
Improved Dataflow Executions with User Assisted Scheduling

Daniel Goodman∗ Behram Khan Mikel Luján Ian Watson
University of Manchester

Oxford Road
Manchester, UK

{goodmand, khanb, mlujan, watson}@cs.man.ac.uk

Abstract—In pure dataflow applications scheduling can have
a huge effect on the memory footprint and number of active
tasks in the program. However, in impure programs, scheduling
not only effects the system resources, but can also effect
the overall time complexity and accuracy of the program.
To address both of these aspects this paper describes and
analyses effective extensions to a dataflow scheduler to allow
programmers to provide priority information describing the
preferred execution order of a dataflow graph. We demonstrate
that even very crude task priority metrics can be extremely
effective, providing an average saving of 91% over the worst
case scenario and 60% over the best case naive scenario.
We also note that by specifying the scheduling information
explicitly based on the algorithm, not the hardware, we provide
portability to the application.

Keywords-Dataflow; Scheduling; Mutable State

I. INTRODUCTION

In this paper we examine how user defined priorities can
be used within dataflow programming models to streamline
dataflow programs. This can reduce the levels of supporting
resources required by the system and scheduler to support
the dataflow program, and in the case of impure dataflow
applications allow reductions to their execution time and
improvements to their accuracy.

II. WHY DATAFLOW

Physical limits have brought an end to the ever increasing
performance of single core processors resulting in almost
all devices now containing multiple cores. This change has
forced parallel programming from being a niche area for a
small number of specialists in high performance computing
to a mainstream concern. The challenge of constructing par-
allel codes for this new target domain is compounded by the
interactive unstructured nature of the required applications
and the dynamic nature of the environments they execute in.
For example a programmer is unable to accurately predict
the future actions of a user, or the other demands on the
shared resources of the environment the application is going
to be used in. As a result the need for parallel applications
is not only now far more ubiquitous, but also the class of
programs is far harder to construct correctly. To attempt to

address this complexity a large number of different program-
ming models, libraries and tool suites have been proposed
that attempt to close the gap between what programmers are
capable of handling in a multi-core environment and what
our existing programming models are able to offer.

In this paper we are going to consider how the scheduling
strategies for the dataflow programming model [1], [2]
can be extended to improve its performance and resource
requirements. Dataflow programming is a model where the
program is broken into blocks of code called tasks, each
of which only uses a well defined set of immutable inputs
and produces a set of immutable outputs. Depending on
the granularity of the program these vary from a single
instruction to whole functions which can include calls to
other functions, allowing arbitrarily large computation units.
These tasks and their relationship can be represented by a
Directed Acyclic Graph (DAG) with the nodes representing
the tasks and edges representing the data dependencies
between these tasks. Hence the data flows through the graph
as the program executes, an example of such a DAG can
be seen in Figure 1. The presence of a well defined set of
inputs allows tasks to be marked ready for execution once
all the required data has been computed, and once started, to
execute to completion without interruption. This means that
unlike procedural code, where the execution is controlled by
the progression of a program counter, dataflow programs are
controlled by the flow of the data through the graph. As the
program is a DAG by construction it is not possible for it
to contain cycles, this coupled with the immutable nature
of the data passed between tasks makes programs deadlock
free and deterministic.

Dataflow programming has been shown to be very ef-
fective at exposing parallelism [1], [2], [3], [4], [5], [6] as
the side-effect free nature means segments of code forming
nodes whose inputs have been generated can be executed in
parallel regardless of the actions of other segments in the
graph and without effect on the deterministic result.

III. DATAFLOW AND STATE

The deterministic and race condition free properties of
pure dataflow programs make them very appealing as a

Figure 1. An example of a dataflow graph to calculate the 5th Fibonacci
number.

means of constructing programs for multi-core processors.
However, pure dataflow programs are limited by their de-
terminism which prevents the construction of programs that
would traditionally require shared state for either efficiency
or to support unstructured interactions. Examples of such
systems include banking systems, internet services and user
applications. These limitations can be overcome by adding
shared mutable state.

