
Lenient Execution of C on a JVM
How I Learned to Stop Worrying and Execute the Code

Manuel Rigger
Johannes Kepler University Linz, Austria

manuel.rigger@jku.at

Roland Schatz
Oracle Labs, Austria

roland.schatz@oracle.com

Matthias Grimmer
Oracle Labs, Austria

matthias.grimmer@oracle.com

Hanspeter Mössenböck
Johannes Kepler University Linz, Austria

hanspeter.moessenboeck@jku.at

ABSTRACT

Most C programs do not strictly conform to the C standard,
and often show undefined behavior, e.g., on signed integer
overflow. When compiled by non-optimizing compilers, such
programs often behave as the programmer intended. However,
optimizing compilers may exploit undefined semantics for
more aggressive optimizations, thus possibly breaking the
code. Analysis tools can help to find and fix such issues. Alter-
natively, one could define a C dialect in which clear semantics
are defined for frequent program patterns whose behavior
would otherwise be undefined. In this paper, we present such
a dialect, called Lenient C, that specifies semantics for behav-
ior that the standard left open for interpretation. Specifying
additional semantics enables programmers to safely rely on
otherwise undefined patterns. Lenient C aims towards be-
ing executed on a managed runtime such as the JVM. We
demonstrate how we implemented the dialect in Safe Sulong,
a C interpreter with a dynamic compiler that runs on the
JVM.

CCS CONCEPTS

� Software and its engineering � Virtual machines;
Imperative languages; Interpreters; Translator writing
systems and compiler generators;

KEYWORDS

C, Undefined Behavior, Sulong

ACM Reference format:
Manuel Rigger, Roland Schatz, Matthias Grimmer, and Hanspeter

Mössenböck. 2017. Lenient Execution of C on a JVM. In Pro-
ceedings of ACM Conference, Washington, DC, USA, July 2017
(Conference’17), 13 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

C is a language that leaves many semantic details open. For
example, it does not define what should happen on an out-
of-bounds access to an array, when a signed integer overflow
occurs, or when a type rule is violated. In such cases, not
only does the invalid operation yield an undefined result, but
according to the C standard the whole program is rendered
invalid. As compilers become more powerful, an increasing
number of programs break because undefined behavior allows
more aggressive optimizations and may lead to machine code
that does not behave as expected. Consequently, programs

that rely on undefined behavior risk introducing bugs that
are hard to find, can result in security vulnerabilities, or
remain as time bombs in the code that explode after compiler
updates [31, 44, 45].

While bug-finding tools help programmers to find and
eliminate undefined behavior in C programs, the majority
of C code will still contain at least some occurrences of non-
portable code. This includes unspecified and implementation-
defined patterns, which do not render the whole program
invalid, but can still cause surprising results. To address
this, it has been advocated to come up with a more lenient
C dialect, that better suits the programmers’ needs and
addresses common programming mistakes [2, 8, 13]. Such a
dialect would extend the C standard and assign semantics to
otherwise non-portable behavior in the C standard. We came
up with such a dialect, called Lenient C. For example, it

∙ assumes allocated memory to be initialized,
∙ assumes automatic memory management,
∙ allows reading objects assuming an incorrect type,
∙ defines corner cases of arithmetic operators,
∙ and allows comparing pointers to different objects.

Every C program is also a Lenient C program. However,
although Lenient C programs are source-compatible to C
programs, they are not guaranteed to work correctly when
compiled by C compilers. Lenient C aims to be a C dialect
that is most suitable to be executed on a managed runtime
environment such as the JVM, .NET, or a VM written in
RPython [34]. Although a managed runtime is not a typical
environment to run C, it is a good experimentation platform
for such a dialect because such runtimes typically execute
memory-safe high-level languages that provide many features
that we also want for C, for example, automatic garbage
collection and zero-initialized memory. In this context, Le-
nient C is suitable for execution on an interpreter, as part of
a source-to-source translation approach (i.e., C to C#), or
a source-to-bytecode translation approach (e.g., C to Java
bytecode). If Lenient C turns out to be useful for managed
runtimes, a subset of its rules might also get adopted by
static compilers.

We implemented Lenient C in Safe Sulong [32], an inter-
preter with a dynamic compiler that executes C code on the
JVM. We assume that implementations of Lenient C in man-
aged runtimes represent C objects (primitives, structs, arrays,
etc.) using an object hierarchy, and that pointers to other

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA M. Rigger et al.

Undefined

Unspecified

Implementation-
defined

Defined

Portability/
User expectations

Compiler freedom

Figure 1: The “Undefinedness Pyramid”

objects are implemented using managed references. This ap-
proach enables using a GC, which would not be possible if
a large byte array was used to represent C allocations [23].
In terms of language semantics, we focused on implementing
operations as most programmers would expect. Undefined cor-
ner cases in arithmetic operations behave similarly to Java’s
arithmetic operations, which also resembles the behavior of
AMD64. This paper contributes the following:

∙ A relaxed C dialect called Lenient C that gives semantics
to undefined behavior and is suitable to be executed on a
JVM and other managed runtimes.

∙ An implementation of this dialect in Safe Sulong, an
interpreter that is written in Java.

∙ A comparison of Lenient C with the Friendly C proposal
and the anti-patterns listed in the SEI CERT C Coding
Standard .

1 BACKGROUND

1.1 Looseness in the C Standard

C’s main focus is performance, so the C standard only defines
the language’s core functionality while leaving many corner
cases undefined (to different degrees, see below). For example,
unlike higher level-languages such as Java or C#, C does
not require local variables to be initialized, and reading from
uninitialized variables can yield undefined behavior [37].1 Not
needing to initialize storage results in speed-ups of a few per-
cent [25]. As another example, 32-bit shifts are implemented
differently across CPUs; the shift amount is truncated to 5
bits on X86 and to 6 bits on PowerPC [20]. In C, shifting an
integer by a shift amount that exceeds the bit width of the
integer type is undefined, which enables directly using the
CPU’s instructions on both platforms.

The C standard provides different degrees of looseness,
which we illustrate in the undefinedness pyramid in Figure 1.
Programmers usually want their programs to be strictly con-
forming, that is, they only rely on defined semantics. Strictly-
conforming programs exhibit identical behavior across plat-
forms and compilers (C11 4 §5). Layers above “defined” incre-
mentally provide freedom to compilers, which limits program

1Note that reading an uninitialized variable, depending on the type,
produces an indeterminate value, which can either be a trap represen-
tation or an unspecified value.

portability and results in compiled code that often does not
behave as the user expected [44, 45]. Implementation-defined
behavior allows an implementation to freely implement a
specific behavior that needs to be documented. Examples of
implementation-defined behavior are casts between pointers,
that underlie different alignment requirements across plat-
forms. Unspecified behavior, unlike implementation-defined
behavior, does not require the behavior to be documented.
Typically, unspecified behavior includes cases where com-
pilers do not enforce a specific behavior, which stems from
unspecified behavior being allowed to vary per instance. An
example is using an unspecified value, which can, for ex-
ample be produced by reading padding bytes of a struct
(C11 6.2.6.1 §6). Another example is the order of argument
evaluation in function calls (C11 6.5.2.2 §10). Undefined be-
havior provides the weakest guaranteees; the compiler is not
bound to implement any specific behavior. A single occur-
rence of undefined behavior renders the whole program invalid.
The tacit agreement between compiler writers seems to be
that no meaningful code needs to be produced for undefined
behavior, and that compiler optimizations can ignore it to
produce efficient code [13]. Consequently, the current consen-
sus among researchers and industry is that C programs should
avoid undefined behavior in all instances, and a plethora of
tools detects undefined behavior so that the programmer can
eliminate it [e.g., 4, 5, 14, 16, 19, 27, 39, 41, 43]. Examples
of undefined behavior are NULL dereferences, out-of-bounds
accesses, integer overflows, and overflows in the shift amount.

1.2 Problems with Undefined Behavior

While implementing Safe Sulong, we found that most C pro-
grams exhibit undefined behavior and other portability issues.
This is consistent with previous findings. For example, six
out of nine SPEC CINT 2006 benchmarks induce undefined
behavior in integer operations alone [11].

