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Abstract Columnar databases are an established way to speed up online analytical processing (OLAP) queries.
Nowadays, data processing (e.g., storage, visualization, and analytics) is often performed at the programming
language level, hence it is desirable to also adopt columnar data structures for common language runtimes.
While there are frameworks, libraries, and APIs to enable columnar data stores in programming languages,

their integration into applications typically requires developer interference. In prior work, researchers imple-
mented an approach for automated transformation of arrays into columnar arrays in the GraalVM JavaScript
runtime. However, this approach suffers from performance issues on smaller workloads as well as on more
complex nested data structures. We find that the key to optimizing accesses to columnar arrays is to identify
queries and apply specific optimizations to them.
In this paper, we describe novel compiler optimizations in the GraalVM Compiler that optimize queries

on columnar arrays. At (JIT) compile time, we identify loops that access potentially columnar arrays and
duplicate them in order to specifically optimize accesses to columnar arrays. Additionally, we describe a new
approach for creating columnar arrays from arrays consisting of complex objects by performing multi-level
storage transformation. We demonstrate our approach via an implementation for JavaScript Date objects.
Our work shows that automatic transformation of arrays to columnar storage is feasible even for small

workloads and that more complex arrays of objects could benefit from amulti-level transformation. Furthermore,
we show how we can optimize methods that handle arrays in different states by the use of duplication. We
evaluated our work on microbenchmarks and established data analytics workloads (TPC-H) to demonstrate
that it significantly outperforms previous efforts, with speedups of up to 14x for particular queries. Queries
additionally benefit from multi-level transformation, reaching speedups of up to 5x. Additionally, we show
that we do not cause significant overhead on workloads not suitable for storage transformation.
We argue that automatically created columnar arrays could aid developers in data-centric applications as

an alternative approach to using dedicated APIs on manually created columnar arrays. Via automatic detection
and optimization of queries on potentially columnar arrays, we can improve performance of data processing
and further enable its use in common—particularly dynamic—programming languages.
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Control Flow Duplication for Columnar Arrays in a Dynamic Compiler

1 Introduction

Database management systems have long proven the significance of optimized data
layouts and storage mechanisms to improve query performance on large, complex
data [1, 2, 7, 25, 37, 42, 70, 72]. Columnar databases [3, 8, 41, 69] have emerged as
the de-facto standard for read-heavy query execution, e.g., in OLAP. In a columnar
database, the records of a table are decomposed to store all values per column in
a contiguous memory region. This improves the performance of queries that target
a limited amount of columns as the column values of individual records may be
efficiently processed in tight loops, leading to improved cache and memory efficiency.
Nowadays, data-intensive operations are often conducted on the language level,

with runtimes and compilers taking on similar roles as database query optimizers [6,
9, 28, 30, 46, 49, 55, 65]. However, while there are specific APIs that provide columnar
storages in programming languages [6, 48, 65], these shift the responsibility of
choosing the right memory layout for the right case to the application developers.
Based on these observations, Makor et al. [47] developed an approach for automated

transformation of arrays of objects to columnar storage in the GraalVM JavaScript
runtime [56]. They detect suitable arrays at run time and transform the underlying
storage to a columnar layout if the array is large enough and frequently accessed.
Custom compiler optimizations in the GraalVM Compiler [22, 45, 68] allow them to
achieve performance benefits after just-in-time (JIT) compilation.
Consider the example in Fig. 1a, where a function shippingCosts takes an array of

clients to calculate the applicable shipping costs per client. Fig. 1b depicts the memory
layout of the clients array, with the individual objects scattered throughout the heap.
In the aforementioned approach, the array is transformed to columnar storage at
some point during the execution, resulting in a memory layout as shown in Fig. 1d.
The function is subsequently optimized during compilation. Fig. 1c depicts a high-level
representation of the resulting compiled code for this function. Now, a guard ensures
that the array is indeed columnar, such that execution of the compiled code is aborted
if this is not the case (cf. Section 2.1). This enables additional optimizations that
remove now redundant memory accesses and move operations out of the loop.
However, this approach suffers from several issues: The presented compiler opti-

mizations heavily rely on the assumption that they can focus on a single array state,
e.g., that the optimized accesses always target columnar arrays. In this approach, a
method is therefore compiled either for columnar or for non-columnar arrays. An
invocation of a compiled method with an array in an unexpected state triggers deopti-
mization [33] (cf. the guard in the example), i.e., execution falls back to the interpreter
and the compiled code is discarded. However, this process causes additional overhead
due to recompilation that predominantly impacts smaller, less frequently executed
workloads. Furthermore, this behavior is undesirable in JIT-compiled environments,
where ideally compilation of hot methods would stabilize after a while.
Additionally, workloads using arrays of objects with reference type properties don’t

perform well, as accesses to these properties represent most of the run-time effort
and cannot be optimized as much. This problem particularly manifests itself when
dates and strings are used in queries.
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(a) A function that calculates shipping costs for an array
of clients based on their location.

