
Finding Cuts in Static Analysis Graphs to Debloat Software
Christoph Blumschein

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

christoph.blumschein@student.hpi.uni-

potsdam.de

Fabio Niephaus

Oracle Labs

Potsdam, Germany

fabio.niephaus@oracle.com

Codruţ Stancu

Oracle Labs

Zurich, Switzerland

codrut.stancu@oracle.com

Christian Wimmer

Oracle Labs

Redwood Shores, USA

christian.wimmer@oracle.com

Jens Lincke

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

jens.lincke@hpi.uni-potsdam.de

Robert Hirschfeld

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

robert.hirschfeld@uni-potsdam.de

Abstract
As software projects grow increasingly more complex, debloating

gains traction. While static analyses yield a coarse over-approxi-

mation of reachable code, approaches based on dynamic execution

traces risk program correctness. By allowing the developer to recon-

sider only a few methods and still achieve a significant reduction

in code size, cut-based debloating can minimize the risk. In this

paper, we propose the idea of finding small cuts in the rule graphs

produced by static analysis. After introducing an analysis with suit-

able semantics, we discuss how to encode its rules into a directed

hypergraph. We then present an algorithm for efficiently finding

the most effective single cut in the graph. The execution time of the

proposed operations allows for the deployment in interactive tools.

Finally, we show that our graph model is able to expose methods

worthwhile to reconsider.

CCS Concepts
• Software and its engineering→ Automated static analysis;
• Theory of computation→ Program analysis; Graph algorithms
analysis.

Keywords
Software Debloating, Static Analysis, Call-Graph Construction,

Graph Cuts, Interactive Feedback

ACM Reference Format:
Christoph Blumschein, Fabio Niephaus, Codruţ Stancu, Christian Wimmer,

Jens Lincke, and Robert Hirschfeld. 2024. Finding Cuts in Static Analy-

sis Graphs to Debloat Software. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’24), Sep-
tember 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3650212.3680306

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680306

1 Introduction
As a software project evolves over time, it tends to accumulate more

and more features. The implementation of features that are never

used is often called bloat. With the growing complexity of software

systems, which rely on an increasing amount of dependencies, the

amount of bloat shipped tends to rise [25].

This bloat manifests primarily in increased artifact file size, a

concern traditionally associated with embedded systems facing

memory constraints. Recently, size has gained importance in cloud

deployments, too: Secondary effects of software bloat include higher

memory footprints, longer build times, an increased attack surface

[22], and a reduced optimization potential. Therefore, the field

of debloating—finding and removing software bloat—has gained

attention in recent years [7, 26].

1.1 Context
Many existing solutions deal with the peculiarities of machine code

("binary debloating") [1, 21]. Others operate on the levels of source

code or high-level intermediate representations, which facilitate

program analysis. The different approaches can be categorized as

either static or dynamic:

Static approaches. These construct some kind of code depen-

dency graph (e.g., a call graph) statically, and identify the unreach-

able code as bloat. However, static analyses struggle with three

difficulties:

a) Dynamic language features complicate a sound analysis.

b) Due to over-approximation, they miss much of the bloat.

c) They anticipate all possible program inputs.

The first is usually dealt with by compromising on soundness

("soundiness" [16]), and instead relying on manually provided de-

pendency relationships and information gained from dynamic exe-

cution. The second difficulty remains even with soundy analyses,

and using more precision only yields diminishing returns. The third

one can be addressed by explicitly stating additional assumptions.

Dynamic approaches. Coverage obtained by dynamic execution

of the software system under test gives an under-approximation

of the necessary code. It can be used in an aggressive debloating

strategy [26]. However, the quality of the result heavily depends

on the available testcases. Developers employing coverage-based

https://orcid.org/0009-0000-5834-9481
https://orcid.org/0000-0002-3297-9730
https://orcid.org/0009-0007-3646-3663
https://orcid.org/0009-0003-3213-9306
https://orcid.org/0000-0002-3828-7778
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3650212.3680306
https://doi.org/10.1145/3650212.3680306

ISSTA ’24, September 16–20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruţ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

debloating risk program correctness, unless they can guarantee that

every piece of code not covered is indeed dead code. This assurance

is impractical for realistic software projects due to their sheer size.

1.2 Cut-Based Approach
We observe that the result produced by static analyses is sufficiently

precise for the vast majority of the code, while missed opportunities

lead to a strong over-approximation only in a few places. We want

to find these critical places so that a developer can consider adding

a few assumptions to make the analysis result much more precise.