It is not surprising that the majority of C programs is not
portable. On the surface, the limited number of language con-
structs makes it easy to approach the language; its proximity
to the underlying machine allows examining and understand-
ing how it is compiled. However, C’s semantics are intricate;
the informative Annex J on portability issues alone spans
over twenty pages. As stated by Ertl, “[p]rogrammers are
usually not language lawyers” [13] and rarely have a thor-
ough understanding of the C standard. This is even true for
experts, as confirmed by the Cerberus survey, which showed
that C experts rely, for example, on being able to compare
pointers to different objects, which is clearly forbidden by
the C standard [24].

Furthermore, much effort is required to write code that
cannot induce undefined behavior. For example, Figure 2
shows an addition that cannot overflow (which would induce
undefined behavior). Such safe code is clumsy to program,
and defeats C’s original goal of defining its semantics so that
efficient code can be produced across platforms.

In general, code that induces undefined behavior cannot
always be detected during compile time. For example, adding

Lenient Execution of C on a JVM Conference’17, July 2017, Washington, DC, USA

signed int sum(signed int si_a , signed int si_b) {

if (((si_b > 0) && (si_a > (INT_MAX - si_b))) ||

((si_b < 0) && (si_a < (INT_MIN - si_b)))) {

/* Handle error */

} else {

return si_a + si_b;

}

}

Figure 2: Avoiding overflows in addition [38]

two numbers is defined, as long as no integer overflows hap-
pens. It is also seldom a problem when the program is com-
piled with optimizations turned off (e.g., -O0). However, it is
widely known that compilers perform optimizations at higher
optimization levels that cause programs to behave incorrectly
if they induce undefined behavior [20, 31]. As an example,
about 40% of the Debian packages contain unstable code that
compilers optimize away at higher optimization levels, often
changing the semantics because compilers exploit incorrect
checks or undefined behavior in the proximity of checks [45].
This is worrisome, since optimizing away checks that the
user deliberately inserted is likely to create vulnerabilities
in the code [2, 12, 45]. Finally, code can be seen as a time
bomb [31]. Increasingly powerful compiler optimization can
cause programs to break with compiler updates; if code that
induces undefined behavior does not break now, it might do
so in the future [20].

1.3 Calls for a Lenient C

One strategy to tackle portability issues is to detect them
and to fix the relevant code. To this end, a plethora of static
and dynamic tools enable programmers to detect memory
problems [4, 27, 39, 41], integer overflows [5, 43], type prob-
lems [19], and other portability issues in programs [14, 16].
Another effort is to educate programmers and inform them
about common portability pitfalls in C. The most compre-
hensive guide to avoid portability issues is the SEI CERT C
Coding Standard [38] which documents best practices for C.

Due to such portability issues, a call has been made (see
below) for a more lenient dialect of C. Instead of consid-
ering common patterns that go against the C standard as
portability problems, it would explicitly support them by
assigning semantics to such operations in a way that pro-
grammers would expect from the current C standard. Most
code that would execute correctly at -O0, even if it induces
undefined behavior, would also correctly execute with this
dialect. For unrecoverable errors, it would require implemen-
tations to trap (i.e., abort the program). This dialect would
be source-compatible with standard C: every program that
would compile according to the C standard would also com-
pile with this dialect. Consequently, such an effort would be
different from safer, C-like languages such as Polymorphic
C [40], Cyclone [17], and CCured [26] that require porting
or annotating C programs.

Three notable proposal for such a safer C dialect can be
found in literature. Bernstein called for a “boring C com-
piler” [2] that would prioritize predictability instead of per-
formance, and could be used for cryptographic libraries. He
proposed that such a compiler would commit to a specified be-
havior for undefined, implementation-defined, and unspecified
semantics. The proposal did not contain concrete suggestions,
except that uninitialized variables should be initialized to
zero. A second proposal for a “Friendly Dialect of C” has
been made by Cuoq, Flatt, and Regehr [8]. The Friendly C
dialect is similar to C, except that it replaces occurrences of
undefined behavior in the standard with defined behavior,
or unspecified results (which does not render the whole pro-
gram or execution invalid). Friendly C specifies 14 changes to
the language, addressing some of the most important issues,
but was meant to trigger discussion and not to comprehen-
sively cover all the deficiencies of the language. Eventually,
Regehr [30] abandoned the proposal and concluded that too
many variations on a Friendly C standard would be possible
to have experts reach a consensus. Instead, he proposed that
consensus should be skipped and a friendly C dialect created,
which could gain adoption if used by a broader community.
A third proposal for a “C*” dialect where operations on the
language level directly correspond to machine level opera-
tions has been outlined by Ertl [13]. Ertl observed that the
C standard gave leeway to implementations to efficiently
map C constructs to the hardware. However, he notes that
compiler maintainers diverged from this philosophy and have
implemented optimizations that go against the programmer’s
intent, by deriving facts from undefined behavior that enable
more aggressive optimizations. Ertl believes that C program-
mers unknowingly write programs that target the C* dialect
because they are not familiar enough with the C rules. Ac-
cording to him, the effort required in converting C* programs
to C programs, however, would have a bad cost-benefit ratio
when considering that programmers could hand-tune the C
code.

2 LENIENT C

We present a C dialect, called Lenient C, that assigns se-
mantics to behavior in the C11 standard that is otherwise
undefined, unspecified, or implementation-defined. Table 1
presents the rules that supersede those of the C11 standard,
and specify Lenient C. A previous study categorized un-
defined behavior on whether it involved the core language,
preprocessing phases, or library functions [16]. We restrict
Lenient C on the core language, and consider extensions to
it as part of future work, memory management functions
being the only exception. We were primarily interested in
undefined behavior that compilers cannot statically detect
in all instances. Consequently, we disregarded problematic
idioms such as writing-through consts [14], where an object
with a const-qualified type is modified by casting it to a non-
const-qualified type (C11 6.7.3 §6). We believe that increased
research on compiler warnings and errors enables eliminating
such bugs [42]. We came up with this dialect while working

Conference’17, July 2017, Washington, DC, USA M. Rigger et al.

ID Lenient C SEI CERT Friendly C

General

G1 Writes to global variables, traps, I/O, and program termination are considered to be side effects. 6, 13
G2 Externally-visible side effects must not be reordered or removed. 6, 13

G3 Signed numbers shall be represented in two’s complement. INT16-C

G4 Variable-length arrays that are initialized to a length smaller or equal to zero shall produce a trap. ARR32-C

Memory Management
M1 Dead dynamic memory shall eventually be reclaimed, even if it is not manually freed. MEM31-C

M2 Objects can be used as long as they are referenced by pointers. MEM30-C 1

M3 Calling free() on invalid pointers shall have no effect. MEM34-C

Accesses to Memory

A1 Reading uninitialized memory shall behave as if it was initialized with zeroes. EXP33-C 8
A2 Reading struct padding shall behave as if it was initialized with zeroes. EXP42-C

A3 Dereferences of NULL pointers shall abort the program. EXP34-C 4
A4 Out-of-bounds accesses shall abort the program. MEM35-C 4
A5 A pointer shall be dereferenceable using any type. EXP39-C 10

Pointer Arithmetics

P1 Computing pointers that do not point to an object shall be permitted. ARR30-C,

ARR38-C,
ARR39-C

9

P2 Overflows on pointers shall have wraparound semantics. 9
P3 Comparisons of pointers to different objects shall give consistent results based on an ordering of

objects.

ARR36-C

P4 Pointers arithmetics shall work not only for pointers to arrays, but also for pointers to any type. ARR37-C

Conversions
C1 Arbitrary pointer casts shall be permitted, while maintaining a valid pointer to the object. MEM36-C,

EXP36-C

10, 13

C2 Converting a pointer to an integer shall produce an integer that, when compared with another
pointer-derived integer, yields the same result as if the comparison operation was performed on
the pointers.

INT36-C,
ARR39-C

Functions

F1 Non-void functions that do not return a result implicitly return zero. MSC37-C 14
F3 A function call shall trap when the actual number of arguments does not match the number of

arguments in the function declaration.
EXP37-C,
DCL40-C

Integer Operations
I1 Signed integer overflow shall have wraparound semantics. INT32-C 2

I2 The second argument of left and right shifts shall be reduced to the value modulo the size of the
type and shall be treated as an unsigned value.

INT34-C 3

I3 Signed right shift shall maintain the signedness of the value, that is, it shall implement an arithmetic
shift.

