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Abstract

Program analysis techniques play an important role in detecting security vulnerabilities. In
this paper we describe our experiences in developing such tools that can be used in an industrial
setting. The main driving forces for adoption are low false positive rate, ease of integration in the
developer’s workflow and results that are easy to understand. We also show how program analysis
tools had to evolve with the evolving needs of the organisation. We conclude with our vision on
how program analysis tools will be melded with DevSecOps.

1 Introduction

Security of applications is a continuously changing domain. However, from an cybersecurity perspec-
tive this domain is not well understood. Topics such as infrastructure, perimeter, or network security
are better understood than application-level security. Consequently, the role of tools such as firewalls
and virus scanners is self-evident. But given that many organisations use large custom software-based
applications for their core business, security of these applications are of concern to the software de-
velopers. There is no single class of tools that are associated with application-level security.

This problem is further compounded by the fact that in early days, there were very few people
who supported security as an integral part of the development cycle. Techniques such as secure coding
guidelines, which can be checked using lightweight tools, were not enforced [JR04, EGLPAMFE20].

The reactive approach to fixing security problems when they arise can be expensive, challenging,
and time consuming. Hence, more recently, the shift-left approach to security has been adopted by
software developers. Program analysis tools, although not as well understood as tools such as firewalls
or virus scanners, have become key components in the software development life cycle. They are used
to detect a variety of defects and give rapid feedback to the developer. There are many commercial
tools that have been integrated into the CI/CD pipelines. This ensures that the defects can be fixed
by the developer before the software is released. Because coding errors are the reason for a number
of security vulnerabilities, over the years program analysis tools have evolved from detecting general
software bugs to detecting security-related defects.

As software systems have evolved, the types of security vulnerabilities have also evolved. Thus
the tools developed for a specific class of applications cannot always be used for another class of
applications. For instance, tools that work on system code are not useful for web-based applications.
This imposes additional burden on the tool developers to keep their tools relevant. If these tools are
not easy to integrate with the developer’s workflow, the developer has to master a number of tools. It



is imperative that the analysis tool developers and the application developers (who use the analysis
tools) work together to reduce the overheads of adoption in practice.

One key question is what are security vulnerabilities. Without a clear definition, the usefulness
and effectiveness of tools cannot be evaluated. Asking the developer to provide such information is
not practical. Because most developers involved in developing large complex applicable are skilled,
the defects that are present in their code are because of the complex interactions between different
components. Hence simple tools like linters and AST-based scanners are not sufficient. Program
analysis tools, that are more advanced than linters and scanners are required. However, they impose
a high cognitive load on the developers. The developers need to understand how to use the analysis
tools, understand the reports produced by the tools and find a solution to fix the vulnerability without
breaking changes. Because most developers are not security experts, they cannot provide security-
related information that can guide tools. Any tool that burdens the developer with defining security
vulnerabilities for their applications will fail. Hence security issues that are identified by the security
community (e.g., OWASP Top 10 [OWA]) need to be used to drive the analysis.

In this paper we summarise more than a decade of our experience with program analysis tools
and their evolution, especially in the context of security analysis. This evolution was influenced
by the following factors. 1. The changes in the needs of the organisation; 2. The requirements of
the developers consuming our tools; 3. The varying landscape in the technology used to develop
applications; and 4. The analysis techniques developed by the research community at large.

The paper is structured as follows. Section [2| discusses details of the evolution of our tools that
includes the discussion of static analysis [2.1] and dynamic analysis [2.2] Section [3] summarises the
lessons we have learned from developing the variety of tools. Section 4{concludes the paper with our
vision of how such tools will have an impact on the software development landscape that continues to
change rapidly.

2 Evolution of Application Domain and Techniques

Up until the early 2000s, most systems were developed using C. The most common errors and vul-
nerabilities were related to memory management including buffer overflows, use after free and illegal
pointer references. Bug detection approaches to support the developer therefore focused on modelling
memory including arrays and numeric expressions that were used to access the memory [MRS10].
The effectiveness of static analysis tools led to commercial bug-finding tools [BBC'10] where the
focus was not on soundness but finding bugs that matter on large codebases. Given the size of the
codebases, techniques that helped the developers understand the code were also needed.