An example of a problem that requires shared state to be
solved efficiently is the travelling salesman problem. This
problem takes a connected graph as input, in which the nodes
represent cities and the arcs represent roads with weights
recording the distances between these cities, and returns a
tour where every city in the graph is visited and the distance
travelled is the shortest possible. Accurate solutions to this
problem are used on a daily basis by logistics companies
and saves millions of litres of fuel a year.

A brute force approach to this problem is not practical as
there are n! possible tours for n cities. Instead all efficient
techniques for solving this require a shared updatable lower
bound which is updated as better solutions are found. The
presence of this lower bound allows these techniques to
discard any solution that will exceed this lower bound before
any further time is spent on it. As a result the most efficient
versions are those which can quickly reduce the lower bound
to represent the length of the shortest tour, and can efficiently
calculate the lower bound for the partially constructed tours,
so that large sets of tours can be discarded.

This change adds an additional required property to the
scheduling strategy as unlike deterministic dataflow graphs
where the total computation is constant, the amount of
computation in this style of problem is dependent on the
order in which the tasks get executed. This means that

executing the tasks that will lower the bound by the largest
amount first can reduce the complexity of the computation.

Ideally the compiler and runtime would be able to auto-
matically determine the most appropriate order to run the
tasks in. However, to achieve this would require access
to the input data and a level of algorithm analysis that is
currently not possible outside of very domain specific lan-
guages. Given our difficulties constructing self-parallelising
compilers this is unlikely to be possible in the foreseeable
future. Simple heuristics such as counting the number of
tasks created by a task do not work, as in the case of the
travelling sales person all tasks can run the same code just
with different data, so all tasks would be placed in the same
category.

Given the difficulties in producing automated analysis of
programs the focus of this paper is simple user strategies for
the providing hints to the runtime system about the order in
which tasks should be executed for best average case running
of an algorithm.

IV. DATAFLOW AND SCHEDULING

If an unlimited number of cores are available scheduling
is very simple, every time a task has all the required inputs
it is assigned to a core for execution. However, as real
machines do not have an unlimited number of cores some
form of queuing strategy will be required if there are more
tasks ready to run than cores available to execute them.
Tasks waiting for inputs along with the arguments they have
received will also need to be stored. As dataflow programs
will typically contain many more smaller tasks than the tasks
that make up a conventional program, queuing strategies can
have a substantial effect on the behaviour of the program.
For example, the strategy used for the queuing can affect the
processor utilisation over the course of the application, the
size of the pool of ready tasks, the efficiency of the memory
architectures, and in the case of impure dataflow programs
the accuracy and rate of convergence. We will now briefly
look at each of these points.

Processor Utilisation If the critical path of any given
part of the dataflow graph is insufficiently explored there is
a risk that an insufficient number of tasks will be exposed
for execution later. This shortfall will prevent the processor
being fully utilised.

Pool Size Conversely if tasks which generate 2 or more
tasks are executed at a greater rate than tasks that do not
then the size of the queue can grow such that the scheduling
is impeded, slowing down the overall performance of the
application. For example the queue may no longer fit into
the cache available.

Memory Size Every task requires its arguments be stored
so that they are available to use. Once all the tasks that
require those arguments have been executed, the space they
occupy can be reclaimed. As such the memory footprint of a

program can vary greatly depending on the order that tasks
are executed in.

Memory Architecture The additional information pro-
vided by dataflow programming about the use of data allows
for memory hierarchies to be used more effectively, reducing
the level of cache stalls.

Accuracy and Convergence As discussed in Section III
the order that dataflow tasks are executed in stateful dataflow
programs can also effect the time to converge on a solution,
or the accuracy with which a solution is produced.