I4 If the second operand of a modulo or division operation is 0, the operation shall trap. INT33-C 5
I5 Besides signed right shifts, bit operations on signed integers shall produce the same bit representa-

tion as if the value was cast to an unsigned integer.
7

Table 1: The rules of Lenient C in comparison with SEI CERT C Coding Standard and Friendly C

on the execution of C code on the JVM, using Safe Sulong,
a C interpreter with a dynamic compiler. We found that
most programs induce undefined behavior or exhibit other
portability issues. Lenient C was inspired by Friendly C;
additionally, we tried to support many anti-patterns that
are described in the SEI CERT C Coding Standard , as they
reflect non-portable idioms on which programmers rely.

While the dialect can be implemented by static compilers,
Lenient C programs are most suitable to be executed in
a managed environment. In other words, Lenient C makes
some assumptions that hold for managed runtimes such as
the JVM or .NET, but typically not for static compilers that
compile C code to an executable such as LLVM or GCC. For

example, Lenient C assumes automatic memory management.
Although garbage collectors (GCs) exist that can be compiled
into applications [3, 29], they are not commonly used. Still,
we believe that many of Lenient C’s rules might also inspire
their implementation in static compilers such as GCC or
LLVM.

In the following sections, we will describe how we imple-
mented the Lenient C dialect in Safe Sulong, and expand on
its design decisions. Section 3 describes an object hierarchy
that is suitable to implement Lenient C in object-oriented
languages. Section 4 describes how we implemented memory
management and expands on Lenient C’s requirements on
memory management and memory errors. Section 5 discusses

Lenient Execution of C on a JVM Conference’17, July 2017, Washington, DC, USA

operations on pointers, and Section 6 discusses how Lenient
C foresees the implementation of arithmetic operations.

3 TYPE HIERARCHY

In the context of an execution environment for an object-
oriented language, we do not want to model native C memory
using a single array of bytes, since such an approach is in-
flexible and not idiomatic. Instead, we represent C objects
using classes that inherit from a ManagedObject base class.2

Subclasses comprise integer, floating point, struct, union,
array, pointer, and function pointer types. For example, we
represent the C float type as a Float subclass. To denote
values, we use Haskell-style type constructors. A float value
3.0 is thus denoted as Float(3.0).

The ManagedObject class specifies methods for reading
from and writing to objects, that the subclasses need to
implement. The read operation is denoted as a method
object.read(type, offset) that reads a specific type from
an object at a given offset. For example, reading a float at
offset 4 from an object is denoted as object.read(Float, 4).
The write method is denoted as a method object.write(type,

offset, value). The C standard requires that every object
can

∙ be treated as a sequence of bytes, so every subclass needs
to implement at least a method that can read and write
the I8 type (C11 6.2.6.1 §4),

∙ and can be read using the type of an object, so, for
example, an I32 object needs to implement read and
write methods for I32.

Additionally, we allow treating objects using other types, by
concatenating their byte representation (see Section 5.4).

3.1 Integer and Floating Point Types

Safe Sulong represents primitive types a Java wrapper classes.
In subsequent examples, we assume an LP64 model in which
an int has 32 bit, a long 64 bit, and a pointer 64 bit. However,
our architecture also works for other 64-bit and 32-bit models;
we will note differences that influence the implementation at
the corresponding location in the text.

For the C types bool, char, short, int, and long we use
wrapped Java primitive types. For example, an int in C
corresponds to a 32-bit integer in LP64, and we map it to a
Java class I32 that holds a Java int. Note that we do not
need separate types for signed and unsigned integers; only
the implementations of the operations on them differ.

We also represent float and double types using wrapped
Java equivalents. C has a long double data type that is
represented as an 80-bit floating-point type on AMD64. Since
this data type does not exist in Java, we provide a custom
implementation that emulates the behavior of 80-bit floats.
Emulating 80-bit floats is inefficient and error-prone. As
part of future work, we want to provide a more efficient

2Safe Sulong interprets LLVM IR [21], which is a RISC-like interme-
diate representation, and not C code. LLVM IR also contains other
integer types (e.g. I33 and I48) that we map to a wrapped byte array.

int main() {

int val , arr [3];

int *ptr1 = &val; // (val , 0)

int *ptr2 = &arr [2]; // (arr , 8)

int *ptr4 = 0; // (NULL , 0)

}

Figure 3: Illustration of different pointer tuples

implementation of this type. However, we found that only
few C programs rely on long doubles.

For better efficiency, we do not wrap values when they
stay within the context of a function and when their address
is not taken.3

3.2 Pointers and Function Pointers

We implement pointers using a class Address. Address has
two fields: an ManagedObject field pointee that refers to its
pointee, and an integer offset that denotes the offset within
the object. The offset has to be large enough to hold an
integer with the same bit width as a pointer; assuming LP64,
it is 64-bit wide. We denote a pointer-tuple as (pointee,

offset). The idea of representing pointers as a tuple is not
new; for example, formal C models [18, 22], and also previous
implementations of C on the JVM used such a representa-
tion [10, 15]. Figure 3 shows tuples for three different pointers.
ptr1 points to the start of an int; the offset is 0. ptr2 points
to the second element of an integer array; the offset is 8 (2
* sizeof(int)). ptr3 is a NULL pointer, which is obtainable
by an integer constant 0. C specifies that it is guaranteed
to be unequal to any pointer that points to a function or
object (C11 6.3.2.3). We implement the NULL constant by
an Address which has a null pointee and an offset of 0.
Note that Section 5.1 will give a detailed account of pointer
arithmetics.

We represent function pointers using a class that comprises
a wrapped long that represents a function ID. For every
parsed function, a unique ID starting from 1 is assigned. An
ID of 0 represents a NULL function pointer. For calls, this ID
is used to locate the executable representation of the function.
Note that forgotten return statements in non-void functions
induce undefined behavior (C11 6.9.1 §12). To address this,
Safe Sulong implicitly returns a zero value of the return
type when control reaches the end of the function. Note that
another error is when a function call supplies a wrong number
of arguments, for which Lenient C requires the function call
to trap.

3.3 Arrays

We represent C arrays using Java classes that wrap Java
arrays. Primitive C arrays are represented by primitive Java
arrays. For example, the type int[] is represented as a Java
int array. We represent other C arrays using Java arrays
that have a ManagedObject subtype as their element type.
For example, we represent C pointer arrays as Java Address

3That is, they map to LLVM IR registers.

Conference’17, July 2017, Washington, DC, USA M. Rigger et al.

struct {

int a;

long b;

} t;

char* val = (char*) &t;

val [9] = 1;

Figure 4: Writing a char into a struct member

arrays. In our type hierarchy, arrays and structs are nested
objects, which the read and write operation must take into
account. Consequently, a given offset value has to be decom-
posed to select the array element, and then the offset within
that element. For example, to read a byte from an I32Array

the I8 read operation computes the value as the right-most
byte taken from values[offset / 4] >> (8 * (offset %

4)). The division selects the array member, and the modulo
the byte inside the integer.

3.4 Structs and Unions

Java lacks a struct type. We represent structs using a map
that contains ManagedObjects. A struct member can be ac-
cessed using an operation getfield(offset) that returns a
tuple (object, offset′). The object denotes the member
stored at the byte position offset, and offset′ denotes the
offset relative to the start of this member. Figure 4 shows an
example. Note that the struct has a size of 16 bytes, where
the stored int takes up 4 bytes, the padding values after the
int 4 bytes, and the long 8 bytes. To write a byte at offset
9, Safe Sulong first selects the member using getfield(9);
the returned tuple is (I64(0), 1). It then writes the value
to the selected member object using object.write(I8, 1).
The read operation looks similar.

Safe Sulong also takes into account padding bytes, which
have unspecified values according to the standard (C11 6.2.6.1 §6).
It initializes such bytes with a sequence of I8(0). Note that
an alternative way to represent structs would be to use classes
that represent struct members by fields. In a source-to-source
transformation approach, these classes could be generated
when compiling the program [23]. In interpreters, this would
be more complicated because the interpreter would have to
generate Java bytecode at run time.