1 function shippingCosts(clients) {
2 const len = clients.length
3 const cost = Array(len).�ll(0);
4 for (let i = 0; i < len; i++) {
5 const c = clients[i];
6 cost[i] = c.zip == 4040 ? 15 : 20;
7 }
8 return cost;
9 } (b) Memory representation of the array before

transformation.

(c) High-level representation of the function after colum-
nar storage transformation on clients .

1 function shippingCosts(clients) {
2 const len = clients.length
3 const cost = Array(len).�ll(0);
4 guard <isColumnar>(clients);
5 const _zip = clients._propArrays["zip"];
6 for (let i = 0; i < len; i++) {
7 cost[i] = zip[i] == 4040 ? 15 : 20;
8 }
9 return cost;

10 } (d) Memory representation of the array after
transformation.

Figure 1 Storage transformation on an array of clients that is used in a function for
calculating shipping costs.

Acknowledging these downsides, we propose a novel approach to perform query
optimization on columnar arrays. We utilize a high-performance JIT compiler to detect
optimizable queries at compile time. Subsequently, we perform code duplication
to enable optimization of loops that access columnar data structures, while also
preserving accesses to non-columnar variants in the compiled code. Additionally, we
propose a new approach to handle nested data in columnar arrays by showcasing
multi-level storage transformationfor arrays of objects with date properties.

Overall, this work contributes the following:

1. Novel compiler optimizations for the approach proposed in [47] that automatically
duplicate the control �ow for accessing columnar arrays to mitigate recompilation
e�orts and to speed up smaller workloads.

2. A re�nement of the storage transformation approach that improves the performance
of accessing array-of-object data structures containing objects with date properties;
this approach may be expanded to other complex nested types.

3. An evaluation of our re�nements based on microbenchmarks and TPC-H queries [17]
that shows performance improvements of up to2x for smaller workloads and up to
14x for larger workloads.
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The remainder of this work is structured as follows: In Section 2, we provide
necessary background information on the technologies used in our implementation,
particularly GraalVM, the GraalVM Compiler, and the Tru�e framework. Additionally,
we brie�y describe the aforementioned approach presented by Makor et al. [47] that
integrates columnar arrays into the GraalVM JavaScript language implementation.
Section 3 describes our new approach for multi-level storage transformation and
showcases its usability based on an implementation for date properties. Our compile-
time duplication approach is presented in detail in Section 4. There, we explain
the algorithm that is used to select, duplicate and optimize corresponding loops
and also mention several implemented improvements to handle both non-columnar
and columnar arrays. Section 5 contains an evaluation of the achieved performance
improvements and the transformation overhead of our new duplication approach. In
Section 6, we list some of the current limitations of our work. Finally, in Section 7, we
compare our approach to similar research in literature.

2 Background

GraalVM [57] is a high-performance Java virtual machine. The Tru�e language imple-
mentation framework [31, 74, 77]�a GraalVM component for implementing abstract
syntax tree (AST) interpreters�enables execution of other programming languages,
including JavaScript [56], Ruby [60], and LLVM languages (e.g. C/C++) [66].

GraalVM is the basis of our approach: We integrated the necessary language
additions into the Tru�e-based, standard-compliant JavaScript runtime GraalVM
JavaScript [56] and used the GraalVM Compiler to optimize columnar array accesses
and loops and to apply our duplication approach. In combination, these e�orts allow
us to e�ciently track information about arrays during interpretation and subsequently
achieve performance improvements via dedicated compiler optimizations. The follow-
ing sections detail some of the components of GraalVM and describe their importance
to our approach.

