– Tracing agent for configuration
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GraalVM can do much more…
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Multiplicative Value-Add of GraalVM Ecosystem

Languages GraalVM Embeddings* *
Java

JavaScript

Ruby

R

Python

C/C++. FORTRAN, …

HotSpot JVM

Oracle RDBMS

Node.js

Standalone

Spark

…

Optimizations

Tooling

Interoperability

Security

Add your own language or emedding or language-agnostic tools!
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GraalVM Community
• https://www.graalvm.org
• Open source on GitHub at

https://github.com/oracle/graal

https://www.graalvm.org/
https://github.com/oracle/graal
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@thomaswue
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@graalvm
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