In this object hierarchy, unions are structs with only one
field. Unions allow programmers to view a memory region
under different types. When reading a value from a union
using a type that is different from the type that was last
used when storing to this union, the standard requires that
the union is represented in the new type (C11 6.5.2.3 §3). To
account for this, we allocate a union with a sub type that
reflects the the most general member type: when aliasing
primitive values and pointers, we select Addresses or arrays
of Addresses since integers and floating-point numbers can
be stored in the offset field of an address. As an alternative
to using a single type, a map operation writefield(offset,

object) could be introduced that replaces an existing object
at the given offset, to store a member with a different type.

Such an approach would resemble tagged unions which are,
for example, used by precise GCs for C [29].

4 MEMORY MANAGEMENT

One of our main concerns is how to implement memory man-
agement for C, and how to handle memory errors. Allocating
stack objects and global objects is straightforward, since their
type is known. We map such allocations to one of the types
presented in Section 3. Variable-length array declarations
that have a negative or zero size induce undefined behavior
(C11 6.7.6.2 §5). We trap in such cases, which corresponds
to Java’s default behavior when the size is negative (we still
have to explicitly check for zero). For heap objects (allocated
by malloc(), calloc(), or realloc()) we do not know the
type of object that will be stored in it. Thus, we allocate the
corresponding Java object only on the first cast, read, or write
operation (i.e., when the type of the object becomes known)
and propagate the type back to the allocation site, similar
to allocation mementos in V8 [7]. Subsequent calls to the
allocation function directly allocate an object of the observed
type. Another approach to address untyped heap allocations
would be to determine a type using static analysis [19].

4.1 Uninitialized Memory

There is no clear solution on how to behave when a program
reads from uninitialized storage, which can induce undefined
behavior [37]. There are two contradictory use cases, of which
we have to support one in our lenient execution model.

The first use case is that some programs purposefully read
from unitialized memory to create entropy. The entropy stems
from previously allocated memory; unitialized stack reads
can read previous activation frames, while unitialized heap
reads can read malloced and freed heap memory. This pattern
is problematic, and commonly used bug-finding tools such
as Valgrind [27] and MSan [41] report it as a program error.
Another issue is that reads to uninitialized memory make
applications prone to information leak attacks [25]. While
allowing a program to read stale values could be dangerous,
initializing all data structures with random values (to create
entropy) would be an overkill.

The second scenario is that programmers read uninitial-
ized storage by accident. When executing programs with Safe
Sulong, we saw a number of programs that forgot to initial-
ize memory or assumed that it was zero-initialized. Those
programs worked correctly when uninitialized reads returned
zero, which was suggested by Bernstein [2]. Zero-initialization
is also supported by SafeInit [25], a protection system for
C/C++ programs. As SafeInit, we decided to support the
second scenario, as it does not obviously jeopardize the sys-
tem’s security. Our implementation initializes all values to
zero (recursively for nested objects); primitives are initialized
to zero values, while pointers are initialized to NULL. Note
that this approach is close to Java’s default behavior which
initializes object fields to zero default values, if they are not
explicitly initialized.

Lenient Execution of C on a JVM Conference’17, July 2017, Washington, DC, USA

4.2 Memory Leaks and Dangling Pointers

C requires programmers to manually manage heap mem-
ory: memory allocated by malloc() needs to be freed using
free(). Forgetting to free an object causes a memory leak,
which can impact performance and can lead the application
to run out of memory. Since Safe Sulong runs on a JVM, the
JVM’s GC reclaims objects after they are no longer needed.
Note that automatic memory management cannot be easily
implemented for static compilers; hence, it is also not covered
by Friendly C.

A dangling pointer is a pointer whose pointee has exceeded
its lifetime. Accessing such a pointer induces undefined be-
havior. There are two situations where a dangling pointer
can be created:

∙ A heap object is freed using free() (C11 7.22.3.3).
∙ A C object with automatic storage duration (i.e., a stack

variable) exceeds its lifetime (C11 6.2.4 §2).

There is no use case for accessing dangling pointers; they are
caused by errors in manual memory management. In our type
hierarchy, we could detect such errors by setting automatic
objects to null after leaving a function scope, and by letting
free() calls the data of a pointee to null [32]. However, since
we strive for lenient execution, we do not set them to null

and retain references to objects whose lifetimes are exceeded.
Consequently, programs can access dangling pointers, as if
they would still be alive. Only when the program loses all
references to a pointee will the GC reclaim the pointee’s
memory.

4.3 Buffer Overflows and NULL
Dereferences

Besides use-after-free errors and invalid free errors, also buffer
overflows and NULL dereferences are a concern, which induce
undefined behavior. For buffer overflows, an out-of-bounds
read could produce a predefined zero value. This would work
well when a non-delimited string is passed to a function that
operates on it; when reading zero, the function would assume
that it has reached the end of the string. However, we also
found that some programs with out-of-bounds reads did not
terminate when producing a zero value upon out-of-bounds
reads. For example, the fasta-redux benchmark ran out-of-
bounds while adding up floating point values. Due to a round-
ing error, the number did not add up to 1.00, and the program
only terminated when reading positive garbage values.4 In
general, this approach is known as failure-oblivious comput-
ing [35], which ignores out-of-bound writes, and produces
a sequence of predefined values to accommodate different
scenarios. As there is no value sequence that works for all
programs, we decided to trap on buffer overflows. This also
corresponds to Java’s default semantics. Since we represent
C arrays and structs using Java arrays, Java automatically
performs bounds checks on accesses. On most architectures,

4https://alioth.debian.org/tracker/?func=detail&atid=413122&aid=
315503&group id=100815

int main() {

int arr [3] = {1, 2, 3};

ptrdiff_t diff1 = &arr [3] - &arr [0];

size_t diff2 = (size_t) &arr [3] - (size_t) &arr [0];

printf("%td %ld\n", diff1 , diff2); // prints 3 12

}

Figure 5: Computing the pointer difference

NULL dereferences produce traps and usually present unrecov-
erable program errors. Consequently, Lenient C also traps on
NULL dereferences.

5 POINTER OPERATIONS

Pointers and pointer arithmetics are the main difference
between C and other higher-level languages such as Java and
C# which use managed references instead. Consequently, this
section explains how Safe Sulong implements operations that
involve pointers.

5.1 Pointer Arithmetics

Addition or subtraction of integers. The standard de-
fines additions and subtractions where one operand is a
pointer P and the other an integer N (C11 6.5.6). Such an op-
eration yields a pointer with the same type as P, which points
N elements forward or backward, depending on whether the
operation is an addition or subtraction. For example, arr
+ 5 computes an address by taking the address of arr and
incrementing it by five elements. In our hierarchy, such an
address computation creates a new pointer based on the old
pointee and an updated offset. We compute the pointer as a
new tuple (pointee, oldPointer.offset + sizeof(type)

* N) For example, if arr was an int we would compute the
offset by sizeof(int) * N. Note that the standard only de-
fines these operators for pointers to arrays (C11 6.5.6 §8),
while Lenient C allows pointer arithmetics for pointers to
any type.
Subtraction of two pointers. The standard defines that
subtracting two pointers yields the difference of the subscripts
of the two array elements (C11 6.5.6 §9). Figure 5 shows a
code snippet that subtracts two pointers, were one points
to the start and one to the end of an array; note that the
standard requires a common pointee (or a pointer one past
the last array element). We implement pointer subtraction by
subtracting the two integer representations of the pointer (see
Section 5.3). Note that it would be sufficient to subtract the
two pointer offsets; however, this could lead to unexpected
results for differing pointees (which is undefined behavior)
since the difference would suggest a common pointee if they
have the same offset.
Pointer overflow. The C standard only allows pointers to
point to an object, or one element after it (C11 6.5.6 §8). The
latter is useful when iterating over an array in a loop using a
pointer. Lenient C abolishes these restrictions: in Safe Sulong
a pointer is, through the offset field, handled like an integer
and is, for example, allowed to overflow. However, we prohibit
dereferencing out-of-bounds pointers (see Section 4.3).

https://alioth.debian.org/tracker/?func=detail&atid=413122&aid=315503&group_id=100815
https://alioth.debian.org/tracker/?func=detail&atid=413122&aid=315503&group_id=100815

Conference’17, July 2017, Washington, DC, USA M. Rigger et al.

void *memmove(void *dest , void const *src , size_t n) {

char *dp = dest;

char const *sp = src;

if (dp < sp) {

while (n-- > 0) *dp++ = *sp++;

} else {

dp += n; sp += n;

while (n-- > 0) *--dp = *--sp;

}

return dest;

}

Figure 6: Non-portable implementation of memmove

Pointer comparisons. Two pointers a and b can be com-
pared using the same comparison operators as integers and
floating point numbers.