V. EXPERIMENT

To generate a qualitative assessment of the difference that
the scheduling order can make to a dataflow execution and
to experiment with how such priority information may be
cleanly added to the dataflow programs we used a modified
version of DFScala [7] with the MUTS [8] software trans-
actional memory to add mutable state. We then constructed
several benchmarks with support for prioritised tasks and
monitored the following parameters:

• Number of tasks ready for execution in the scheduler.
• Number of tasks waiting to receive all their inputs.
• Total number of tasks used in the execution of the

application.
We compare the results against three naive scheduling

strategies, FIFO, LIFO and Random.
• First In First Out, (FIFO) is a queue based strategy

where ready tasks are executed in the order that they
become ready.

• Last In First Out, (LIFO) is a stack based strategy where
the task that most recently became ready is executed
next.

• Random, to check that any improvements are not sim-
ply because of a randomisation the ordering of the tasks
we also include a strategy where the next ready task to
be executed is picked at random.

A. DFScala

DFScala [7] is a library for implementing dataflow
programs in Scala [9]. Developed as part of the Ter-
aflux project [10] it enables the construction of coarse
grained dataflow programs with comprehensive type check-
ing, nested parallelism and support for debugging tools. Im-
portantly DFScala also allows the passing of Tokens which
act as proxy’s to Task arguments, removing the need to pass
around tasks. This allows for simplified type signatures of
methods receiving Tokens and for a less restricted style of
programming.

B. Extensions

We extended the object that represents a dataflow task
to include a numeric value defining its priority with higher
values representing higher priorities and lower values repre-
senting lower priorities. By default tasks will have a priority

of 0 representing a neutral priority. We then replaced the
queue used by the scheduler with a priority queue ordered
using the task priority element.

Having added the priorities and a mechanism to use the
priorities we required a mechanism to set them. For this we
implemented three options:

• We constructed setter and getter methods that allow
a tasks priority to be assigned directly. This would
typically be done by the task when the task is created,
but could be done by any code that has access to the
task prior to it receiving its last argument.

• The priority that a task should execute with may
be dependent on the values of the arguments that it
receives. However if the value is being assigned to a
Token, the code performing the assignment will not be
able to set the task’s priority. Furthermore it may not
be appropriate for the assigning code to also assign
the priority. For example if it is some piece of general
purpose code that should not be closely coupled to the
task it is assigning to. To address this we added the
ability to designate a priority argument. The task will
then take whatever value is assigned to this argument
and use that as its priority. Again this would typically
be done when the task is created, but could be done by
any part of the code that has access to the task.

• Building on this last option, the priority may not be
represented by a single argument, or the argument may
need to be a changed to represent the priority, for
example, inverting the sign or converting the argument
to an integer value. This is accomplished by passing
the task a function that takes a task as its input and
produces an integer output. When the task receives
its last argument and becomes ready to execute this
function will be run taking the task as its argument and
the result will be set as the task priority. By default this
function is the identity function.

Examples of all three of these can be seen in Figure 2. As
dataflow tasks will only execute once all their inputs have
been computed, this does not introduce a risk of priority
inversion.

C. Benchmarks

The 4 benchmarks used to evaluate the different schemes
are: A branch and bound Travelling Salesman Problem; a
Monte Carlo Tree Search based Go playing A.I.; a recursive
Fibonacci number calculator; and 0-1 Knapsack. For each
benchmark we provide one or more strategies for assigning
priorities to tasks.

1) Travelling Salesman Problem: As described earlier the
travelling salesman problem requires the construction of a
tour of a connected graph such that the tour visits every node
in the graph and no shorter tours that fulfil this property
exist. An example can be seen in Figure 3.

// Create some tasks
val t1 = createTask(foo _)
val t2 = createTask(foo _)
val t3 = createTask(foo _)

// Assign a priority of 5 to t1 directly
t1.priority = 5

// Instruct t2 to use the value passed to
// its third argument for its priority.
t2.setPriorityArg3

// Provide a function to calculate the
// priority of a task from the tasks
// arguments. In this case multiplying
// argument 2 by the length of the list
// that appears as argument 3.
t3.priority(

(t:DFTask3[_, Int, List[String], _])
=> {t.arg2*t.arg3.length}

)

Figure 2. Examples of the different techniques for setting a tasks priority.
All of these methods type check, generating errors if there is a problem.