In the early 2000s, however, J avzﬂ rose to prominence as web applications became ubiquitous
and dominated the programming language landscape for roughly 15 years. Being a memory-safe lan-
guage, the analyses that were relevant to C did not apply to Java and much of the focus shifted to
detecting null pointer exceptions and injection vulnerabilities. While modelling memory was neces-
sary for detecting null pointer exceptions, the specifics were different than those used for C programs.
Here one needed a model for the heap where objects were stored and what variables and named-fields
“pointed-to” each object. For injection vulnerabilities, taint analysis which was not directly relevant
for C programs had to be developed. Because of various security vulnerabilities reported, the tech-
niques had to address both the JDKE] (the Java Platform) and Java-based applications.

1Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
2JDK is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.



In recent years, languages like JavaScript and Python have gained in popularity, calling for a new
generation of analysis tools capable of producing precise reports despite their highly dynamic nature.
A specific problem is that of call graph generation as it underpins all analyses. Figure [I] presents the
overview of our experience in the evolution of the requirements and hence the development of specific
tools and techniques. These tools and techniques will be expanded in the following sections.
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Figure 1: Summary of Evolution

2.1 Static Analysis: Parfait

Systems Level Code From the perspective of the user, i.e., the developer, the four main properties
desired from static analysis tools are precision, recall, scalability, and usability. Circa 2007, commer-
cial static analysis tools were suffering from the following three major flaws. 1. They produced large
amounts (e.g. 30%-50%) of false positives; 2. They took days or weeks to analyse large (e.g. MLOC)
code bases; and 3. They did not integrate well with existing build processes.

From a developer’s view, the above properties do not have the same priority. An imprecise analysis
will waste the developer’s time, cause frustration and be abandoned quickly. A slow analysis hinders
usability by forcing developers to context-switch back to potentially outdated prior work and account
for changes that happened since the analysis ran. A tool that cannot be integrated smoothly with the
developer’s workflow is unlikely to be used. An analysis that produces correct, but hard-to-understand
reports will be mis-represented as producing false positives. Optimising for any one of the desired
features invariably affects the other features adversely. From a practical perspective, a fast and precise
analysis that misses some defects but measurably improves security by eliminating defects is thus far
better than a high recall analysis that is not used at all.

These expectations from the developers and the limitations of commercials tools on our internal
codebases were recognised, which led to the development of the Parfait static analyser for C programs
[CKL™12]. From its early days, the main focus of Parfait was to deliver a highly scalabile and precise
analyses. Specifically, the aim was for Parfait to take less than 10 min per MLOC on a standard
desktop machine, and a false positive rate of less than 10%.



Achieving high scalability and precision is only the first step to adoption, however. Even the
best analysis tool will be shelved unless non-expert developers can also run it, integrate it in their
development lifecycle, understand its reports, and take action. This need was also recognised early on
in the development of Parfait and drop-in replacements for commonly used compilers at the time like
gcc, icc and Oracle Solaris Studio were made available. A web application was also developed to
facilitate report visualisation and classification. Over time, it was integrated with bug tracking systems
to allow one-click creation of bug reports.

Achieving high precision and scalability on large code bases required careful thought and design.
First, we realised that common assumptions made by static analysers at the time did not hold for large
code bases. When dealing with industrial code bases, one cannot assume that: 1. The entire code base
can be loaded in memory; 2. All dependencies can be compiled from source; and 3. All dependencies
are available to the analysis (i.e., the closed-world assumption).

Parfait’s analysis, thus, had to be modular and summary-based to analyse large programs in
chunks, produce composable summaries, and ultimately report defects about the whole program.
Second, because some dependencies might be unavailable, the analysis has to operate based on the
assumption that certain program execution paths will be truncated (e.g., if the path goes through an
unavailable dependency).

To address these challenges, Parfait’s analyses are bottom-up and on-demand [SGSBO0S, [SBO6]]
starting from points to interest (POI) and working their way backward along all possible execution
paths. This strategy allows Parfait to report all (partial) program paths reaching a POI, as opposed to a
top-down analysis that might be unable to even reach a POI due to missing dependencies. On-demand
analysis also gives developers the flexibility to choose the POI that are relevant in their context and
avoid paying the cost of unwanted analyses. On-demand analysis, when combined with persistent
summaries, also enables incremental analysis [KOAL19]. A developer can indeed limit the analysis
to POI in her commit, knowing that Parfait will incrementally re-compute the summaries that need to
be updated.