It is straightforward to implement the equality operators
(== and !=). For example, to determine equality for two
pointers, we check whether they refer to the same pointee
and have the same pointer offset. In Java, we implement the
pointee comparision using a.pointee == b.pointee, which
checks for object equality. If the expression yields true, we
also compare the offset using a.offset == b.offset.

It is more difficult to implement the relation operators (<,
>, <=, and >=). The C standard only defines these operators
for pointers to the same object, or their subobjects (for structs
and arrays); comparing two different objects yields undefined
behavior (C11 6.5.8 §5). To implement standard-compliant
behavior, comparing the pointer offset would be sufficient;
for example, to implement < we could compare a.offset <

b.offset. However, we found that programs often compare
pointers to different objects. For example, Figure 6 shows a
naive implementation of memmove5 that potentially compares
two pointers to different objects, which is undefined behavior.
For such patterns, only comparing the pointer offset would
give surprising results since it does not establish an ordering
between objects. Instead, we establish an ordering using the
integer representations of the pointers (see Section 5.3)

5.2 Pointer-to-Pointer Casts

In general, casts between pointers are implementation-defined
(C11 6.3.2.3 §7). On a platform level, they are undefined if
the converted pointer is not correctly aligned for the refer-
enced type. Safe Sulong’s abstracted architecture does not
require any pointer alignments, so we support casts between
different pointer types as required by Lenient C. Since in
our architecture, pointer-to-pointer casts do not change the
underlying object representation, we can simply achieve the
desired behavior by not performing any action.

5.3 Conversions between Pointers and
Integers

We found that many applications assume pointers to be reg-
ular integer types. Consequently, some programs arbitrarily
convert pointers to integers, perform computations on the in-
tegers, convert them back and dereference them. Additionally,

5adapted from http://c-faq.com/ansi/memmove.html

programmers sometimes craft pointers from not obviously
related integers. For example, the Cerberus survey showed
that programmers rely on being able to compute the differ-
ence between two pointers, and using the pointer difference
to refer from one object to another [24]. Another example
are compressed oops in the Hotspot VM, where on 64-bit
architectures, addresses are compacted to 32-bit [36]. Finally,
some popular C applications store information in unused bits
of an address [6].

Such patterns are implementation-defined and discouraged
(C11 6.3.2.3 §5); for example, they often cause vulnerabilities
when upgrading to a platform where data types have a dif-
ferent bit width [48]. Approaches that represent C memory
as an array can easily support them, but they cannot rely
on the GC to reclaim dead C objects. When programmers
can arbitrarily construct pointers, a GC cannot securely re-
claim any objects. Consequently, GCs for C have to take
compromises. For example, the Boehm GC assumes all values
to be pointers that, if treated as pointers, would refer to a
valid memory region. The Magpie GC only assumes those
values to be reachable that have a pointer type [29]. Given
the tradeoffs, we present two strategies to convert integers to
pointers: the first one prohibits converting integers to point-
ers, and the second one has to rely on heuristics for garbage
collection, like the Boehm GC and Magpie.

The first strategy converts an address to a 64-bit integer
value by concatening the 32-bit hash of the pointee with the
offset ((long) System.identityHashCode(pointee) << 32

| offset). Once an address has been converted to an integer,
it loses its reference to its pointee. When converted back to
a pointer, we assign the integer value to offset and NULL

to the pointee. The pointer can no longer be dereferenced.
This can be a problem if a pointer is copied byte-wise (e.g.,
in functions similar to memmove or memcpy), since only its
integer representation is copied. If two pointers referring to
an identical object are converted to integers, the ordering is
maintained if the offset does not exceed 32-bits. For point-
ers with a NULL pointee we use the 64-bit pointer offset as
an integer representation, to maintain the order relation be-
tween pointers that were converted back and forth to integers.
Note that this approach is unsound for pointers to different
pointees, because it can yield identical or overlapping values
for different pointees. This representation allows the relation
operators to be total and transitive. However, it violates an-
tisymmetry, that is, two pointers can have the same integer
representation when they refer to different objects. Never-
theless, we have not yet found a program that relies on the
antisymmetry property; programs typically use the equality
operators to determine equality.

The second strategy is to assign an unique ID to every
object when it is converted to an integer. The first strategy
could also use unique IDs, if an application requires anti-
symmetry. This ID is to be incremented by the size of the
object. To support dereferencable pointers that were obtained
by integers we store “escaping” objects (i.e., objects whose
pointer is converted to an integer) in a tree data structure

http://c-faq.com/ansi/memmove.html

Lenient Execution of C on a JVM Conference’17, July 2017, Washington, DC, USA

int func(int *a, long *b) {

*a = 5;

*b = 8;

return *a;

}

Figure 7: Example demonstrating strict aliasing

that associates the range of addressable bytes with an object.
When an integer is converted to a pointer, the conversion op-
erations looks up the object from this tree. Using the integer
representation of the first strategy here would be dangerous,
since an application could gain access to another object, if
they share the same hash code. Note that escaped objects
stored in the tree would never be collected by the GC. To ad-
dress this, the GC is allowed to collect such pointers when the
application runs low on memory (by using a SoftReference).
An alternative strategy would involve using a least-recently-
used technique [28] to keep only those mappings alive that
are used by the application. The drawback is that object
graphs could be collected, even though the application still
wants to use them, namely when the integer value is the only
reference to the object graph, and when the application runs
low on memory.

5.4 Reading from Memory

Two pointers can alias, which means that they can point
to the same memory location. A frequent source of errors
is that compilers assume that pointers cannot alias, when
programmers intend them to do [9]. The best known alias-
ing restriction is the strict aliasing rule: the C11 standard
specifies that two pointers of different type (if neither is a
char pointer) cannot alias (C11 6.5 §7). Figure 7 shows an
example, that can yield unexpected results for programmers
that are not familiar with this rule. Note that without op-
timization, passing two identical pointers will likely yield a
value of 8 since a and b alias. However, C’s type rules do
not allow them to alias and when enabling compiler opti-
mizations, the return value is likely optimized to always be
5. Consequently, large projects often disable strict aliasing
through the -fno-strict-aliasing compiler flag in GCC
and LLVM [9, 24]. In Lenient C, we explicitly allow two
pointers of different type to alias. Moreover, we allow that
an incompatible type can be used to read a value from the
pointee, or write one to it. In Safe Sulong, storing a value or
reading a value maps to a call of the read or write operation
on the pointee.

6 ARITHMETIC OPERATIONS

C programmers often do not anticipate the semantics of cor-
ner cases in arithmetic operations. Many approaches try to
find program errors related to arithmetic operations, espe-
cially integer-based errors [5, 11]. Our goal is to define the
semantics of integer operations as programmers currently
would expect it from the C standard. To this end, Lenient C
mostly orients itself towards how corner cases are handled

in Java, which also corresponds closely to the AMD64 oper-
ations. Note that unsigned operations can be implemented
with operations on signed types. For example, we implement
unsigned division on integers using Integer.divideUnsigned
provided by the Java Class Library. Below, we explain how
we address the corner cases in the arithmetic operations.

Data Model. C does not commit to a specific data model
(e.g., LP64), which assigns sizes to all data types, and neither
does Lenient C. However, in contrast to the C standard, we
assume that signed integers are represented in two’s comple-
ment such as in most programming languages and hardware
architectures. Consequently, we can assign useful semantics
for implementation-defined corner cases in arithmetic oper-
ations. We define that right-shifting a negative value (of a
signed type), which is implementation-defined (C11 6.5.7 §5),
behaves like an arithmetic shift, that is, the sign bit of the
value is extended to preserve the signedness of the number.
Signed integer overflow. While unsigned integer over-
flow is defined, it is undefined for signed integer types. Many
signed operations can overflow (+, -, *, /, %, and≪ (C11 6.5.7 §4)),
namely when the result of the operation cannot be represented
in the data type of the operation. Programms commonly rely
on signed and unsigned integer overflow alike, for example,
for hashing, overflow checking, bit manipulation, and random
number generation [11]. Since in two’s complement, the range
of representable positive and negative numbers is asymmetric,
overflows can also occur for division and modulo.

