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Fuzzing or fuzz testing is an automated software testing
technigue that involves providing invalid, unexpected, or
random data as Iinputs to a computer program.

Wikipedia
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Fuzzing Exercises Available Functionality
Available fu_nctionality

Fuzzers 3 ¥ licarédbout the intended
functionality of a program.

They find issues by exploring the - i
space of available functionality. e A e ﬂ
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Photo by Alexander Dummer: https://unsplash.com/photos/x4jRmkuDImo
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Shades of Fuzzing

Fuzzerscome in 3 shades: black, grey, and white
1. Blackbox fuzzers are completely program -agnostic.
2. Greybox fuzzers use limite d program feedback (e.g. coverage, taint) to guide their search.
3. Whitebox fuzzers have complete accesstothe! D# 3 D& | Edz z ¥ 3¢ .
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Model-Based Fuzzing
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Model -Based Fuzzing of Web Applications
The client is the gateway to the server

A The server is our fuzzing target because it is where critical operations are happening.

A Need to access the serverindirectly through the client.

A Random requests to the server will likely fail early sanity checksg(.g. parameters, types, headers, etc.)
A ©LJAAS I 3 LI2§g dzE DA gDz LR2DALjz2 LIR2E zp5&N LI 3+x5dzl ELI dzzyp¢g.
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Model -Based Fuzzing of Web Applications
Abstracting away the client to fuzz the server

A Client-server interactions in modern applications typically adopt a REST -like format.
A Interactions are defined and encapsulatedunsing standard HTTP verbs, URLs, and request parameters.

A For fuzzing purposes, clients can be abstracted away as REST APl models.
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Inferring REST API Models

app.delete("/users/:userId", (req,

id = req.params.userld;

collection.remove({"id": 1id});
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"paths": {
"/Jusers/{userId}":
"delete": {
"parameters": |

"name": "userId",
iknts SpathY;
"required": true,

"type": "string",
"example": "abcl23"
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Inferring REST API Models
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"paths": {
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Inferring REST API Models
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"/Jusers/{userId}":
"delete"f {
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Inferring REST API Models

app.delete("/users/:userId", (req,

id = req.paramsluserld;

collection.remove({"id": 1id});
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"paths": {
"/Jusers/{userId}":
"delete": {
"parameters": |

"name" : |"userId"
iknts SpathY;
"required": true,

"type": "string",
"example": "abcl23"
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Inferring REST API Models

app.delete("/users/:userId", (req,

id = req.params.userld;

collection.remove({"id": 1id});

Inferred through:
1. State-aware crawling
2. Static type inference
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"paths": {
"/Jusers/{userId}":
"delete": {
"parameters": |

"name": "userId",
iknts SpathY;
"required": true,

"type": "string",
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Inferring REST APIs With Prioritised State -Aware Crawling
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Gelato: Feedback -driven and Guided Security Analysis of Client  -side Web Applications
Behnaz Hassanshahi, Hyunjun Lee, Padmanabhan Krishnan, SANER 2022 (to appear)
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Augmenting Crawled APIs With Static Type Inference

app.delete("/users/:userId", (req,

= req.params.userld;

app.delete ( path , callback )
2. Inject mock

1. Initial type request type.

collection.remove({"id": propagation
} . graph.
r

fm{ req . res ) j  .params

3. Extend request object

feq _params: with used parameters.

obj .userid
ad )

4. Infer types of
parameters based
on usage.

collection.remove( query |
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FeedbackDriven Fuzzing
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Feedback-Driven Fuzzing of Web Applications
Adding coverage and taint feedback

A A RESTAPI model allows for efficient blackbox fuzzing.
A Adding coverage and taint feedback brings BackRESTinto greybox fuzzing territory.
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BackREST Architecture
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