Using our approach, given a small set of deliberately removed

("cut") methods, the static analysis can prove another potentially

much larger set of methods as unused. Then, instead of having to

supervise the removal of unfeasible amounts of code, the developer

only has to consider a handful of locations.

Review

Traced
execution

Coverage
Report

Enhancement

Novel Contribution
Original
Program

Static
Analysis

Debloated
ProgramRemove

Separated
Code

Analysis
Graph

Cut
Search

Continue search

Suggested
Cut

Figure 1: High-level overview.

Proposed Workflow. Figure 1 presents a high-level overview of

the proposed workflow. We first capture the rules of an underlying

static reachability analysis in a directed hypergraph model. In this

rule graph, we search for cuts that separate bloat. The search can be

conducted semi-automatically, which allows to target a specific sus-

picious dependency and to use additional domain knowledge about

which code is essential. We also present an algorithm for yielding

the cut that separates the biggest chunk of bloat. To maintain the

correctness of the program, cut methods must not be exercised

in any intended use of the application. Therefore, we restrict the

search for cuts to methods not covered during the traced execution

of test cases. This restriction alone cannot guarantee correctness,

as coverage reports under-approximate the set of necessary code.

Therefore, an engineer must review the cut before applying it to

the original program.

1.3 Contributions
Our main research question is: How to find a suitable set of methods
for cutting? As our contributions towards answering the question,

(1) we capture the rules of a static analysis in a directed hyper-

graph model, which allows for fast recomputation of the

analysis given method cuts. This is enabled by introducing

• an analysis semantics that forms an appropriate trade-off

between computation speed and precision,

• and an algorithm for computing the effect of many disjoint

cuts efficiently.

(2) we then develop a tool that uses this model

• to provide interactive feedback on the amount of bloat

removed with a cut,

• and to recommend effective cuts to the developer.

(3) we evaluate the model’s ability to propose effective cuts and

show that applying them leads to the expected reduction in

code size.

2 Background
In this section, we introduce the necessary theory, and establish

some formalism which we use throughout the paper.

2.1 Directed Hypergraphs
Directed hypergraphs generalize directed graphs by allowing edges

to connect arbitrarily large sets of nodes. In this paper, we only deal

with directed B-hypergraphs [10]. In a directed B-hypergraph, the

edges have a set of source nodes (tail), and exactly one destination

node (head). Formally, we define a directed hypergraphH = (𝑉 , 𝐸)
as containing nodes 𝑉 and hyperedges 𝐸 ⊆ 2

𝑉 ×𝑉 . We define two

helper functions for denoting the head and tail of a hyperedge:

𝑇 : 𝐸 → 2
𝑉 , 𝐻 : 𝐸 → 𝑉 such that 𝑒 = (𝑇 (𝑒), 𝐻 (𝑒)) ∀𝑒 ∈ 𝐸

A hyperpath (also called B-hyperpath) from a set of nodes 𝑆 to a

single node 𝑡 is a sequence of edges 𝑒1, ..., 𝑒𝑛 such that

𝑇 (𝑒𝑖) ⊆ 𝑆 ∪ {𝐻 (𝑒 𝑗) | 1 ≤ 𝑗 < 𝑖} ∀𝑖 = 1, ..., 𝑛

We write 𝑆 →∗
𝐻
𝑡 if there is such a path. Notice that the start set of

nodes 𝑆 can be encoded in the graph via "entry" hyperedges with

an empty tail, such that

𝑆 →∗(𝑉 ,𝐸) 𝑡 ⇔ ∅ →∗(𝑉 ,𝐸′) 𝑡 with 𝐸′ = 𝐸 ∪ {(∅, 𝑠) | 𝑠 ∈ 𝑆}

As the graphs in this paper follow this encoding, we are commonly

interested in the set of nodes reachable from entry hyperedges:

Reach(H) = {𝑡 ∈ 𝑉 | ∅ →∗H 𝑡}

We say "𝑡 is reachable inH " if 𝑡 ∈ Reach(H).

Traversal. The set of reachable nodes can be computed in linear

time using a simple worklist algorithm. Finding a minimum-weight

path to a particular node is sometimes feasible, depending on the

weight measure [10]. Minimizing the cardinality of a hyperpath

is NP-hard. Yet, for inductively defined weight measures, there of-

ten exist efficient algorithms. One example for that is Rank, which
assigns each node along the path the maximum value of its prede-

cessors plus one. Minimum-Rank hyperpaths can be computed via

a generalized Breadth-First Search (BFS).