[Figure 2|captures several of the latest features of Parfait. In it, C. g is the POI and the dashed arrows
highlight the propagation of summaries in a bottom-up fashion. Yellow boxes represent modules,
which can be analysed in an incremental manner. Finally, block arrows highlight the querying and
updating of persistent summaries for a given system.

Since the inception of Parfait in 2007, the software development lifecycle has sped up quite sig-
nificantly, integrated development environments (IDEs) have become more powerful, and developers
are now expecting near instantaneous feedback. Local online analysis that highlights defects as one
types is indeed becoming the norm, leaving nightly scans for global analyses that require more time
and resources. To address these new expectations Parfait now leverages the Language Server Protocol
(LSP) to perform advanced local static analysis in the background and in a variety of IDEs, to report
defects as the code is being edited.

Parfait takeaways
* Parfait’s analyses have been designed from the start for precision and scalability.

* While precision and scalability are essential, ease-of-use and timely reporting will ulti-
mately drive the adoption of a static analysis tool by a wider audience.

While we have presented our experience starting around 2007 here, others have confirmed the
above observations in their organisation [SvGJ™15].
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Figure 2: On-demand, bottom-up, modular, incremental and summary-based analysis in Parfait
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Frappé As Parfait gained popularity and developers started consuming its defect reports, it became
clear that flow-like traces did not always provide enough contextual information for triage and reme-
diation. Complex defect traces often required investigation of upstream calls and variable usage to
determine if they were true or false positive. Alternatively, some defects require fixes that can af-
fect other downstream code. shows an example null pointer dereference report in OpenJDK
where a dictionary might return NULL when a value is retrieved.

A developer reviewing this report and attempting a fix might want to investigate other uses of the
dictionary, for example. Predicting which defect will require further investigation and what questions
a developer will ask is, however, extremely difficult. It was decided at the time that this kind of
code comprehension tasks were best left to an interactive tool that could be driven by developers
themselves. The Frappé tool was born [HBC13].

Because code comprehension tasks often include elements of static analysis (e.g. What are the
callers of this method? Where is this variable defined?), Frappé re-uses the same analysis infrastruc-
ture as Parfait to pre-compute various analyses (e.g. call graphs, def-use chains, and basic pointer and
macro resolution), and adds graph-based querying and visualisation capabilities. To accommodate
different types of tasks and developers, Frappé provides a web-based interface for interactive code
exploration as well as Emacs and Vim integrations that provide a similar user experience but more ad-
vanced querying capabilities than commonly used tools like ctags and cscope. Over time, Frappé’s
capabilities evolved from single commit visualisation and querying to multi-commit navigation, al-
lowing to diff and pinpoint faulty commits in a history. shows how the impact of commits
on multiple files can be visualised. To support advanced queries, Frappé was also extended with a
graph-based representation of code that can be interactively queried using PGQL [vVRHKT 16]. This
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Figure 3: A source view of an OpenJDK defect report
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is a generalisation of CodeQLElwhich focuses only on queries related to vulnerabilities.

A natural but unplanned use of Frappé was for change impact analysis and test case selection. In
an industrial setting, it is often impractical, or even impossible to run an entire test suite after every
code change, and selecting a subset of test cases that are relevant becomes crucial. Using the code
querying features of Frappé, developers are now able to determine the functions that are potentially
impacted by their changes, rank them, and select the test cases that should be run first.

Frappé takeaways

* Understanding and fixing complex bugs often involve understanding code beyond the bug
trace.

* Code comprehension tools not only help understanding bug traces but also selecting the
test cases to run following a fix.

Java Platform Around 2012-2013, several O-day vulnerabilities were reported against the JDK,
which allowed attackers to bypass the Java sandbox and completely take over the host machine. These
defects, dubbed as caller-sensitive method vulnerabilities [CGK15]], were highly specific to the JDK,
with literally no tools available to automatically detect them. Following the initial attacks, there was
a call to action at Oracle that sparked an effort to extend Parfait to also support the Java language and
detection of JDK-specific vulnerabilities.

Given that Parfait operates on the LLVM bitcode intermediate representation, the first step was
to translate stack-based Java bytecode to register-based LLVM bitcode. We perhaps naively assumed

3https://codeql.github.com/



that analyses for C code could then be ported with minor adaptations to support features in Java. But
we had not anticipated the challenges ahead of us. Java features such as classes and virtual calls
do not have straightforward mapping to C constructs and required significant extensions to Parfait.
Furthermore, where efficient reasoning about arithmetic operations was key to achieve high precision
in C programs (e.g., to reason about buffer overflows), precise resolution of virtual calls turned out to
be key in Java programs.