On architectures that support two’s complement, inte-
ger overflow typically wraps around, as most programmers
expect. GCC and Clang provide the -fwrapv flag that en-
forces this behavior. For example, the SPEC 2000 197.parser
benchmark requires this flag, since today’s compilers would
otherwise optimize the code in a way that lets the benchmark
go into an infinite loop [11]. Safe Sulong provides wraparound
semantics per default, which we implemented using the stan-
dard Java arithmetic operators.
Division by zero. If the second operand of a division or
modulo operation is zero, the result is undefined (C11 6.5.5 §5).
In most languages and on most architectures, division by zero
traps.6 Since it would be questionable which value should
be computed on a division by zero, Lenient C always traps
on such values, which also corresponds to Java’s default
behavior.
Invalid shift amount. If the shift amount of a left or right
shift is negative, or greater or equal to the width of the shifted
operand, the result is undefined. As initially demonstrated,
architectures handle negative shift amounts and overly-large
shift amounts differently. We decided to implement the se-
mantics of Java, which also corresponds to the one of AMD64,
where the shift amount is truncated to 5 bits.

7 EVALUATION

We evaluated our Lenient C dialect by comparing it with the
Friendly C standard, and the SEI CERT C Coding Standard

6In MySQL, however, division by zero yields a NULL result.

Conference’17, July 2017, Washington, DC, USA M. Rigger et al.

(see Table 1). Additionally, we implemented the dialect in
Safe Sulong.

Comparison with Friendly C. Out of the 14 features
that the Friendly C standard proposes, Lenient C explicitly
addresses 12, for which it mostly requires stricter guaran-
tees. Friendly C aims to be implemented by static compiler,
and makes tradeoffs that enable its efficient implementation
across platforms (see below). Lenient C stresses consistent
behavior and safety instead of speed, and provides less leeway
for implementations. Lenient C requires freed objects to stay
alive, which meets Friendly C’s requirement that a pointer’s
value should not change when its lifetime is exceeded (1).
It requires to trap upon out-of-bounds accesses and NULL

pointer dereferences (4), whereas Friendly C also allows an
unspecified value. Friendly C demands more lenient treat-
ment for signed integer overflows (2), invalid shift amounts
(3), division related overflows (5), and unsigned left shifts (7).
Lenient C addresses these demands, and leaves less leeway
for a compatible implementation; for example, Friendly C
specifies an unspecified result for shift operations with an
invalid shift amount, while Lenient C requires the shift value
to be masked. As Lenient C, Friendly C requires that ex-
ternally visible side effects must not be reordered (6), and
that a compiler should not be granted additional optimiza-
tion opportunities when inferring that a pointer is invalid
(13). Additionally, both Lenient C and Friendly C abolish
the strict aliasing rule (10). While Friendly C specifies reads
from uninitialized storage to yield an unspecified value (8),
Lenient C requires that such reads return 0. Both Friendly
C and Lenient C allow out-of-bounds pointers and arbitrary
computations on pointers (9). With respect to functions,
Friendly C requires that when control reaches the end of
a non-void function, an unspecified value is returned if the
return statement is missing (14); Lenient C requires to return
0.

Both Friendly C and Lenient C are not comprehensive. Out
of the two points that Lenient C does not address, one (11)
is related to data races. We consider extending the Lenient
C standard to address multithreading issues as part of future
work. Another one (12), proposes to let memcpy have memmove
semantics. Using memcpy with overlapping arguments is a
common error, so Safe Sulong implements memmove using
memcpy. However, we left the discussion of lenient semantics
for standard library functions as part of future work. Lenient
C has additional guarantees in comparison with Friendly
C. It demands additional lenience on memory management
errors (M1, M2, M3), and requires struct padding to be
initialized to 0 (A2). It also establishes an ordering on objects,
that should hold when pointers are converted to integers
(P3, C2). Lenient C allows arbitrary pointer casts (C1), and
pointer arithmetics on pointers to non-array objects (P4).
Additionally, it specifies semantics when types or number
of arguments in a function call do not match the function
declaration (F2, F3). Lenient C requires that signed numbers
are represented in two’s complement (G3), and that an invalid
size in variable-length arrays traps (G4).

Comparison with the SEI CERT C Coding Standard .
The SEI CERT C Coding Standard is a forward-looking set of
best practices for the C11 language. It comprises 14 chapters
with individual rules, each describing a best practice along
with anti-patterns. Our goal in Lenient C is not to rely on pro-
grammers following these practices; instead, we assume that
they have anti-patterns in their code which they assume to
work correctly. Thus, for our evaluation we inspected whether
Lenient C addresses such anti-patterns. The SEI CERT C
Coding Standard recommendations are comprehensive, and
we excluded a number of chapters since they do not fall into
the scope of our work. Specifically, we excluded the chapters
on the preprocessor (PRE), library functions (FIO, ENV,
SIG, ERR), and concurrency problems (CON).

The chapter regarding declarations and initialization (DCL)
contains several rules of interest to Lenient C. It requires
that variables are declared with appropriate storage durations
(DCL30-C); Lenient C keeps referenced objects alive, and
thus accepts inappropriate storage durations. The chapter
requires that no incompatible declarations of the same object
or function should be made (DCL40-C), which Lenient C
partly addresses by trapping when a function is called with
a wrong number of arguments. The chapter regarding ex-
pressions (EXP) consists of rules with different concerns: it
discusses invalid read operations, non-portable pointer casts,
and errors in calling functions. Lenient C allows programs to
read uninitialized memory (EXP33-C) and compare padding
values (EXP42-C), which it requires to be initialized with
zeroes. When NULL pointers are dereferenced, Lenient C speci-
fies that the implementation must trap (EXP34-C). It enables
arbitrary pointer casts (EXP36-C) and to read pointers using
an incompatible type (EXP39-C). Lenient C requires to trap
when a function is called with a wrong number of arguments
(EXP37-C). The rule also addresses wrong types in argu-
ments, for which a callee in Safe Sulong performs automatic
conversions. The chapter on integers (INT) warns of wrong
integer conversions (INT31-C), using types with a wrong pre-
cision (i.e. bit width, INT35-C) and unsigned integer wrap-
ping (which is defined behavior, INT30-C); these rules are
of little concern for Lenient C. Lenient C specifies wrapping
semantics for signed overflow (INT32-C), traps on division or
remainder operations with a zero as second operand (INT33-
C), and requires the shift amount to be masked (INT34-C).
One rule is concerned with conversions between pointers and
integers (INT36-C), and details anti-patterns using crafted
pointers, which are implementation-defined. Lenient C does
not specify the semantics of casts between pointers and inte-
gers. Safe Sulong provides two different standard-compliant
strategies, of which only the second one (that stores escaped
objects in a map) addresses the user’s expectations here.
As part of future work, we want to investigate both strate-
gies using a case study on user programs. The chapter on
floating-point numbers (FLP) is mainly concerned with is-
sues that are valid for floating point numbers in general
(e.g., how to convert them), so they are of little interest
for our evaluation. We addressed all anti-patterns of the

Lenient Execution of C on a JVM Conference’17, July 2017, Washington, DC, USA

array chapter (ARR), which primarily discusses pointer arith-
metics. Lenient C supports pointer arithmetics on non-array
types (ARR37-C, ARR39-C), creating out-of-bounds pointers
(ARR30-C, ARR38-C, ARR39-C), but traps when derefer-
encing an out-of-bounds pointer (ARR30-C). It requires to
trap for non-positive variable-length array sizes (ARR32-C).
Additionally, Lenient C supports subtracting and comparing
pointers to different objects (ARR39-C). The characters and
strings chapter (STR) discusses issues which are statically
detectable or which concern the usage of library functions.
Each rule of the memory management chapter (MEM), ex-
cept the realloc alignment requirement, is interesting for
us, and Lenient C addresses each of them. Lenient C allows
accessing dangling pointers (MEM30-C) as if they were still
alive, and ignores invalid frees (MEM34-C). It assumes a GC
that reclaims memory that is no longer needed (MEM31-C).
Upon out-of-bounds accesses, Lenient C requires implemen-
tations to trap (MEM33-C, MEM35-C). The miscellaneous
chapter (MISC) mostly discusses library functions; however,
MSC37-C states that control should never reach the end of a
non-void function, in which case Lenient C specifies to return
a zero value.
Implementation in Safe Sulong. We implemented Le-
nient C in Safe Sulong, a system to execute LLVM-based lan-
guages on the JVM. It does not directly execute C code, but
LLVM IR, which is the RISC-like intermediate format of the
LLVM framework [21]. We implemented Safe Sulong on top
of the Truffle language implementation framework [46] that
uses the Graal compiler [49] to compile frequently-executed
functions to machine code. Graal optimizes the code based on
Java semantics, and thus preserves side effects such as NULL
dereferences, out-of-bounds accesses, and arithmetic errors.
Safe Sulong is based on Native Sulong [33], but it represents
C objects on the managed Java heap, instead of allocating
them in native memory. Its peak performance is currently
around 2× slower than executables compiled by Clang -O3

on small benchmarks.