2.1 GraalVM Compiler

GraalVM enables JIT compilation via the GraalVM Compiler [22, 45, 68]. The GraalVM
Compiler is a self-hosting, high-performance dynamic JIT compiler that uses run-
time pro�ling information to apply performance optimizations on hot methods. The
compiler can use speculative optimizations based on run-time observations to make
speci�c assumptions about a method (e.g., about types, values) and to subsequently
enable follow-up optimizations [23, 24]. If such an assumptions fails, the runtime uses
the concept of deoptimization. Deoptimization allows the runtime to abort execution
of a compiled method, discard the compiled code, and resume execution in the
interpreter if an assumption taken during compilation is invalidated [33].
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2.1.1 Graal IR
In the GraalVM Compiler, methods are �rst transformed into an intermediate repre-
sentation known as Graal IR [22]. Graal IR is a structured, directed graph consisting of
nodes that represent the control �ow and the data �ow of a method. The IR is in static
single assignment form (SSA)[14, 19, 51, 52, 73], with� nodes representing values that
depend on the current path (e.g., a � node captures an assignment whose value is
branch-dependent, a loop� represents values modi�ed in a loop). To enable traversal
of the IR during compilation, Graal IR nodes are typically scheduled within basic
blocks[15, 61]. Basic blocks are a minimal, branchless set of nodes and are connected
to their corresponding predecessors and successors.

The so-calleddominator relation [5, 16, 19, 29, 44, 64] imposes a partial order upon
the basic blocks of a method: A basic blockB0 dominatesanother basic block B1 if
every path on the control �ow that reaches B1 traverses B0 �rst. Using the direct
dominator of each basic block (i.e., the closest dominating block), the basic blocks can
be structured as a tree�the dominator tree�, where the root block represents the
method entry. Hence, compiler phases frequently utilize this structure for traversing
the nodes of a method.

During compilation, the IR is modi�ed in a variety of compiler phases. These include
partial escape analysis [68], inlining [63], and SIMD vectorization [10, 18, 35, 36]. At
the end of the compilation pipeline, the compiler generates highly-optimized machine
code from the IR.

2.2 Tru�e

Tru�e [31, 74, 77] is a language implementation framework that enables guest-
language integration via AST interpretation. At run time, the guest-language ASTs are
partially evaluated and optimized based on pro�ling information accumulated during
interpretation [34, 43, 76, 78] and are subsequently compiled using the GraalVM
Compiler. Tru�e furthermore provides utilities such as a standardized object storage
model [75] and debugger/instrumentation APIs [38, 39, 40, 71] that can be used
across all language implementations.

Our approach is based on the high-performance JavaScript Tru�e implementation
GraalVM JavaScript [56]. GraalVM JavaScript is ECMAScript [26] compliant and
features a Node.js backend [59]. GraalVM JavaScript makes use of the Tru�e object
storage model [75] to represent objects in a dynamic language. Additionally, the
object model is extended to support JavaScript's dynamic arrays [26].

2.3 Columnar Arrays in GraalVM JavaScript

Makor et al. [47] showed that data-intensive queries on analytical workloads can
be signi�cantly accelerated by transforming arrays of uniform objects to columnar
arrays and optimizing accesses to the resulting columnar storage accordingly. To do
so, information about arrays of objects is tracked at run time and when a �tting and
frequently used array that only contains objects of the same type is detected (cf. clients
on the left-hand side of Fig. 2), the transformation to a columnar array is triggered.
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Figure 2 Transforming an array of objects to a columnar array (based on [47]).

First, one new array is created for each property of the objects in the original array.
Then, all the values of the objects for the respective property are copied to the new
array. Hence, these arrays are calledproperty arrays. As depicted at the bottom right
of Fig. 2, the original array subsequently references these property arrays.

Furthermore, each object in the original array is transformed to a proxy object. This
is necessary, because after transformation, each object has to access the columnar
storage when it needs to access its data. To access the property arrays that make up
the columnar storage, the object needs to access the array to load the correct property
array and requires the index of the object in the array to access the property array
at the correct position. Hence, these two pieces of information�the original array
reference (arrRef) and the index of the object in the array ( arrIdx )�are stored in
every proxy object, as shown in the top right of Fig. 2. If unsupported operations are
performed on a columnar array, we perform a restoration, i.e., we transform the array
back to the non-columnar state.

Transformation is limited to large, often read arrays but adds some initial overhead.
However, custom compiler optimizations can amortize the overhead over time by
removing redundant checks, compiling methods depending on the array state, and
moving loop-invariant code out of hot loops. Thereby, they achieve speedups of up to
9x in microbenchmarks.

3 Multi-level Storage Transformation

The results of Makor et al. [47] show signi�cant speedups when executing queries
that process non-object-type properties, e.g.,boolean or number . However, the results
also show that when working with properties of reference types, e.g., dates, strings, or
user object types, the e�ect is reduced or performance even degrades. This is because
the property array created from a reference type object only contains the reference
to the actual object and not the data that is eventually accessed (e.g., the actual
numeric timestamp, the actual characters of a string). Usually, many operations on
objects require accessing one or multiple of its properties and therefore lead to random
memory accesses when used in loops. However, this is what should be prevented via
the transformation to a columnar layout.
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Figure 3 Accessing a numeric property that is stored in a property array after storage
transformation to columnar storage via a proxy object.