Cuts. We say "𝑋 ⊆ 𝑉 is a cut for 𝑡 ∈ 𝑉 inH " iff 𝑡 ∉ Reach(H−𝑋).
The problem of finding a minimum cardinality cut is equivalent to

Maximum Horn Satisfiability, which makes it NP-hard [2] as well.

2.2 Call Graph Construction
Much research in the static analysis field deals with the construc-

tion of call graphs. A call graph is a simple directed graph, con-

taining edges from each method to any potential callee. It may

contain spurious edges; in fact, all practical analyses produce over-

approximations of the "true" call relationship.

Finding Cuts in Static Analysis Graphs to Debloat Software ISSTA ’24, September 16–20, 2024, Vienna, Austria

A big problem is posed by dynamic languages features, such

as reflection (i.e., string-based dispatch) [14]. In order to produce

useful results, static analyses usually compromise on soundness

when encountering reflection, and rely on a combination of user-

provided rules and heuristics for simple cases [5].

Various call graph construction algorithms differ in how they

treat multiple dispatch in object-oriented languages, which corre-

sponds to first-class function invocation in functional languages

[19]. In the following, we present some construction algorithms,

beginning with a very coarse approach and gradually advancing

towards more precision.

Reachability Analysis. The simplest analysis ignores run-time

polymorphism. Caller-callee pairs are matched by the name of the

called method.

Class Hierarchy Analysis. A first improvement is to take the

class hierarchy into account [8]. Unrelated methods that happen

to have the same name are correctly excluded. Also, upon a run-

time polymorphic call, only implementations belonging to a type

assignable to the declared type of the call are connected via an edge.

Rapid Type Analysis (RTA). RTA considers callees only if their

declared type (or a type inheriting the same implementation) has

previously been instantiated in a reachable method [3].

Variable Type Analysis (VTA). VTA tracks the flow of instantiated

types along variable assignments from allocation sites to invoca-

tions. It keeps track of the set of types that may appear in each local

variable or field. A callee is only considered if the receiver variable

may contain its defining type.

In the initial VTA paper [28], the authors avoid "on-the-fly call-

graph construction" [19], which would be required to obtain the

minimum fixed-point universe. Instead, after initializing their call

graph with an approximation computed by a simpler, less precise

analysis, they propagate type sets in one run along the topological

order of Strongly-Connected Componentss (SCCs), and remove

edges where the receiver variable does not contain any defining

type of the callee implementation. Therefore, they trade precision

for reduced computational effort.

Nevertheless, whenever we use the term VTA in this paper, we

refer to a minimum fixed-point variant. So only once a new callee is

reachable, types are propagated from actual to declared parameters,

and from declared to actual returns. In the Points-to Analysis (PTA)

community, this is also known as Context Insensitive Control Flow

Analysis (0-CFA) [29].

3 Capturing an Analysis Run in a Directed
Hypergraph

Given a static analysis and a software project, we want to find

promising cuts. Instead of performing the analysis over and over

again, which can be time-consuming, we capture one run in a

graph. In principle, any analysis that derives facts via rules (horn

clauses) is suitable for our approach. This includes the many points-

to analyses that can be specified as a high-level datalog program

[24].

We derive the rule graph by mapping every fact to a node and

every rule instantiation to an edge. The graph is ordinary iff all

rule preconditions consist of at most one atom. This is only the

case for the most simple analyses, such as the Reachability Analysis

and CHA described in Section 2.2. In general, however, we obtain a

directed hypergraph.

Generally, a higher level of analysis precision results in a larger

graph. While RTA as an underlying analysis yields a compact hy-

pergraph, VTA already results in an explosion of the graph, as every

combination of types and variables (beyond 10
10

in practice) yields

a distinct node. Therefore, we introduce an approximation of VTA,

which we denote VTA
<𝑘

. This saturation technique models the

exact types that may occur in each variable as long as the number

of types stays below a certain threshold and merges variables that

exceed this threshold [32]. This enables us to limit the run time

until a BFS converges.

3.1 Rules
The following subsection presents the rules of VTA

<𝑘
. In addition

to the precondition atoms, which are stated on the upper side of

each rule, a rule may have a meta-condition written on the right.

These introduce information about the concrete program, which is

assumed to stay constant during cutting and re-simulating.

Methods. The relationMethodReachable(·) keeps track of the

methods that are required according to the analysis. As the analysis

begins at predefined entry points (e.g., the main method), these are

unconditionally reachable.