Existing solutions such as Class Hierarchy Analysis (CHA) that conservatively resolve virtual
calls based on the declared type of the caller turned out to be much too imprecise. Conversely, more
precise techniques using points-to analysis were prohibitively expensive or even impossible to run
on code bases like the JDK [SBL11[]. Drawing from our experience scaling Parfait, our first step
was to convert an existing whole-program points-to analysis (DOOP) [SB135[] into a demand-driven
one through slicing [ASK15]. Starting from a POI, our approach first produced a backward slice
before launching the “whole-program™ analysis on the slice only. Analyzing the JDK, which is a
library, also presented unique challenges from a program analysis perspective. As we mentioned
earlier, most static analysers assume that the entire program is available at analysis time (i.e., close-
world assumption). While this is rarely the case for large code bases, this assumption never holds
for libraries, which are meant to be called from arbitrary programs and operate on arbitrary objects
(i.e. open-world assumption). To enable the evaluation of existing whole-program points-to analysis
frameworks on library code, we designed an abstraction, called the most-general application (MGA),
that acted as a stub for all possible programs calling into the library [AKS15]. This effectively over-
approximates the call-graph within the JDK.

Java platform analysis takeaways

* While analysis frameworks can be made language-agnostic, analyses are often language-
specific.

* Most static analysis implicitly operate on a closed-world assumption, which is unsuitable
for the analysis of libraries or partial programs.

Java-based Web Applications Once basic support for Java analysis was in place, the logical next
step was to extend Parfait to support security analysis of Java EE (now Jakarta EE) web applications,
which account for a large proportion of enterprise applications. Compared to the JDK, Java EE adds
several layers of abstractions over the core Java language that directly impact the control and data
flows of applications and need to be accounted for by the analysis. An example is Java servlets, which
are classes designed to handle requests (e.g. HTTP or others) and return a response. The mapping
from a request to a servlet is typically handled by a servlet container that is also responsible for
managing the life cycle of servlets, providing concurrent request processing, etc. From a program
analysis perspective, analysing Java EE applications thus requires analysing the servlet container,
which itself runs on top of a web server. Precisely analysing the complete application stack is not
only prohibitively expensive, it is also beyond the capabilities of all state-of-the-art static analysers.
This is a well known, but rarely acknowledged fact of static analysis: every popular programming
language has constructs that cannot be precisely analysed [LSS™15]. It is also important to remember
that developers program against APIs, not implementations. From that perspective, analysing the
complete application stack is not only a waste of time, it is also detrimental to the understanding of
static analysis reports. A good report should not conflict with developers’ mental models and reports
that span the whole application stack break that contract. For these reasons, it is common practice



to abstract the application stack into a model that allows for fast and precise partial program static
analysis while being transparent to the analysis’ consumers [SAP" 11, ARF*14].

Because injection vulnerabilities are among the most common flaws in web applications [OWA]],
our main objective was to develop a taint analysis that could flag unsanitised attacker-controlled inputs
flowing to security-sensitive operations. Our model thus needed to capture 1. entry points into the
application; 2. sources of attacker-controlled inputs (i.e., taint sources); and 3. dynamically induced
dependencies (e.g., dependency injections).

While our models were manually designed, automatic inference of models is an active area of
research [AB16, HSC15].

With a solid model of the application container in place, we could tackle our next challenge:
designing a static taint analysis for Java EE web applications. Drawing from our experience analysing
the JDK, our requirements were pretty clear by that time: the analysis had to be bottom-up, and
demand-driven. Unfortunately, the custom strategy we had deployed for the JDK did not meet our
precision and scalability criteria for large-scale deployment to a wider audience, which led to the
development of a “pure” bottom-up and on-demand analysis that was better suited for partial program
analysis. Inspired by the Boomerang approach [SNQDAB16] that uses access paths to resolve points-
to relations instead of whole-program heap modelling, we implemented a backwards-only access path-
based taint analysis on top of the IFDS framework [RHS95]. Trading off the soundness of Boomerang
that alternatively performs backward and forward analyses to resolve field accesses for an unsound
backwards-only analysis was necessary for Parfait to meet its scalability and precision requirements.