8 RELATED WORK

ManagedC We previously worked on a Truffle implemen-
tation for C called ManagedC [15]. ManagedC aimed to
detect out-of-bounds accesses and use-after-free errors, but
otherwise assumed strictly-conforming C programs. Note that
the implementation of Lenient C in Safe Sulong is based on
ManagedC, in particular in its representation of pointers.
However, while ManagedC had a relaxed mode which allowed
type punning, it left open which C dialect it supported, and
how other portability issues (e.g., subtracting pointers to
different objects) were addressed. Additionally, Lenient C’s
main goal is not to find errors in C programs, but to tolerate
them where reasonable. Unlike ManagedC, we also tolerate
use-after-free errors.
Dialects of C Several C-like languages have been pro-
posed, for example, Polymorphic C [40], Cyclone [17], and
CCured [26]. These dialects add type safety and/or detection

of memory errors to C-like languages, but are not source-
compatible to C. Other than memory errors, they also do
not touch on other aspects of non-portable behavior.
Pointer to Integer casts. Kang et. al presented an ap-
proach for pointer to integer casts to be used in formal mem-
ory models [18]. Most formalizations rely on logical memory
models (e.g., CompCert [22]), in which pointers are repre-
sented as pairs of an allocation block and an offset within
that block, similar to our pointer pairs. They extended this
approach so that a pointer has two representations: one in
the concrete, and one in the logical model. Per default, all
allocation blocks are allocated as logical blocks, only when
a pointer is cast to an integer is the logical pointer realized
to an integer. This approach is similar to ours, where we
convert pointers that are cast to an integer to a concrete
representation that takes into account the hash code and
offset.
C to Java converters Several systems exist to execute C
on the JVM, either by converting C programs to Java or
Java bytecode [10, 23]. C-to-Java systems typically strive
to be used to migrate legacy code, and thus focus on pro-
ducing readable code at the cost of correctness (e.g., by
not supporting unsigned types [23]). Most of them do not
support non-portable patterns such as casting pointers to
integers. Only Demaine’s approach touched upon lenient exe-
cution [10]; for example, he stated that pointer comparisons
between different objects could be established by a ordering
of the heap. These approaches use an object hierarchy similar
to the one we represented, which makes them suitable for
implementing Lenient C.
CHERI CHERI [47] is a RISC-based instruction set archi-
tecture that provides hardware support for memory safety
through unforgeable fat-pointers (called capabilities). As with
Safe Sulong, the CHERI authors found that it was straight-
forward to support well-behaved C programs, but that it was
difficult to compile and run those with non-portable behavior.
They performed a study [6] on problematic patterns (portable,
undefined, and implementation-defined idioms) such as re-
moving const qualifiers, pointer arithmetics idioms, storing
bits in an address, storing pointers in integer variables, and
others. They found many instances of all these patterns, and
adapted their execution model to better support such idioms.

9 CONCLUSION AND FUTURE WORK

We found that implementing the Lenient C dialect is help-
ful to execute C programs that can be found “in the wild”,
without having to fix them to only use standard-compliant
C. This dialect is most suitable to be executed on a man-
aged runtime. However, we hope that some of the rules are
adopted by static compilers, to alleviate the problem that
compiler optimizations break the users’ assumptions (and
their code). We came up with this dialect while executing
non-portable programs with Safe Sulong. Safe Sulong is a
prototype and cannot execute large programs, mainly due to
unimplemented standard library functions. Additionally, Safe
Sulong does not support multithreading. Consequently, we

Conference’17, July 2017, Washington, DC, USA M. Rigger et al.

have only informally validated Lenient C on programs up to
5000 lines of code. When reaching a degree of completeness
that enables Safe Sulong to execute large applications, we
want to perform a case study to determine which features of
Lenient C are most useful for large real-world programs, and
which features are still missing. In particular, we yet have
to determine which of the two strategies to convert between
pointers and integers is most suitable in practice. Lenient C
still lacks stricter semantics for standard library functions,
preprocessing, and other issues (e.g., related to const and
restrict qualifiers). Furthermore, C/C++ concurrency seman-
tics are (among others) still unsatisfactory [1, 8], and Lenient
C currently lacks stricter semantics for multithreading. We
consider these issues as part of future work.

ACKNOWLEDGMENTS

We thank all members of the Virtual Machine Research
Group at Oracle Labs and the Institute of System Software
at the Johannes Kepler University Linz for their support and
contributions. In particular, we want to thank Benoit Daloze
for comments on an early draft. The authors from Johannes
Kepler University are funded in part by a research grant from
Oracle.

REFERENCES
[1] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-

Pharabod, and Peter Sewell. 2015. The problem of programming
language concurrency semantics. In European Symposium on
Programming Languages and Systems. Springer, 283–307.

[2] Daniel Julius Berstein. 2015. boringcc. (2015). https://groups.
google.com/forum/m/#!topic/boring-crypto/48qa1kWignU

[3] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage collec-
tion in an uncooperative environment. Software: Practice and
Experience 18, 9 (1988), 807–820.

[4] Derek Bruening and Qin Zhao. 2011. Practical memory checking
with Dr. Memory. In Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization.
IEEE Computer Society, 213–223.

[5] David Brumley, Tzi-cker Chiueh, Robert Johnson, Huijia Lin,
and Dawn Song. 2007. RICH: Automatically protecting against
integer-based vulnerabilities. Department of Electrical and Com-
puting Engineering (2007), 28.

[6] David Chisnall, Colin Rothwell, Robert NM Watson, Jonathan
Woodruff, Munraj Vadera, Simon W Moore, Michael Roe, Brooks
Davis, and Peter G Neumann. 2015. Beyond the PDP-11: Archi-
tectural support for a memory-safe C abstract machine. In ACM
SIGPLAN Notices, Vol. 50. ACM, 117–130.

[7] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L Titzer.
2015. Memento Mori: Dynamic allocation-site-based optimiza-
tions. In ACM SIGPLAN Notices, Vol. 50. ACM, 105–117.

[8] Pascal Cuoq, Matthew Flatt, and John Regehr. 2014. Proposal for
a Friendly Dialect of C. (2014). https://blog.regehr.org/archives/
1180

[9] Pascal Cuoq, Löıc Runarvot, and Alexander Cherepanov. 2017.
Detecting Strict Aliasing Violations in the Wild. In International
Conference on Verification, Model Checking, and Abstract In-
terpretation. Springer, 14–33.

[10] Erik D Demaine. 1998. C to Java: converting pointers into refer-
ences. Concurrency - Practice and Experience 10, 11-13 (1998),
851–861.

[11] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2015. Un-
derstanding integer overflow in C/C++. ACM Transactions on
Software Engineering and Methodology (TOSEM) 25, 1 (2015),
2.

[12] Vijay D’Silva, Mathias Payer, and Dawn Song. 2015. The
correctness-security gap in compiler optimization. In Security
and Privacy Workshops (SPW), 2015 IEEE. IEEE, 73–87.

[13] M Anton Ertl. 2015. What every compiler writer should know
about programmers or “Optimization” based on undefined be-
haviour hurts performance. In Kolloquium Programmiersprachen
und Grundlagen der Programmierung (KPS 2015).

[14] Jon Eyolfson and Patrick Lam. 2016. C++ const and Immutabil-
ity: An Empirical Study of Writes-Through-const. In LIPIcs-
Leibniz International Proceedings in Informatics, Vol. 56. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[15] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas
Würthinger, and Hanspeter Mössenböck. 2015. Memory-safe
Execution of C on a Java VM. In Proceedings of the 10th ACM
Workshop on Programming Languages and Analysis for Security.
ACM, 16–27.