Figure 3. An example of a tour of weight 34 in a graph containing 6
nodes.

The particular implementation of branch and bound search
used in this benchmark recursively takes as its input a
table listing the distances between each of the n cities and
a description of any parts of the tour that have already
been constructed. Then if the complete tour is yet to be
constructed and can still be constructed it uses a heuristic to
select an edge and starts two searches, one in which this edge
has been included in the tour, and one in which this edge
has been removed from the graph. Each of these searches is
started as a separate dataflow task. When a complete tour is
constructed, it is compared to determine if it is better than
the current best tour, if it is an improvement then the global

solve(Tour t, Graph g)
{
//Check if the tour is complete or
//is not possible.
if(complete(t) || !connected(g))
//Check the tour is an improvement
if(improvement(t)

updateBestTour(t)
else {
e = selectEdge(t, g)

//Use the edge in the tour
t’ = addEdge(t, e)
if(getBound(t’, g) < Gobal.bound)

solve(t’, g)

//Remove the edge from the graph
g’ = removeEdge(g, e)
if(getBound(t’, g) < Gobal.bound)

solve(t, g’)
}

}

Figure 4. Pseudo code outlining the algorithm for solving the travelling
sales man problem.

state is updated to reflect this. Pseudo code representation
of the core of the algorithm can be seen in Figure 4.

Minimum Bound Selection: Each partial solution has
a lower bound used to determine if it is worth continuing
to construct tours based on this solution. This is calculated
by taking the distance of the tour currently constructed and
adding the values of the shortest remaining links that could
be used to ensure that every node is entered and exited once.
While this bound guarantees that all nodes are visited it does
not guarantee that there is one tour, not two or more disjoint
tours. As such this value is only a lower bound and will
normally increase as the tour is constructed and these sub
tours are merged into a single tour.

Scheduling Strategies: Lowest Bound First With this
ordering we choose the task that has the lowest lower bound
first. The logic for this is that the quicker the global lower
bound is reduced, the more aggressive the pruning of the
search tree can be, and so choosing to evaluate the problem
with the lowest bound may achieve this. However, as the
lower bound of a tour will rise the nearer it gets to the
completion, this is not necessarily true as this can just result
in prioritising the less compete tours.

Use First This strategy picks a task where the tour last
added an edge in preference to a task that last removed
an edge. This is done for two reasons: First the edge was
chosen because the heuristics in the algorithm predict that it
will be in the shortest tour; second, adding just n edges is
required to construct a tour, but just removing edges requires

n2−2n steps to construct a tour. As such the route by which
the tour is constructed will have a significant effect on the
overall runtime of the application. This property is true of
many stateful applications.

2) Go A.I.: This benchmark uses a Monte Carlo Tree
Search algorithm [11] to select the next move in a game of
Go. Unlike the other benchmarks, this benchmark does not
compute a guaranteed correct solution, instead it uses the
available compute time to produce an estimate of the best
next move.

This is done by getting many tasks to explore a tree of
possible moves randomly, spawning more tasks if a sequence
of moves looks promising. After sufficient exploration each
of these tasks will use an evaluation function, in this case by
playing a game using conventional solvers, to determine is
this position is advantageous or not. After a predetermined
number of runs a move is selected from the top of the tree
by picking the move that is most like to produce a winning
series. Heuristics are used to guide the exploration of the
tree towards the more favourable options. These include
heuristics based on the results already returned. As such
returning results back to the tree as soon as possible after
they are computed so they can guide the tree exploration is
advantageous. However, to avoid congestion at the root of
the tree results are not written back using the same task that
computed them, but are grouped to have their cumulative
result be written back by another task.

Scheduling Strategies: For this benchmark we imple-
mented just one scheduling strategy. This prioritises write
back tasks over all other types of task. It also groups all
tasks returning results to a given write back so they are
executed together by giving all tasks in a group the same
unique priority.

