ORACLE

.
=

Experience: Model-Based, FeedbackDriven,
Greybox Web Fuzzing with BackREST

Francois Gauthier, Benhaz Hassanshahi, Benjamin Selwyn-Smith,
Trong Nhan Mai, Max Schltter, and Micah Williams

Consulting Researcher, Oracle Labs

Fuzzing or fuzz testing is an automated software testing
technigue that involves providing invalid, unexpected, or
random data as Iinputs to a computer program.

Wikipedia

6/14/2022

2 Copyright © 2022, Oracle and/or its affiliates

Fuzzing Exercises Available Functionality
Available fu_nctionality

Fuzzers 3 ¥ licarédbout the intended
functionality of a program.

They find issues by exploring the - i
space of available functionality. e A e ﬂ

"\.

Photo by Alexander Dummer: https://unsplash.com/photos/x4jRmkuDImo

3 Copyright © 2022, Oracle and/or its affiliates 6/14/2022

https://unsplash.com/photos/x4jRmkuDImo

Shades of Fuzzing

Fuzzerscome in 3 shades: black, grey, and white
1. Blackbox fuzzers are completely program -agnostic.
2. Greybox fuzzers use limite d program feedback (e.g. coverage, taint) to guide their search.
3. Whitebox fuzzers have complete accesstothe! D# 3 D& | Edz z ¥ 3¢ .

- Web BackREST
Arachni fuzZer S AFL SAGE
J Zap libFuzzer \ KLEE l
| ! |

1 1 [1 1

w3al | becTier Honggfuzz DART
: Jazzer
Burp Suite

4 Copyright © 2022, Oracle and/or its affiliates 6/15/2022

Model-Based Fuzzing

222222222

Model -Based Fuzzing of Web Applications
The client is the gateway to the server

A The server is our fuzzing target because it is where critical operations are happening.

A Need to access the serverindirectly through the client.

A Random requests to the server will likely fail early sanity checksg(.g. parameters, types, headers, etc.)
A ©LJAAS I 3 LI2§g dzE DA gDz LR2DALjz2 LIR2E zp5&N LI 3+x5dzl ELI dzzyp¢g.

—: HTTP REQUEST (600)
| QPR Ny SR CTTH R
HTTP RESPONSE _.I_
USER
CLIENT SERVER DATABASE

6 Copyright © 2022, Oracle and/or its affiliates 6/15/2022 E

Model -Based Fuzzing of Web Applications
Abstracting away the client to fuzz the server

A Client-server interactions in modern applications typically adopt a REST -like format.
A Interactions are defined and encapsulatedunsing standard HTTP verbs, URLs, and request parameters.

A For fuzzing purposes, clients can be abstracted away as REST APl models.

HTTP REQUEST (oo)
VO S
M- < w —
(_} HTTP RESPONSE S —
BackREST REST API SERVER DATABASE

7 Copyright © 2022, Oracle and/or its affiliates 6/15/2022 E

Inferring REST API Models

app.delete("/users/:userId", (req,

id = req.params.userld;

collection.remove({"id": 1id});

8 Copyright © 2022, Oracle and/or its affiliates

"paths": {
"/Jusers/{userId}":
"delete": {
"parameters": |

"name": "userId",
iknts SpathY;
"required": true,

"type": "string",
"example": "abcl23"

6/15/2022

Inferring REST API Models

app.delete("/users/:userId"] (req,

"paths": {
"Jusers/{userId}"k
saelete st
"parameters": |

id = req.params.userld;

collection.remove({"id": 1id});

"name": "userId",
iknts SpathY;
"required": true,

"type": "string",
"example": "abcl23"

9 Copyright © 2022, Oracle and/or its affiliates 6/15/2022

Inferring REST API Models

app ldelete|"/users/:userId", (req,

"paths": {
"/Jusers/{userId}":
"delete"f {
"parameters": |

id = req.params.userld;

collection.remove({"id": 1id});

"name": "userId",
iknts SpathY;
"required": true,

"type": "string",
"example": "abcl23"

10 Copyright © 2022, Oracle and/or its affiliates 6/15/2022

Inferring REST API Models

app.delete("/users/:userId", (req,

id = req.paramsluserld;

collection.remove({"id": 1id});

11 Copyright © 2022, Oracle and/or its affiliates

"paths": {
"/Jusers/{userId}":
"delete": {
"parameters": |

"name" : |"userId"
iknts SpathY;
"required": true,

"type": "string",
"example": "abcl23"

6/15/2022

Inferring REST API Models

app.delete("/users/:userId", (req,

id = req.params.userld;

collection.remove({"id": 1id});

Inferred through:
1. State-aware crawling
2. Static type inference

12 Copyright © 2022, Oracle and/or its affiliates

"paths": {
"/Jusers/{userId}":
"delete": {
"parameters": |

"name": "userId",
iknts SpathY;
"required": true,

"type": "string",
"example": "abcl23"

6/15/2022

Inferring REST APIs With Prioritised State -Aware Crawling

URL

creates
Crawler l > Browsers
| i launches
CTEAlES i Runner 1 i instrumented
i ! i response
i
Link Extraction , Runner2 HTTP request
—— MANAQEs— Task —is executed by—» —
_,. d | :
| i ! Instrumentor REST API
T | | i (MITM proxy) inference
creates add state ! Runner n !
i
i

Task Manager creates 4‘ :
I e modified HTTP

_ 4 State Crawl is executed by request
- manages |
Task HTTP response REST API

Prioritiser Application
Under Test
State
Manager

Gelato: Feedback -driven and Guided Security Analysis of Client -side Web Applications
Behnaz Hassanshahi, Hyunjun Lee, Padmanabhan Krishnan, SANER 2022 (to appear)

13 Copyright © 2022, Oracle and/or its affiliates 6/15/2022 E

Augmenting Crawled APIs With Static Type Inference

app.delete("/users/:userId", (req,

= req.params.userld;

app.delete (path , callback)
2. Inject mock

1. Initial type request type.

collection.remove({"id": propagation
} . graph.
r

fm{ req . res) j .params

3. Extend request object

feq _params: with used parameters.

obj .userid
ad)

4. Infer types of
parameters based
on usage.

collection.remove(query |

14 Copyright © 2022, Oracle and/or its affiliates 6/15/2022 E

FeedbackDriven Fuzzing

222222222

Feedback-Driven Fuzzing of Web Applications
Adding coverage and taint feedback

A A RESTAPI model allows for efficient blackbox fuzzing.
A Adding coverage and taint feedback brings BackRESTinto greybox fuzzing territory.

COVERAGE AND TAINT

v FEEDBACK |
° HTTP REQUEST oo)
©0O > —
¢ G (o0)
WS} . G -
T HTTP RESPONSE e
BackREST REST API SERVER DATABASE

16 Copyright © 2022, Oracle and/or its affiliates 6/15/2022 E

BackREST Architecture

17 Copyright © 2022, Oracle and/or its affiliates 6/15/2022