Entry

MethodReachable(𝑚)
if𝑚 is an entry point

Direct calls—when the callee can be resolved statically—can be

modeled with a simple rule.

Call

MethodReachable(𝑚1)
MethodReachable(𝑚2)

if𝑚1 directly calls𝑚2

Variables. The relation Flow(𝑡, 𝑣) tracks which type 𝑡 may ap-

pear in a variable 𝑣 .

Alloc

Flow(𝑡, 𝑣)
for ”v = new t(...)”

Variables propagate their types along assignments, whether explic-

itly stated in the code or implicitly established through method

parameter/return linking. Each variable applies a filter on incoming

types. It is derived from explicit casts, control-flow facts, and the

implicit casting of the receiver argument at run-time-dispatched

method implementations. Variables defined in method bodies only

propagate their types once the method is reachable since propaga-

tion can have side effects on the reachable universe.

Propagation

Flow(𝑡, 𝑣1)
MethodReachable(𝑚)

Flow(𝑡, 𝑣2)
for ”v2 = v1” if

𝑡 ∈filter𝑣
2

∧
𝑚 defines 𝑣1

For variables defined outside of methods (i.e., fields), there is an

analog rule that omits theMethodReachable(𝑚) precondition.
A polymorphic implementation method becomes reachable once

its formal receiver ("this-pointer") contains any type. This works

as intended since the formal receiver variable applies the correct

ISSTA ’24, September 16–20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruţ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

filtering, accepting only types that use this exact implementation—

subtypes that have not overridden the method themselves.

Invocation

Flow(𝑡, 𝑣)
MethodReachable(𝑚)

if 𝑣 is formal receiver of𝑚

Type Set Merging. To restrict the number of types whose propa-

gation has to be computed for each variable, we employ an approx-

imation: once a variable may contain 𝑘 different types, we consider

it saturated.

Saturation

Flow(𝑡1, 𝑣) ... Flow(𝑡𝑘 , 𝑣)
Saturated(𝑣)

with 𝑡𝑖 ≠ 𝑡 𝑗 ∀𝑖 ≠ 𝑗

Then, instead of tracking its precise type set, we only track one

globally merged set of types for all saturated variables.

Merge I

Saturated(𝑣) Flow(𝑡, 𝑣)
Merged(𝑡)

Merge II

Saturated(𝑣) Merged(𝑡)
Flow(𝑡, 𝑣)

With a higher limit 𝑘 , VTA<𝑘
becomes more precise. Observe

that RTA and VTA correspond to special cases of it:

RTA = VTA
<0 <

precision

... <
precision

VTA
<∞ = VTA.

3.2 Graph Model
Mapping each Flow(·, ·) fact to a separate node would result in

a graph size explosion. Instead, taking advantage of the parallel

structure of the nodes induced by Propagation, we introduce special
variable nodes, which represent a vector of Flow(·, ·) facts. The vec-
tors are of size |𝑇𝑦𝑝𝑒𝑠 |, as they represent a subset of all types in the

analysis universe. Furthermore, we integrate saturation semantics

into these nodes to efficiently evaluate the cardinality constraint in

the Saturation rule.

Figure 2 illustrates the behavior of the nodes in our graph in

terms of a circuit diagram. There are two kinds of nodes in our

graph: ordinary nodes modeling methods and special nodes for

variables. In a BFS, the ordinary nodes behave unsurprisingly: each

one stores a state of one bit, indicating whether it is reachable. Once

any predecessor becomes reachable, an ordinary node becomes

reachable, making all its successors reachable. A variable node

stores a vector of bits, indicating whether each type can appear in

this variable. It is interconnected to other variable nodes according

to assignments in the program. Each variable node has a read-only

parameter filter𝑣 , which masks the types that may be propagated

from predecessors. Once its state includes at least 𝑘 types, it is

united with the global set Merged(·). If a variable is not a field, its
node is associated with the node of the method in which it is defined.

The reachability of the method node acts as a gate to the further

propagation of the types. If the variable is the formal receiver of its

method, it leads to the reachability of the method node once any

type occurs in its state.

Strictly speaking, our graph with special nodes is no longer a

directed hypergraph. Yet, since it compactly represents something

that could be reduced to a hypergraph in polynomial space, theo-

retical results from hypergraph theory apply. Furthermore, given

an implementation of a BFS algorithm that respects the particular

∧

filter𝑣

∧

∧

≥ 𝑘

∧

≥ 1

𝑣 is

formal receiver?

successorspredecessors

Merged(·)

Saturated(𝑣)

Flow(·, 𝑣)∨

∨

predecessors successors

MethodReachable(𝑚)

#types bits1 bit variable node method node

Figure 2: Node semantics expressed as a circuit diagram.

semantics of variable nodes, we can treat our special graph like a

directed hypergraph in the following sections.