Figure 4 Accessing a timestamp property of aDate object that is stored in a property
array after multi-level storage transformation via a nested proxy object.

To solve this problem, we propose an approach for automaticmulti-level storage
transformation at run time. Using this technique, we not only place the properties of
the objects in the array in contiguous memory regions but also properties of nested
objects. For Date properties, for example, this means storing the timestamps in a
property array and accessing this property array when the timestamp values of the
Date objects are needed.

Similar to proxy objects (cf. Section 2.3), these reference type properties need to
store additional information to access the correct property array location. Hence,
the objects referenced by those properties are transformed tonested proxy objects
and�akin to normal proxy objects�the respective array reference ( arrRef) and index
(arrIdx ) are added to them.

However, there is one important di�erence: When accessing a (primitive) property
of the proxy, as seen on the left-hand side of Fig. 3, the accessed property key (sal in
the example) is known when accessing the property array. Hence, the array reference
and array index information that are stored in the proxy object are su�cient to load
the property array from the array and to access it at the given position. However,
when accessing a nested property value of a reference type property, as seen on the
left-hand side of Fig. 4, we only know the key of the nested property (timestamp ), but
we do not know the key of the containing object� birthDate in the depicted example.
Hence, that missing information also needs to be stored in the nested proxy object,
as seen on the bottom left part of Fig. 4. Thereby, enough information is available to
access the correct nested property array at the correct location and we can prevent
random memory access. As the loading of the property arrays is independent of the
speci�c employee object and birthDate , these accesses can typically be moved out of
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loops when the whole array is processed (cf. compiler optimizations in Section 4).
Thus, only the indexed access to the correct property array remains inside the loop.

3.1 Case Study: Multi-level Storage Transformation for JavaScript Date objects

We implemented the multi-level storage transformation approach for Date objects
with a known �timestamp� property as they are often used in OLAP queries. Hence,
we adapted the transformation step to perform multi-level storage transformation for
properties of type Date and thus create an additional timestamp property array for
each Date property when transforming an array of objects to a columnar array. In
a similar manner, multi-level storage transformation could also be implemented for
other nested reference types.

By applying the multi-level storage transformation to Date objects we were able
to achieve up to 4x speedups in microbenchmarks that are based on processingDate
objects. More detailed results are presented in Section 5.

4 Control Flow Duplication for Columnar Arrays

As shown by Makor et al. [47], performance improvements with columnar arrays heav-
ily rely on the optimization of corresponding accesses. In their work, they therefore
rely on pro�les and guards. These are GraalVM components that enable the compiler
to make assumptions based on counters and checks embedded into the abstract syntax
tree. These components ensure that the compiler can optimize individual methods
with respect to a known columnar layout of a particular array. If after compilation
the method is called using a common (non-columnar) array, the runtime deoptimizes
the code and returns to the interpreter, discarding the compiled method. The same
occurs vice versa if the method is compiled for non-columnar accesses but invoked
with a columnar array.

While this approach simpli�es the handling of optimizations at compile time�
as it is assured that an array in a target method is in a particular state (columnar,
non-columnar)�the additional albeit necessary deoptimizations prevent the method
from ever reaching a stable state. Deoptimization and recompilation also impose
recurring run-time costs. Despite their evaluation showing that (large) columnar
arrays can bene�t from this approach, as the run-time costs are outweighed by the
gained speedups, particularly smaller arrays or methods that are less frequently called
mostly experience slowdowns.

To solve these problems, we present a new approach with the following goals:
i) Apply compiler optimizations on columnar array accesses while also preserving
accesses to the non-columnar array,ii ) attain a predictable number of compilation-
s/deoptimizations per method, and iii ) ensure a stable compilation state with respect
to deoptimizations caused by the array state, even for methods that can be invoked
with both columnar and non-columnar arrays.

Implicitly, these goals have the following requirements: For each potential method,
we need to preserve both access variants to the targeted array�access to non-columnar

8



S. Kloibhofer, L. Makor, D. Leopoldseder, D. Bonetta, L. Stadler, H. Mössenböck

Figure 5 (Compile-time) Duplication and optimization of columnar accesses (high-level
representation)

and to columnar storage�up until compilation to ensure that both access variants
can be compiled without having to resort to deoptimization. However, at compile time,
we require a clear separation of the two access kinds in order to perform individual
optimizations. Based on the given requirements, we decided to usecode duplication
to accomplish our goals.