3) Recursive Fibonacci: As the name suggests Recursive
Fibonacci uses recursion to calculate the Fibonacci numbers.
In this case the 25th Fibonacci number. There are much
more efficient ways of calculating Fibonacci numbers, but
this technique is an effective means of generating a large
dataflow graph in which a very large number of tasks can
be active at any one time. An example of the graph can be
seen in Figure 1.

Scheduling Strategies: We tested two different Schedul-
ing strategies:

• Strategy 1 attempts to control the number of active tasks
by prioritising the additions over the calculation of the
lower Fibonacci numbers as these tasks do not generate
any further tasks.

• Strategy 2 extends this by always calculating the task
with the smallest Fibonacci number first.

4) 0-1 Knapsack: 0-1 Knapsack is an optimisation prob-
lem requiring items to be picked from a set such that their
weight does not exceed a given bound while maximising
the overall value of the items. This benchmark solves the
problem through the use of dynamic programming. The

Figure 5. The data dependencies when using dynamic programming to
solve a 0-1 Knapsack problem.

resulting table is split into blocks, with each block being
dependent on the blocks to its left and above it as shown
in Figure 5. In this instance there are 1000 items and a
maximum weight of 10,000.

Scheduling Strategies: We tested two different Schedul-
ing strategies:

• Strategy 1 prevents tasks being left behind and controls
the rate at which new tasks are created by ensuring each
diagonal row has all its tasks completed or executing
before the tasks in the next row can begin executing.

• Strategy 2 prioritises the completion of entire rows.
This does not prevent the computation of multiple rows
simultaneously, but means that there will normally be
no more rows being computed than the number of
available cores, and only 1 row of tasks will be waiting
for execution at any time.

VI. RESULTS

We will now consider the results of running these bench-
marks. These are presented in Figures 8, 6 and 7. Fig-
ures 8 shows that the improvement provided by the different
strategies cannot be attributed to randomisation and that no
naive strategy performs best for all the benchmarks. For pure
programs the priority based strategies are able to outperform
even the best naive solutions. With the Go benchmark the
priority based solution is matched by a pure LIFO. Only
for the TSP benchmark are less scheduling resources used
by a naive solution than a priority based one, but these
priority based solutions are aiming for convergence speed,
and the resource requirements are simper to those of other
benchmarks. As expected, using the lower bound to set the
priority for TSP results in a concentration on the shorter
tours and under performs. This highlights the need for

Figure 6. A graph showing the number of returned results when each task
starts under the different scheduling strategies. Higher is better.

Figure 7. A graph showing the average number of tasks used and there in
proportionately the execution time for the travelling salesman benchmark
with the different scheduling strategies. FIFO used an average of 3072, so
has been removed for reasons of clarity. Lower is better.

profiling of dataflow graphs to ensure that they are behaving
as expected.

Figure 6 shows that the priority based scheme equals
the best return rate for the naive solutions, providing the
highest possible levels of accuracy by making the earlier
results available to the later tasks. However, unlike the naive
solution, the prioritised version provides assurances that this
behaviour is reliable and predictable.

Figure 7 shows that the simplest priority strategy can
provide over 3 times improvement in convergence over the
best naive strategies.

A. Processor Utilisation

Looking at the risk of there being insufficient tasks, the
results show that none of the scheduling strategies tried
resulted in an insufficient number of tasks being available to
exercise all of the cores in the system. This is expected as
typically dataflow programs will generate far more tasks than
there are cores to execute them, and we are only effecting
which of these many tasks are executed first. As we add

more cores these execute more tasks which then generate
more tokens and more tasks resulting in an increase in the
number of available tasks. Therefore as we increase the
number of tasks we also increase the number of available
tasks to run on these cores. This is particularly clear when
looking at the row based strategy in for 0-1 Knapsack.
Here adding extra cores increases the number of ready
tasks proportionately as extra rows are made available to
be computed in parallel.