Java Web analysis takeaways

* Web frameworks use hard-to-analyse and highly dynamic constructs, and require mod-
elling to enable analysis.

* Access paths aliases, contrary to whole-program heap modelling, enable scalable bottom-
up and demand-driven analysis of Java EE web applications.

Python Support Parfait gained traction within Oracle, and eventually demand grew for it to support
analysis of additional programming languages. A popular choice for web applications, besides Java,
was Python. We therefore set about implementing support for analysis of Python. As with Java, the
first step was translation to LLVM bitcode. Also as with Java, the resolution of dynamic calls proved
critical to analysis, but in this case even more so, since in Python all function calls are effectively
dynamic.

Python, as with other dynamic languages, raises significant challenges for static analysis [Mad15]].
Precise type inference, necessary for dynamic call resolution, becomes significantly more important
as compared to when analysing Java. Again we applied the principles we had used earlier: abstract
away unnecessary detail to achieve reasonable precision while remaining scalable. Python classes, as
in various other dynamic languages that have the notion of class, are malleable and their methods can
be injected or modified at run time; however, in practice, this is done only in specific cases and Python
programs can to a great degree be viewed as if they were written in a less dynamic subset.

By recognising class and method definition instructions within the intermediate representation
(after translation from Python bytecode), Parfait is able to determine a class hierarchy along with the
named methods belonging to each class, and by assuming that import statements create static aliases to
other classes or modules, it can resolve enough references to bootstrap an enhanced type propagation
pass that in turn allows resolution of dynamic calls. Once this is done, the IFDS-based taint analysis
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developed for Java can be used for the analysis of Python code. Parfait’s architecture which supports
C, Java and Python is shown in Due to the assumptions made the analysis has imperfect
precision, but it is good enough and remains scalabe. This is in keeping with the overall philosophy
of practical and useful analysis in an industrial context.

Python analysis takeaways

* Relying on common design idioms trades off precision for scalability, but in practice may
be sufficient

* Taint analysis demonstrates that static analyses can be reused across different languages.

2.2 Dynamic Analysis

Where Java EE applications were already stretching the limits of static analysis, the advent of lan-
guages like JavaScript and Python did impose a shift to dynamic analysis. Our experience with static
JavaScript analysers [NHG19,JGHZ19]] indeed confirmed that existing static analysis frameworks for
JavaScript do not scale to large code bases yet with the desired level of precision, prompting us to
explore other avenues.

Affogato Affogato [[GHJ18|| is an instrumentation-based dynamic analysis tool for Node.js and
was our first attempt at industrial dynamic analysis. Because of the runtime overhead they impose
[SKBGI13| IKTSS18], adoption of dynamic program analysis tools in industry has traditionally been
low. With Affogato, our aim was to design a dynamic taint analysis tool that was suitable for test-time
analysis (e.g. < 2x slowdown), where tests would provide the inputs and execution setup.

Our initial investigations very quickly revealed that “traditional” dynamic taint analysis, which
requires heavy instrumentation to track the flow of tainted values through code and memory, would not
only never meet our performance requirements, but were also causing so many crashes that they were
practically unusable. First, we discovered that the slowdowns incurred by the analysis would often
trigger race conditions or exceptions in code using constructs like setTimeout and setInterval.
Second, we realised that the common dynamic analysis strategy of “transparently” proxying objects
to intercept operations like field reads and writes often broke the semantics of programs relying on
object identity. While it can be argued that these are bad programming practices, the fact is that they
are common enough that they cannot be ignored. More recent work solves this issue by avoiding
dynamic proxies altogether [KTSS18].
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Hence, we turned our attention to an unsound, yet highly tunable and transparent alternative:
taint inference [Sek09]]. Taint inference uses string similarity metrics to infer the flows of values
between instrumented program points. While conceptually simple, taint inference allows for non-
intrusive instrumentation and is a perfect fit for Node.js (and JavaScript) programs where most values
are strings and most objects can easily be converted to a JSON string and back. Taint inference
can also easily be tuned for performance, precision and recall by: 1. Increasing or decreasing the
number of instrumentation points in the program. 2. Varying similarity metrics and thresholds. For
example, tuning Affogato to only instrument taint sources and sinks and only infer flows on exact
matches would yield a high-performance, high-precision, low-recall analysis. Another benefit of taint
inference was its ability to cope with external code. Indeed, most programming language virtual
machines (e.g., Java, Python, JavaScript, and Ruby) include functionalities that are not implemented
in the host language and thus outside of the scope of instrumentation-based dynamic analysis. While
external code is traditionally handled through modelling, taint inference can infer flows simply by
comparing inputs and outputs to external code. An obvious drawback is that taint inference is driven
by heuristics than a fixed algorithm and offers very little in the way of formally reasoning about the
underlying analysis. Nevertheless, we found that Affogato favourably compared to state-of-the-art
approaches.