Code duplication has frequently been used in compilers to enable subsequent opti-
mizations [12, 45, 53, 54]. As it implies a trade-o� between the achievable performance
gains via those follow-up optimizations and the code size increase, �ne-tuned heuris-
tics are often used to in�uence decisions on whether to duplicate code or not [50].

Fig. 5 exempli�es how duplication can enable subsequent optimizations on columnar
array accesses while preserving non-optimized code versions to prevent deoptimiza-
tions. (a) shows accesses to an array of objects (clients ). The storage transformation
approach shown by Makor et al. [47] subsequently extends the language implementa-
tion to enable accesses to columnar arrays. In our new approach, we want to preserve
all access variants to arrays, hence we do not use guards for the array accesses. This
results in (b) . Parts (c-e) depict the steps of this new approach. First, it shows the
duplication of the whole loop (c) , with a prior check ensuring that one of the result-
ing loops solely handles accesses to the columnar variant ofclients . This distinction
enables additional optimizations on the �columnar branch�, such as removal of redun-
dant checks(d) and �nally optimization of the loop itself (e) The following sections
highlight individual optimization and preparation steps from Fig. 5.
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Table 1 Custom intrinsics and markers used to relay information to the compiler

Intrinsic Description

<isColumnar>(arr) Checks whether the given array is in a columnar state. At
compile time, this check can be used to identify branches
where an array is known to be columnar.

<transitive>(arr,cond) Checks on arrays which are always true for columnar arrays
and false for non-columnar arrays. They can be replaced if
the array state is known.

<transform>(arr) Initiates storage transformation on the given array (cf. Sec-
tion 2.3). Replaced with the corresponding invocation of the
transformation method during compilation. The resulting
boolean indicates whether transformation was successful.

4.1 Columnar Array Markers and Intrinsics

Our approach requires close interaction between the language implementation and
the compiler to achieve performance improvements. The runtime needs to relay
certain run-time information and pro�ling data to the compiler to aid detection and
optimization of accesses to columnar arrays. At compile time, we need to identify
duplicable loops that contain suitable columnar accesses. Therefore, we use a variety
of intrinsics at the language implementation level. During interpretation, intrinsics
merely represent calls to built-in functions. The compiler detects those functions and
subsequently replaces them with inlined IR or assembly code. In our approach, we
also use those built-in functions to detect certain accesses and operations, e.g., a
transformation of an array to columnar storage. Hence, we also refer to these kinds
of intrinsics as markers. Table 1 describes some of the custom intrinsics that we use in
our approach.

In Fig. 5, for example, we use the run-time check<isColumnar> to check the state
of the array. At compile time, we detect this intrinsic and can thus infer in which
of the corresponding branches the array is known to be columnar. Similarly, we use
<transitive> to mark checks which may be optimized for a known array state at compile
time. For example, if an object is loaded from an array that is known to be columnar,
then we transitively know that the object is a proxy object. Hence, such checks can
be removed. To prevent runtime errors, the compiler would usually add numerous
additional bounds, type, and null checks to the in�ated code for accessing properties
in Fig. 5 (b) . Therefore, we also use special intrinsics for unmanaged accesses to
prevent these checks whenever they are redundant, e.g., bounds checks on property
arrays that are already safeguarded by the bounds check on the array itself. For brevity,
they are omitted from the �gure.

Code duplication is already used in compiler phases within the GraalVM Com-
piler [45, 50], e.g., to duplicate and subsequently individually optimize control �ow
branches. In our approach, we use duplication on whole loops representing queries
that access (potentially) columnar arrays.
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Figure 6 Control-�ow duplication for columnar array accesses

The overall principle is depicted in the Graal IR shown in Fig. 6. The left-hand side
of the �gure shows the control �ow (red arrows) of a simple method containing a loop
l with accesses to an array� (blue arrows denote data �ow dependencies) that can
appear both in a columnar and in a non-columnar state. A, B, and C denote arbitrary
other nodes that appearbefore, within , and after the loop. The if at the start of the
loop denotes the loop condition that decides whether the loop should proceed or end.

As shown on the right-hand side of Fig. 6, we duplicate the target loop that contains
accesses to a (potentially) columnar array and distinguish between the two duplicates
with a custom check that ensures that the left loop (l 0) is only entered if the array
is columnar. Subsequently, the loop can be optimized for columnar accesses. As the
original loop ( l ) itself may trigger the transformation to columnar storage of the
array if it is non-columnar, that loop has to be able to handle both columnar and
non-columnar accesses. Hence, in our approach, it is considered theslow path. After
the loops, the control �ow merges again.