4 Analysis Recomputation with Cuts
As the analysis discovers facts monotonically, removing a set of

nodes 𝑋 and subsequently doing a graph search yields all elements

that the analysis would discover if the corresponding code ele-

ments had not existed. Compared with re-running the analysis,

"re-simulating" it with a given cutset speeds up the hypothesize-

modify-observe cycle of a developer trying to reduce the size of

a software artifact. In addition, this basic operation facilitates the

construction of automated searches on top of it.

4.1 Finding Promising Cutsets
We use the function Sep to denote the set of nodes separated by a

given cut.

Sep𝐺 : 2
𝑉 (𝐺) → 2

𝑉 (𝐺)

Sep𝐺 (𝑋) = Reach(𝐺) \ Reach(𝐺 − 𝑋)

Depending on the scenario, a promising cutset is a solution to one

of multiple optimization problems. If developers suspect that a

particular dependency is bloat, they might want to find a small set

of methods that separate it.

MinCut𝐺 (𝑇) = argmin

𝑋 ⊆𝑀
𝑇 ⊆Sep𝐺 (𝑋)

|𝑋 |

Finding Cuts in Static Analysis Graphs to Debloat Software ISSTA ’24, September 16–20, 2024, Vienna, Austria

Without specific targets in mind, a developer may be interested in

some methods that reduce the artifact size as much as possible.

MostEffectiveCut𝐺 (𝑙) = argmax

𝑋 ⊆𝑀
|𝑋 | ≤𝑙

∑︁
𝑚∈Sep𝐺 (𝑋)

size(𝑚)

Here,𝑀 ⊆ 𝑉 (𝐺) denotes the set of methods we allow to cut. This

additional constraint can be used to restrict the result to methods

not included in dynamic coverage or to incorporate other project-

specific knowledge of a developer.

While MinCut would be computationally feasible if we dealt

with a regular graph, it is NP-hard for hypergraphs (see Section 2.1).

MostEffectiveCut is a variant of Minimum-Size Bounded-Capacity

Cut (MinSBCC) [11], which is already NP-hard for regular graphs.

Therefore, we focus on MostEffectiveCut𝐺 (1), the singleton cut

problem.

4.2 Simulating Many Disjoint Cuts
The naïve approach to determining MostEffectiveCut𝐺 (1) involves
computing Sep𝐺 ({𝑚}) from scratch for each method𝑚 ∈ 𝑀 . This

is impractical for larger projects with more than 100,000 methods.

This section describes a divide-and-conquer algorithm that reuses

intermediate results to compute MostEffectiveCut𝐺 (1).

Incremental Computation. It would be convenient if we could

compute Reach(𝐺) once, and take a decremental step to Reach(𝐺 −
{𝑚}) for each method𝑚 with little effort. Updating the set of reach-

able elements after deletion is difficult to do efficiently. However,

updating the set of reachable elements after an increment is eas-

ily computed in time linear to the increase in reachable nodes

Δ = | Sep𝐺 (𝑋) |. We exploit this by approaching the desired reacha-

bility results from the other side in a hierarchical scheme.

Let𝑀 = {𝑚0, ...,𝑚𝑛−1}, with 𝑛 being a power of two for the sake

of simplicity. Then we define hierarchical partitions:

𝑋 𝑖
𝑤 =

{
𝑚 𝑗 ∈ 𝑀

��� 𝑛
𝑤
· 𝑖 ≤ 𝑗 <

𝑛

𝑤
· (𝑖 + 1)

}
The definition above implies recursive properties:

𝑋 0

1
= 𝑀

𝑋 𝑖
𝑤 = 𝑋 2𝑖

2𝑤
¤∪ 𝑋 2𝑖+1

2𝑤 for 0 ≤ 𝑖 < 𝑤 ≤ 𝑛

2

𝑋 𝑖
𝑛 = {𝑚𝑖 } for 0 ≤ 𝑖 < 𝑛

Using hierarchical partitioning, Algorithm 1 efficiently enumer-

ates all universeswith a single cut. It starts with computingReach(𝐺−
𝑀) = Reach(𝐺 − 𝑋 0

1
), the reachable nodes in a graph where all al-

lowedmethods are removed. In each recursive step, givenReach(𝐺−
𝑋 𝑖
𝑤), it computes Reach(𝐺 − 𝑋 2𝑖

2𝑤
) and Reach(𝐺 − 𝑋 2𝑖+1

2𝑤
) respec-

tively, by adding the complementary set of nodes to the graph and

continuing the search (see Figure 3).