Affogato takeaways

* From an industrial usage perspective, analysis of languages with dynamic features such
as JavaScript and Python, is not as mature as analysis for languages such as C and Java.

* Heavyweight dynamic analysis not only slows down applications, but often break them
in unexpected ways.

* Taint inference is a practical, yet unsound way of dynamically tracking the flow of tainted
values in JavaScript programs.

Gelato The main goal of Gelato is to detect client-side vulnerabilities, such as DOM-based XSS
and OWASP Top 10 server-side issues without having access to the server-side code [HLK22]. Be-
cause dynamic analysis relies on inputs to execute, in Gelato we mainly focus on novel techniques for
input generation in web applications. Modern web applications are extremely complex, and achieving
decent code coverage requires one to address several challenges on the client side: browser inter-
action, form filling, static and dynamic link extraction, framework modelling, event generation, and
state-aware crawling to name a few. Modern client-side JavaScript frameworks like React, Angular,
Knockout, etc., further add to the complexity by introducing domain-specific languages (DSLs) that
obfuscate control- and data-flows. From our experience, open-source security scanners haven’t caught
up to the latest advances in web application technologies yet, leading to wide variations in coverage
between applications that uses different technology stacks.

Only after Gelato could automatically and reliably crawl a wide variety of web applications could
we focus on client-side security analysis. For client-side analysis, we use a staged taint inference
technique to reduce the number of false positives. In many aspects, Gelato attempts to emulate an
attacker workflow. After a reconnaissance phase (e.g. crawling) that prioritises state-space exploration
using a framework-aware static call graph, Gelato starts scanning the application for vulnerabilities
by instrumenting client-side code and directing the execution towards sensitive statements. Then, to
get past input guards and reach deeper into client-side code, Gelato collects and solves constraints on
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Figure 6: The BackREST web fuzzing architecture

the inputs. Finally, Gelato uses taint inference to determine if attacker-controlled inputs have reached
sensitive code, in which case it reports a vulnerability.

Although Gelato is primarily focused on detecting client-side vulnerabilities, automated crawling
also exercises, albeit indirectly, server-side code, making it an invaluable tool to infer server-side APIs.
Indeed, by abstracting the HTTP requests of a crawling session into endpoints — parameters —
values mappings, one obtains a fairly accurate, albeit incomplete, API of the application under test.
This inference component is used to determine if a revised version of the applications exposes any
new endpoints. It is left to the developer to decide whether these new endpoints are deliberate or not.

Combining the API inference capabilities of Gelato with an API-driven fuzzer led to a fully auto-
mated web fuzzing solution. Further extending this solution with coverage and taint feedback loops
from Affogato yielded BackREST [GHS™22], which detected several 0-days in popular NPM pack-
ages. illustrates the BackREST architecture, where components @ and @ correspond to
Gelato and Affogato respectively. Other components are part of the fuzzer we extended.

Gelato takeaways

* Web application scanners cannot handle modern web application frameworks.

* Leveraging static and dynamic analysis to prioritise state-space exploration before target-
ing sensitive code is an efficient strategy to uncover vulnerabilities.

* Adding server-side feedback loops enhances vulnerability detection capabilities.

3 Lessons Learned

What have we learned over the course of more than 15 years developing industrial program analysis
tools? First and foremost, in an industrial context, tool adoption is driven by developers, and not by
program analysis, or security experts. This is similar to the findings reported by the Tricorder project
[SvGI™15]. Apart from defect reports, developers also need tools to understand and navigate through
large codebases.

Failing to address the needs of developers is a guaranteed path to failure. While this might seem
obvious, it is often tempting as a researcher to pursue the best possible theoretical solution while
ignoring the practical constraints of your intended users. Computing resources are finite, developer
time is precious and security is only one of the many aspects of software development. A security
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analysis that is fast enough to fit in the development life cycle, with a low false positive rate and
that can be adapted to evolving developers’ needs thus has a much higher chance of success. As
a consequence, much of our work has been focused on adapting academic research to the realities
of industry and making the necessary compromises to drive tool adoption all the while delivering
analyses that detected thousands of defects over the years and raised the bar of security at Oracle.