B. Resource Utilisation

The results show that the scheduling strategy can make
an enormous difference to both the number of tasks in the
system as a whole and the number of ready tasks that the
scheduler has to handle at any given time. No single naive
scheduling strategy performed best with all the benchmarks
and our priority based scheduler was able to equal or
outperform the best result performance produced by the
naive scheduling algorithms for all but the TSP benchmark,
but for this benchmark we targeted quickest convergence
instead of least storage and tasks. The average reduction in
required scheduling resources can be seen below.

Waiting Ready Total
FIFO 74.0% 91.1% 90.1%
LIFO 57.2% 59.7% 59.6%

Random 96.7% 59.6% 86.3%

With peaks of over 98% for Go and Fibonacci against
FIFO and 91% for knapsack against LIFO. This represents
a significant reduction in required system resources both for
scheduling and to store transient results.

C. Convergence and accuracy

Aside from resources required to store and manage all
dataflow programs we demonstrate how for impure dataflow
programs, programmer assigned priorities can improved the
performance and accuracy with the Travelling Salesman and
Go Playing benchmarks. The results of these can be seen in
Figures 6 and 7. They show that for the Travelling Salesman,
the addition of task priorities reduced the number of steps
required to reach a solution by 68% relative to the best naive
scenario. As this is information that it will not be possible to
automatically derive from the program, this clearly illustrates
the need and benefit of providing such a system.

The results from the Go benchmark show that prioritising
short tasks that return results over tasks that are computing
further results allows the later tasks to take full advantage of
the existing results, while in the worst case scenario, a FIFO
queue will both maximise the required system resources
and prevent any of the results being returned before the
evaluations have been started.

VII. CONCLUSION

The need for impure dataflow graphs to handle many
real world problems adds a new dimension to dataflow

(a) TSP 1 Core (b) TSP 8 Cores (c) Go 1 Core

(d) Go 8 Cores (e) Fibonacci 1 Core (f) Fibonacci 8 Cores

(g) 0-1 Knapsack 1 Core (h) 0-1 Knapsack 8 Cores

Figure 8. Average queue sizes using different strategies and 1 or 8 cores for each of the benchmarks. As all of these include sufficient tasks to fully
exercise all available cores, lower is better in these graphs.

scheduling as now the order of execution can also affect
the accuracy and execution complexity. We demonstrate this
with a Go A.I. where scheduling effects the speed with
which results are returned and therein their availability to
other tasks to better inform their move selection as shown
in Figure 6, and with TSP where scheduling reduces the
number of steps to convergence as shown in Figure 7.

This paper has shown how a simple interface can allow
programmers to provide priority information to tasks in

dataflow programs. This information can reduce the system
resources required to store and manage tasks and their
arguments that are waiting to execute. Further to the saved
resources, for impure dataflow graphs, this information can
improve the speed of convergence and accuracy of results.

To demonstrate these effects we have constructed four
benchmarks, two pure and two impure. These have shown
an average saving of 91% over the worst case scenario and
60% over the best case naive scenario. As this scheduling

information is explicitly provided, this information also
improves performance portability as the strategy is main-
tained between runtime systems and can be incorporated into
other scheduling policies something that was not previously
possible.

VIII. RELATED WORK

Maintaining bounds on the number of active tasks is a
problem that dates back to the earliest dataflow machines [3],
[6]. Initial attempts to maintain a bound on the number
of concurrent tasks was done by adding explicit control
statements to the program that added false dependencies to
restrict the breaking up of the program into tasks. Unfortu-
nately this was, for the most part, unsuccessful; producing
difficult to program and fragile solutions that were highly
dependent on the hardware and software environment that
they were operating in. For example in order to maintain a
sufficiently small number of tasks in one scenario the depen-
dencies could be so constraining that in another scenario, or
on another machine, there would be an insufficient level of
parallelism.