Graal already provides means to duplicate parts of the IR in the compiler [58].
Based on this, our new technique has toi) correctly identify a suitable loop that
contains columnar array accesses,ii ) insert a check for the array state before the
target loop, iii ) insert the duplicated loop into the IR, and iv) optimize both loops
individually based on the determined array state.

These individual steps are described in detail in the following sections.

4.2 Loop Analysis and Selection

As duplication causes a signi�cant code size increase, we added an additional analysis
step prior to duplication. There, we select which loops to duplicate with respect to
a target array. To identify suitable loops at compile time, we rely on the markers
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described in Section 4.1. At compile time, we iterate over all loops of a method and
subsequently the nodes of their loop bodies and accumulate metrics for each loop
and array based on those markers. Loops with many array read accesses are the main
targets of our approach, hence we can exclude loops without or with only a few reads.
Also, we only include loops that have been executed at least once with an array in a
columnar state.

To safely apply optimizations, we have to track changes to the array state, i.e.,
array transformations and restorations (cf. Section 2.3). As the loop itself may trigger
the transformation of a non-columnar array, we explicitly allow transformations. By
excluding loops containing array restorations, however, we can safely assume during
duplication that a once columnar array does not change state within the loop.

Additionally, non-inlined method calls within the loop (which may also change
the array state) automatically exclude the loop. While this may appear limiting, the
GraalVM partial evaluator inlines most AST operations and nested calls, such that
they should only appear infrequently within loop bodies [34, 43, 76, 78]. Additionally,
array modi�cations�e.g., adding new elements, increasing or rewriting the array
bu�er�cause loops to be excluded as they may also cause a restoration of the array if
the written element is unsupported.

In summary, we identi�ed the following requirements for a loop to be considered
for duplication:

1. The loop must contain read accesses to a potentially columnar array.

2. The loop must have been executed with the target array in a columnar state.

3. The loop must not contain array restorations or operations that may cause a
restoration (e.g., element insertions, deletions).

4. The loop must not contain method calls or other nodes which can allow the array
to escape (and potentially change its state).

An initial phase performs such an analysis and accumulates a list of custom �loop
pro�les�. Each pro�le contains metrics for individual arrays in the current loop,
e.g., the number of read and write accesses, and the witnessed states (columnar,
non-columnar). We subsequently use these pro�les to select appropriate loops and
prioritize them based on the number of read accesses.

4.3 Loop Duplication

Before duplication, we insert a custom array state check as shown in the example in
Fig. 5 (c) and in the IR in Fig. 6. This and the knowledge that the columnar array
is never restored to its original state within the loop (cf. Section 4.2) ensures that
on the branch optimized for columnar access we can safely assume that the array is
strictly columnar. Therefore, we refer to this branch and the corresponding loop as
the columnar branch. We call the other branch and its loop the generic branch, as it
contains both columnar and non-columnar accesses.

As mentioned before, duplicating the loop nodes is already supported by the
GraalVM Compiler. The compiler also already connects the loop exits of the individual
loops via a newly inserted mergeand provides � values for values that are modi�ed
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in the loop and used afterwards. This reconnects both control �ow and data �ow
and ensures that execution after any loop proceeds as before. Finally, we attach the
duplicated loop to the corresponding branch of the aforementioned check.

4.4 Optimization of Duplicated Loops

The main goal of our approach is the optimization of the columnar branch. As stated
before, we know that the array is columnar throughout this version of the loop. Hence,
after duplication, we can remove redundant instructions, such as array state checks
(marked by the <isColumnar> intrinsic) as well as other checks that are transitively
true for columnar arrays (<transitive> ), e.g., checking whether an object loaded from
the array is indeed a proxy (cf. Fig. 5 (d) ).

As the generic branch is not limited to a single array state, it cannot be optimized
signi�cantly at this point. However, in Section 4.5 we describe an improvement that
also enables optimization of this branch to a certain degree.

4.4.1 Loop-Invariant Code Motion
Loop-invariant code motion[4] is a compiler optimization already utilized by the
GraalVM Compiler that attempts to move instructions from within the loop body
before the loop if they are not a�ected by the execution of the loop. Hence, it prevents
redundant memory accesses and computations that can be performed once prior to
the loop instead of in every loop iteration. With the aforementioned optimizations, we
can make most of the overhead for accessing columnar arrays loop-invariant. Thus,
the majority of operations can be moved out of the columnar loop, such that often
only the property array accesses (i.e., the accesses to the actual data as shown in
Fig. 5 (e) ) remain.