At a high level, our journey from static to dynamic to hybrid analysis was a natural consequence
of our core requirements of delivering precise, scalable, and usable analyses for a variety of program-
ming languages, frameworks, and applications. Of course, languages, frameworks and development
practices are constantly evolving and the constraints we faced in our specific context at a specific point
in time, might not hold anymore. For example, since our work on Affogato and Gelato, developers are
embracing optional typing for various dynamic programming languages (e.g. TypeScript adds types
to JavaScript, Python 3.5 added supports for type hints, PHP 8.0 added advanced typing support). Al-
though type hints are generally non-binding, we believe that they could be leveraged to help improve
the precision and scalabability of static analyses for dynamic languages. Further research, that goes
beyond types, to provide good static abstractions is also required.

Another example includes the shift from monolithic to micro-service architectures and its conse-
quence on analysis scalability. Micro-services, as their name suggests, are typically fairly small in
size and more amenable to highly complex analyses. Where our challenge lied in analysing tightly-
coupled but massive code bases, the next generation of industrial applications will require reasoning
about massively distributed computations across small code bases.

At a more concrete level, the client analyses we developed (e.g. buffer overflow, use after free,
caller-sensitive method, taint analysis) were unsurprisingly driven by the types of defects that were
the most critical and prevalent at the time. However, we did discover along the way that the support
analyses required (e.g. constraint solving, partial evaluation, points-to, string, and call graph analyses)
are very much driven by programming languages and the way they influence programming practices.
System programming languages like C forces reasoning about arithmetic constraints while object-
oriented Java requires precise virtual call resolution. Finally, the concrete implementations of all
these analyses (modular, bottom-up, demand-driven, and summary-based with access-path aliasing)
were directly determined by our practical constraints of scalability, precision and usability.

As a research organisation, we are tasked with enabling developers in different product groups to
use the tools we have developed. Despite our best efforts, transferring our research tools to production
teams remains our greatest challenge. Beyond the human (e.g. advertising, training, etc.) and financial
(e.g. funding new positions) aspects of tech transfer, managing the technical debt is a constant struggle
[GJK™20]. Indeed, the process of research is one of trial-and-error that calls for quick prototyping in
the early stages. As the project matures, however, one needs to gradually shift away from prototypes
towards a minimum viable product (MVP) that can be on-boarded by a production team. Finding
the optimal time to start a shift towards an MVP is, however, extremely challenging. Do it too soon
and you are wasting research resources on engineering as an MVP that may never be adopted, do it
too late and the cost of re-factoring your prototype increases exponentially, jeopardising the transfer.
Identifying the inflection point where the shift from prototype to MVP needs to happen is still an open
problem.

4 Our Vision: Intelligent Application Security

Up until recently, the different phases of software development (i.e. design, code, build, test, deploy-
ment, monitoring, etc.) were divided across dedicated and often separate teams. Our research and
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development thus focused on delivering different tools to prevent security vulnerabilities from being
introduced in products during the building (i.e., static analysis) and testing (i.e., dynamic analysis)
phases of the software development life cycle.

With applications running on the cloud, the surface available to attackers has increased. Previous
when an application was run on a machine that was not accessible to the external world, issues such as
buffer-overflows were harder to exploit. Tools such as firewalls provided a level of security that is not
sufficient for cloud-based applications. Cloud providers offer many APIs to manage the applications.
At a high-level of abstraction, fixing security issues in the cloud is not different from fixing security
issues on applications that run on-premises. That is, static and dynamic analysis tools remain impor-
tant. However, these tools now need to handle identity and access management (IAM) which is one
of the main security mechanisms for a cloud deployment. Tools also need to address infrastructure
security. Not only are applications run on the cloud, developers are using cloud-services as part of
their development practices. Hence all future tools need to be able to run as part of a service.

The definition of code is becoming broader. For instance, GitHub Actions in build systems and
declarative descriptions of the infrastructure required for running the application are nothing but spe-
cific types of programs. These programs introduce different types of vulnerabilities that are not fully
understood [[GGTP19,ILPSS21]]. As researchers, we need to be vigilant and be able to develop analy-
ses that can detect and prevent these new types of vulnerabilities.