[16] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. 2015. Defining
the undefinedness of C. In ACM SIGPLAN Notices, Vol. 50.
ACM, 336–345.

[17] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks,
James Cheney, and Yanling Wang. 2002. Cyclone: A Safe Di-
alect of C. In Proceedings of the General Track of the An-
nual Conference on USENIX Annual Technical Conference
(ATEC ’02). USENIX Association, Berkeley, CA, USA, 275–288.
http://dl.acm.org/citation.cfm?id=647057.713871

[18] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbu-
zov, Steve Zdancewic, and Viktor Vafeiadis. 2015. A formal C
memory model supporting integer-pointer casts. In ACM SIG-
PLAN Notices, Vol. 50. ACM, 326–335.

[19] Stephen Kell. 2016. Dynamically diagnosing type errors in unsafe
code. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications. ACM, 800–819.

[20] Chris Lattner. 2011. What Every C Programmer Should Know
About Undefined Behavior. (2011). http://blog.llvm.org/2011/
05/what-every-c-programmer-should-know.html

[21] C. Lattner and V. Adve. 2004. LLVM: a compilation framework
for lifelong program analysis transformation. In CGO 2004. 75–
86.

[22] Xavier Leroy. 2009. A formally verified compiler back-end. Jour-
nal of Automated Reasoning 43, 4 (2009), 363–446.

[23] Johannes Martin and Hausi A Muller. 2001. Strategies for migra-
tion from C to Java. In Software Maintenance and Reengineering,
2001. Fifth European Conference on. IEEE, 200–209.

[24] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan
Nienhuis, David Chisnall, Robert NM Watson, and Peter Sewell.
2016. Into the depths of C: elaborating the de facto standards.
In PLDI 2016. 1–15.

[25] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. 2017.
SafeInit: Comprehensive and Practical Mitigation of Uninitialized
Read Vulnerabilities. (2017).

[26] George C. Necula, Jeremy Condit, Matthew Harren, Scott Mc-
Peak, and Westley Weimer. 2005. CCured: Type-safe Retrofitting
of Legacy Software. ACM Trans. Program. Lang. Syst. 27, 3
(May 2005), 477–526.

[27] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a frame-
work for heavyweight dynamic binary instrumentation. In ACM
Sigplan notices, Vol. 42. ACM, 89–100.

[28] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993.
The LRU-K page replacement algorithm for database disk buffer-
ing. ACM SIGMOD Record 22, 2 (1993), 297–306.

[29] Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt.
2009. Precise garbage collection for C. In Proceedings of the
2009 international symposium on Memory management. ACM,
39–48.

[30] John Regehr. 2015. The Problem with Friendly C. (2015). https:
//blog.regehr.org/archives/1287

[31] John Regehr. 210. A Guide to Undefined Behavior in C and C++.
(210). https://blog.regehr.org/archives/213

[32] Manuel Rigger. 2016. Sulong: Memory Safe and Efficient Exe-
cution of LLVM-Based Languages. In ECOOP 2016 Doctoral
Symposium.

[33] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas
Würthinger, and Hanspeter Mössenböck. 2016. Bringing Low-
level Languages to the JVM: Efficient Execution of LLVM IR on
Truffle. In Proceedings of the 8th International Workshop on
Virtual Machines and Intermediate Languages (VMIL 2016).
ACM, New York, NY, USA, 6–15.

[34] Armin Rigo and Samuele Pedroni. 2006. PyPy’s approach to
virtual machine construction. In SPLASH 2006. 944–953.

https://groups.google.com/forum/m/#!topic/boring-crypto/48qa1kWignU
https://groups.google.com/forum/m/#!topic/boring-crypto/48qa1kWignU
https://blog.regehr.org/archives/1180
https://blog.regehr.org/archives/1180
http://dl.acm.org/citation.cfm?id=647057.713871
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://blog.regehr.org/archives/1287
https://blog.regehr.org/archives/1287
https://blog.regehr.org/archives/213

Lenient Execution of C on a JVM Conference’17, July 2017, Washington, DC, USA

[35] Martin C Rinard, Cristian Cadar, Daniel Dumitran, Daniel M
Roy, Tudor Leu, and William S Beebee. 2004. Enhancing Server
Availability and Security Through Failure-Oblivious Computing..
In OSDI, Vol. 4. 21–21.

[36] John Rose. 2012. CompressedOops. (2012). https:
//wiki.openjdk.java.net/pages/diffpages.action?pageId=
11829259&originalId=26312779

[37] Robert C. Seacord. 2017. Uninitialized Reads. acmqueue 14, 6
(2017).

[38] Robert C Seacord. 2008. The CERT C secure coding standard.
Pearson Education.

[39] Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address
Sanity Checker.. In USENIX Annual Technical Conference. 309–
318.

[40] Geoffrey Smith and Dennis Volpano. 1998. A Sound Polymorphic
Type System for a Dialect of C. Sci. Comput. Program. 32, 1-3
(Sept. 1998), 49–72.

[41] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySan-
itizer: fast detector of uninitialized memory use in C++. In Code
Generation and Optimization (CGO), 2015 IEEE/ACM Inter-
national Symposium on. IEEE, 46–55.

[42] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and
analyzing compiler warning defects. In Proceedings of the 38th
International Conference on Software Engineering. ACM, 203–
213.

[43] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. 2009. IntScope:
Automatically Detecting Integer Overflow Vulnerability in X86
Binary Using Symbolic Execution.. In NDSS. Citeseer.

[44] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai
Zeldovich, and M Frans Kaashoek. 2012. Undefined behavior:
what happened to my code?. In Proceedings of the Asia-Pacific
Workshop on Systems. ACM, 9.

[45] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando
Solar-Lezama. 2013. Towards optimization-safe systems: Ana-
lyzing the impact of undefined behavior. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples. ACM, 260–275.

[46] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A
Self-optimizing Runtime System. In Proceedings of the 3rd An-
nual Conference on Systems, Programming, and Applications:
Software for Humanity (SPLASH ’12). 13–14.

[47] Jonathan Woodruff, Robert NM Watson, David Chisnall, Si-
mon W Moore, Jonathan Anderson, Brooks Davis, Ben Laurie,
Peter G Neumann, Robert Norton, and Michael Roe. 2014. The
CHERI capability model: Revisiting RISC in an age of risk. In
Computer Architecture (ISCA), 2014 ACM/IEEE 41st Interna-
tional Symposium on. IEEE, 457–468.

[48] Christian Wressnegger, Fabian Yamaguchi, Alwin Maier, and
Konrad Rieck. 2016. Twice the Bits, Twice the Trouble: Vulnera-
bilities Induced by Migrating to 64-Bit Platforms. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. ACM, 541–552.

[49] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas
Stadler, Gilles Duboscq, Christian Humer, Gregor Richards, Doug
Simon, and Mario Wolczko. 2013. One VM to Rule Them All.
In Proceedings of the 2013 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, New York, NY, USA, 187–204.

https://wiki.openjdk.java.net/pages/diffpages.action?pageId=11829259&originalId=26312779
https://wiki.openjdk.java.net/pages/diffpages.action?pageId=11829259&originalId=26312779
https://wiki.openjdk.java.net/pages/diffpages.action?pageId=11829259&originalId=26312779

	Abstract
	1 Background
	1.1 Looseness in the C Standard
	1.2 Problems with Undefined Behavior
	1.3 Calls for a Lenient C

	2 Lenient C
	3 Type Hierarchy
	3.1 Integer and Floating Point Types
	3.2 Pointers and Function Pointers
	3.3 Arrays
	3.4 Structs and Unions

	4 Memory Management
	4.1 Uninitialized Memory
	4.2 Memory Leaks and Dangling Pointers
	4.3 Buffer Overflows and NULL Dereferences

	5 Pointer Operations
	5.1 Pointer Arithmetics
	5.2 Pointer-to-Pointer Casts
	5.3 Conversions between Pointers and Integers
	5.4 Reading from Memory

	6 Arithmetic operations
	7 Evaluation
	8 Related work
	9 Conclusion and Future Work
	Acknowledgments
	References