4.4.2 Enabling Loop Vectorization of Columnar Array Accesses
Since replacing �eld accesses with indexed accesses is an inherent feature of columnar
arrays, accesses to such data structures naturally lend themselves to loop vectoriza-
tion [10]. Loop vectorization describes the process of optimizing loops by using
hardware-supported SIMD instructions [35, 36]. By combining individual loop itera-
tions, certain patterns in loop bodies containing arithmetic operations or conditions
can be rewritten, such that multiple operations can be performed in parallel (e.g., eight
32-bit integer values (placed contiguously in memory) can be modi�ed/loaded/written
at once by using a single 256-bit vector instruction).

As the GraalVM Compiler already supports loop vectorization [18], the challenge
for us is to ensure that loops involving columnar arrays are in a proper shape, such
that they are subsequently picked up by the vectorizer. As mentioned before, our
custom compiler phases optimize the loop body such that often only the property
array accesses remain. Hence, for queries such as those in Fig. 5(e) , some operations
on property arrays can be replaced with SIMD instructions, resulting in additional
performance bene�ts (cf. Section 5.1).
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Figure 7 Slow-to-fast-path transition and generic branch optimization

4.5 Re�nement: Slow-to-Fast-Path Transition

One problem with our duplication approach so far is that it does not provide bene�ts if
the a�ected method is mostly called with arrays that are only transformed in loops of
the method itself. Consider duplication in a method consisting of a single loop similar
to the one on the right-hand side of Fig. 6: If the method in question is called with an
array not yet in columnar shape, the generic branch is taken. In the loop, the array
storage may be transformed into a columnar layout if the access threshold is crossed,
however, execution still resumes in the generic loop. Since optimization is limited to
the columnar branch, the array essentially never bene�ts from the duplication as the
entirety of the execution is spent in the generic branch.

Based on this observation, we implemented a re�nement of our duplication approach
that allows a) transitioning to the columnar (fast) branch if the array is transformed
while executing in the generic branch and b) some limited but e�ective optimization
of the generic branch itself.

Fig. 7 illustrates the main steps in this new duplication approach:

1 The analysis step mentioned before (cf. Section 4.2) selects and prioritizes suitable
loops based on gathered array metrics and the shape of the loop.

2 We add a new loop � node. Its binary value represents the state of the target array
at every point in the loop ( 0 for non-columnar, 1 for columnar). The new � node
is anchored in the control �ow and denotes the current state of the array and the
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loop entry point for later. We then iterate the nodes of the loop in dominator order
(cf. Section 2.1.1), always tracking the last known state of the array.

a) When encountering a custom checking intrinsic (e.g.,<check>, <transitive> ; cf.
Section 4.1) on thesamearray, we replace the intrinsic with the last known state.

b) When encountering a transformation call (<transform>) for the array, we use the
return value of this function as the new array state (i.e., if the transformation
succeeded, it is1, otherwise 0).

c) At merges, we create additional � nodes that combine the incoming states, in
case there was a transformation in one or multiple of the paths.

d) At every loop end, the last state is propagated to the initial loop � .

3 We duplicate the loop and insert the preemptive check and branching condition.

4 The resulting branches are optimized separately:

a) In the columnar branch loop l 0, all � nodes added as described above can
be safely replaced by a constant1. Afterwards, a built-in optimization phase
is triggered that optimizes the now constant conditions, removes redundant
branches, etc.

b) In the generic branch loop l , we replace the � anchor with a new if condition
that checks the value of the� node at this point and exits the loop if the array has
become columnar. If the array is still non-columnar (the � value is0), the generic
loop is resumed. As in that case, the state of the array is known, any usages of
the � anchor are replaced with a constant0, thus signaling that the array cannot
be columnar if the loop is continued. Subsequently, a similar optimization pass
as in the columnar path can remove certain conditions. The remaining� nodes
of merges in the loop denote cases where the array state is still uncertain.

5 After individual optimizations, the newly introduced loop exit from the generic
loop is merged with the point before the loop header in the columnar branch, thus
enabling a transition from the generic branch to the columnar one. Additionally,
the existing loop � nodes of the columnar loop have to be patched to reuse the
accumulated � values from the generic branch if it was executed before (e.g., if a
counter is used, the columnar loop should reuse the last counter value from the
generic branch and not reset it to the initial value).

The algorithm works similarly for loops where multiple arrays appear in columnar
format. In this case, we track the state of all these arrays and only allow the slow-to-
fast-path transition if all arrays are columnar.