Other software solutions that target specific areas include
k-bounded loops [12] and dynamic software throttling [13].
K-bounded loops prevent iterative statements from exceed-
ing the bounds of a specific machine by only allowing a
predetermined number of iterations of a loop to be turned
into tasks at a given time. While effective, this only works
for iterative statements. Dynamic software throttling gen-
erates two versions of a program one which is serial and
one which is parallel, and execution switches between them
depending on whether more or less parallelism is required.

Ultimately it was felt that hardware based solutions were
required, so to ensure that the programs remained within
bounds, schedulers would switch between a queue based
task selection (FIFO) and stack based task selection (LIFO)
to either grow or shrink the pool of available tasks [14].
However, this is problematic as stack based selection grows
the set of ready tasks if the problem is iterative and shrinks it
if the problem is recursive, conversely queue based selection
grows the set of ready tasks for recursive problems and
shrinks it for iterative problems. This situation is com-
pounded further by the fact that the set may not actually
shrink with either strategy, but may simply grow less quickly.

ACKNOWLEDGMENT

The authors would like to thank the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013)
for funding this work under grant agreement no 249013
(Teraflux-project). Dr. Luján is supported by a Royal Society
University Research Fellowship.

REFERENCES

[1] D. Cann, “Retire Fortran?: a debate rekindled,” Commun.
ACM, vol. 35, pp. 81–89, August 1992.

[2] C. Kyriacou, P. Evripidou, and P. Trancoso, “Data-driven
multithreading using conventional microprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 17,
no. 10, pp. 1176–1188, 2006.

[3] J. R. Gurd, C. C. Kirkham, and I. Watson, “The Manchester
prototype dataflow computer,” Commun. ACM, vol. 28, pp.
34–52, January 1985.

[4] S. L. Peyton Jones, C. Clack, J. Salkild, and M. Hardie, “Grip:
A high-performance architecture for parallel graph reduction,”
in Proc. of a conference on Functional programming lan-
guages and computer architecture, 1987, pp. 98–112.

[5] I. Watson, V. Woods, P. Watson, R. Banach, M. Greenberg,
and J. Sargeant, “Flagship: A parallel architecture for declar-
ative programming,” in ISCA, 1988, pp. 124–130.

[6] J. Darlington and M. Reeve, “Alice a multi-processor re-
duction machine for the parallel evaluation cf applicative
languages,” in Proceedings of the 1981 conference on Func-
tional programming languages and computer architecture,
ser. FPCA ’81, 1981, pp. 65–76.

[7] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan,
M. Luján, and I. Watson, “DFScala: High level dataflow
support for Scala,” in 2nd International Workshop on Data-
Flow Models For Extreme Scale Computing (DFM), 2012.

[8] D. Goodman, B. Khan, S. Khan, M. Luján, and
I. Watson, “Software transactional memories for Scala,”
Journal of Parallel and Distributed Computing, vol. 73,
no. 2, pp. 150–163, Feb. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2012.09.015

[9] M. Odersky, L. Spoon, and B. Venners, Programming in
Scala: [a comprehensive step-by-step guide], 1st ed. USA:
Artima Incorporation, 2008.

[10] The TERAFLUX project, http://www.teraflux.org, 2010.

[11] G. Chaslot, M. H. M. Winands, and H. J. van den Herik,
“Parallel monte-carlo tree search,” in Computers and Games,
2008, pp. 60–71.

[12] Arvind and D. E. Culler, “Managing resources in a parallel
machine,” in Proc. of the IFIP TC 10 working conference on
Fifth generation computer architectures, 1986, pp. 103–121.

[13] in Functional Programming Languages and Computer Ar-
chitecture, ser. Lecture Notes in Computer Science, J.-P.
Jouannaud, Ed., 1985, vol. 201.

[14] C. A. Ruggiero and J. Sargeant, “Control of parallelism in the
manchester dataflow machine,” in Functional Programming
Languages and Computer Architecture, Portland, Oregon,
USA, September 14-16, 1987, Proceedings, ser. Lecture Notes
in Computer Science, G. Kahn, Ed., vol. 274. Springer, 1987,
pp. 1–15.