In recent years, the wide adoption of DevOps practices has created exciting challenges and op-
portunities for program analysis tools. DevOps breaks the barriers between the different phases of
software development, and increases velocity and automation. Nowadays, it is not uncommon for
the same team to oversee its own software from coding to deployment, with monthly, weekly, or
even daily release cycles. One simply cannot expect teams to inboard a myriad of different tools
and integrate them all in their environment anymore. The onus is now on tool developers to provide
the necessary integrations to enable the use of their tools in highly automated DevOps environments.
While this increases the engineering overhead for tool developers, we believe it also creates interesting
research opportunities. Where tools were previously worked independently, they will now be able to
share information and complement each other. For example, a static analysis could forward uncertain
vulnerability reports for a dynamic analysis to confirm at test time and avoid having developers review
false positives.

Similarly, after vulnerable dependencies are discovered through software composition analysis, a
runtime monitor could help developers prioritise fixes based on the vulnerable codes their application
executes. Suggesting code patches for reported defects is yet another example of inter-tool collabo-
ration that is enabled by DevOps. Combining tools into a single security infrastructure and enabling
such sharing of information is what we call the Intelligent Application Security (IAS) and it is our
vision for the future. Where DevSecOps promotes seamless and automated security throughout the
software development life cycle, we propose IAS as way to achieve this goal.

The DevSecOps software lifecycle is depicted in[Figure 7] which is extracted from [CIO19]. Each
grey shield positions an existing software security component in the DevOps lifecycle. On the left-
hand side of the diagram, next to the build and test phases, are SAST (Static Application Security
Testing) and DAST (Dynamic Application Security Testing), our two traditional areas of expertise.
Our latest IDE extensions for Parfait bridge the gap from SAST to securing coding, and a tool like
BackREST blurs the boundary between SAST, DAST, and penetration testing. And this is what IAS is
all about: unleashing the full potential of DevSecOps through seamless integration and collaboration
between traditionally separate and independent security tools.

Achieving IAS will be challenging. IAS will only come to fruition only when all of the following
issues are addressed.
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Figure 7: DevSecOps Software Lifecycle

1. Tool collaboration can only be achieved through common abstractions. This is an area where

program analysis is crucially lacking. Many tools indeed use abstractions that were crafted for
specific client analyses, but fall short when applied to a different problem. A good example
of this is separation logic, which is very much limited to reasoning about certain classes of
memory issues. Also separation logic, while very precise, does not scale to large code bases.
That is why Infelﬂ allows the developer to replace separation logic with abstract interpretation
for detecting certain types of defects.

Enabling collaboration of tools operating in the same domain (e.g. SAST) is only one aspect.
Developing abstractions that enable cross-domain tool collaboration is vital. The question of
the right abstraction that can be used in the develop, build, test, deploy and monitor, and patch
generation phases would need to be answered.

. DevOps has increased the velocity of the software development lifecycle. Although changes in
development practices (e.g., shifting from monolith to micro-service architecture) will require
adaptations to existing strategies, scalability and the ability to analyse sub-systems of a large
system will remain a major requirement to drive tool adoption.

. DevOps encourages hyper-automation. Through IAS, we aim to automate tasks such as vulner-
able dependency detection and update, back-porting of security patches, detection, confirmation
and repair of defects at the configuration and code levels, hardening of applications,
and online attack detection and mitigation.

Of course, achieving this level of automation will require years of research and development, but

it is very clear already that it will require highly precise program analyses. Removing humans from
the loop virtually reduces the margin for error to zero, meaning that tools will need to triage defects
and patches autonomously to separate those that are suitable for automated processing from those that
require human attention.

“https://fbinfer.com/
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DevSecOps empowers individual teams to manage their whole secure software development life-
cycle. Where security used to be the realm of a few security experts overseeing many projects, De-
vSecOps encourages every member of a team to contribute to software security. As a consequence,
the user base for security tools will diversify, their level of expertise will vary greatly and usability
will remain critical. This will be especially challenging for IAS, which will increase complexity by
operating across the entire DevSecOps loop.

We are currently working on tools related to supply chain security including software composi-
tion analysis and analysis of build infrastructures, exploring the use of ideas from program synthesis
to generate security protections that can be deployed at run-time [VGB'22|] and malware detection
[TCCT21]]. Our vision is to integrate the work we have reported here as well our current work under
a single offering called IAS.
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