5 Evaluation

Our goal with this work is to speed up queries on large, often read arrays that are trans-
formed to columnar arrays at run time. Implicitly, these performance improvements
also have to o�set the expected transformation overhead. In comparison to the work
done by Makor et al. [47], we want to improve the performance especially on smaller
workloads with fewer iterations by limiting the recompilation overhead. Furthermore,
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our multi-level storage transformation approach should yield performance bene�ts
for arrays of objects with Date properties. At the same time, we want to introduce no
signi�cant overhead for workloads not suited for our approach.

The evaluation of our approach is twofold: First, we evaluate the performanceof
our approach on di�erent workloads and discuss its bene�ts as well as shortcomings
based on those results. Second, we measure theimpact of our approach in terms of
the storage transformation overhead, as well as the overall overhead on workloads
that do not feature suitable arrays.

As our approach is integrated into the GraalVM JavaScript runtime, we also have to
ensure compliance with the standard. Our approach passes the V8 and ECMAScript
test suites [27], which in combination consist of over 51000 test cases. During those
runs, we lowered the threshold of the transformation signi�cantly to force storage
transformations of smaller arrays. Overall, around 450000 transformations were at-
tempted on arrays, of which around 1000 succeeded. However, around750 of those
arrays had to be restored later as unsupported operations occurred.

The workloads used to measure the performance of our approach are inspired by
the work done by Makor et al. [47]. Since data-heavy benchmarks over large arrays
are lacking in JavaScript, we used and extended their custom microbenchmarks1
and furthermore evaluated our approach on their port of the TPC-H Decision Support
Benchmark [17] and their Lodash [20] queries.

Note that compared to the evaluation in [47], we also implemented several improve-
ments to the transformation process, which further reduce the overhead. However, as
the evaluation in Section 5.4 shows, the transformation process still imposes signi�-
cant overhead. In Appendix A, we also show that our approach causes no signi�cant
overhead on workloads that do not contain applicable arrays.

All benchmarks were executed on a dual-socket Intel(R) Xeon(R) CPU E5-2690 @
8x2.90GHz with 32 logical cores and192G available RAM. Our approach is based on
GraalVM EE version 22.3.

5.1 Microbenchmarks

Fig. 8 shows the performance of our approach on a set of microbenchmarks that are
explained in Table 2. Each benchmark executes a particular query on a large array
of objects. The depicted results vary in the number of times the query is applied
to the same array (100, 500, 1000) and in the sizes of the generated arrays (10k,
100k, 1M). The results show that even for the smallest workloads, our approach
can achieve speedups on certain queries (up to5x on aggregate, 3x on writeProperty
with 1000 iterations). While benchmarks such as�lter and salariesonly achieve
moderate speedups (� 2x in the best cases), our multi-level transformation approach
(cf. Section 3) improves the performance of benchmarks that �lter/aggregate using
Date properties. The successful transformation of the timestamp values of theDate
properties shows that a multi-level transformation to columnar arrays is feasible and

1The source code is available at:https://github.com/lmakor-jku/data-intensive-js-benchmarks
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Figure 8 Microbenchmark throughput of our approach relative to baseline without storage
transformation (higher is better)

bene�cial (when the transformed properties are used in loops). The optimization leads
to signi�cant speedups when the property values are used independently from the
containing object, as the loading of that object can then be omitted. The performance
of benchmarks usingString properties degrades or is not impacted. This is due to
similar problems as with Date properties before our improvement. Hence, we think
that a more general implementation of multi-level storage transformation could also
cause speedups here. The columnar variant ofmapClientsToCostsis SIMD vectorized
and also shows a speedup of2x (cf. Section 4.4.2).

5.2 TPC-H

Fig. 9a shows the results when executing our approach on JavaScript ports of TPC-H
Decision Support Benchmark [17] queries. The queriesq1, q6, q12, q14, and q19were
selected, because they contain loops over large arrays without subselects. Queries
q1, q12, and q14don't perform well on our approach compared to their execution
on standard GraalVM JavaScript. This is due to their increased usage of grouping
and string functions which are not a�ected by our optimizations. Additionally, they
frequently contain operations that are not perfectly inlined by GraalVM's partial
evaluator, thus resulting in method calls that prevent our duplication from considering
this query. Queriesq6 and q19, however, are improved, with especially q6 experiencing
a major performance increase (nearly5x).

5.3 Lodash

For the results in Fig. 9b, we executed our approach on a number of Lodash [20]
queries based on microbenchmarks (cf. Section 5.1) and compared the performance
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