Complexity. The theoretical worst-case run-time O(𝑛2) remains

the same as for the naïve approach, since large parts of the graph

could be only discovered late in the computation tree. We expect

benign graphs to satisfy | Reach(𝐺) | − | Reach(𝐺 −𝑋) | ∈ O(|𝑋 |) in
the average case. Then, at each layer of the tree, O(𝑛) increases in
the reachability relation are accumulated. As the tree is balanced, it

has O(log(𝑛)) layers. Therefore, we expect the average-case com-

plexity of this algorithm to be O(𝑛 · log(𝑛)). Section 6 shows that

𝐺 − 𝑋 0

1

𝐺 − 𝑋 0

2
𝐺 − 𝑋 1

2

𝐺 − 𝑋 0

4
𝐺 − 𝑋 1

4
𝐺 − 𝑋 2

4
𝐺 − 𝑋 3

4

𝐺 − 𝑋 0

8
𝐺 − 𝑋 1

8
𝐺 − 𝑋 2

8
𝐺 − 𝑋 3

8
𝐺 − 𝑋 4

8
𝐺 − 𝑋 5

8
𝐺 − 𝑋 6

8
𝐺 − 𝑋 7

8

𝐺

Figure 3: Incremental scheme: Updating the set of reachable

nodes after a decremental change is not computationally feasible.

Instead, we start with many cuts and incrementally continue the

graph search after adding methods back again in a hierarchical

manner. This allows us to efficiently enumerate the reachable sub-

graphs for all possible single-method cuts.

this algorithm indeed performs better by orders of magnitude. An

additional speedup can be gained by applying a Branch-and-Bound

strategy.

Algorithm 1 Enumerate Reach(𝐺 − {𝑚}) for all𝑚 ∈ 𝑀
Require: 𝐺 is a hypergraph,𝑀 ⊆ 𝑉 (𝐺)
𝑅 ← Reach(𝐺 −𝑀)
Recursive(𝐺,𝑀, 𝑅)

function Recursive(𝐺,𝑋, 𝑅)

if 𝑋 = {𝑚} then
yield (𝑚,𝑅)

else
𝑋0, 𝑋1 ← split(𝑋)
for 𝑖 ∈ {0, 1} do

𝑗 ← 1 − 𝑖
𝑅′ ← IncrementalSearch(𝐺,𝑋𝑖 , 𝑋 𝑗 , 𝑅)

Recursive(𝐺,𝑋𝑖 , 𝑅
′
)

function IncrementalSearch(𝐺,𝑋,𝑌, 𝑅)

Expects 𝑅 = Reach(𝐺 − 𝑋 − 𝑌)
Returns Reach(𝐺 − 𝑋)

5 Implementation
In our implementation, we capture the static analysis results of

GraalVM Native Image, which produces standalone binaries for

Java applications that contain the application along with all its

dependencies [31]. GraalVM Native Image uses a static analysis

that determines a reachable universe to limit the amount of code

that needs to be compiled and shipped. We obtain our rule graph

via an instrumentation of its imperative analysis code.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruţ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

5.1 Extended Rule Graph
In principle, the graph generated by our concrete implementation

still follows the same structure as described in Section 3.2. We

extended it to deal with issues that typically occur when analyzing

real-world Java projects.

Additional Facts. In addition toMethodReachable(·), we have
ordinary graph nodes that model more kinds of facts. These include

class and field reachability, types instantiated during build-time,

the effects of custom analysis plugins, and statically resolvable

reflection usages.

Dynamic Language Features. Languages like Java provide certain
dynamic features which make sound analysis infeasible. GraalVM

Native Image already handles them with a combination of static

resolution in trivial cases, tracing concrete executions, and user-

defined configuration. We introduce the respective facts and add

edges between them, where applicable. These facts might be con-

sidered entry points, e.g., if the user-defined configuration specifies

that a method should be accessible per reflection. They can also

be integrated via incoming edges, e.g., if the analysis resolves a

trivial reflection usage statically. The latter scenario is preferable,

as it captures dependencies more precisely, increasing our model’s

capability to propose effective cuts.

Build-Time Initialization. In addition to Ahead-of-time (AOT)-

compilation, Native Image reduces startup time by executing class

initializers at build-time, if possible. The result of such early execu-

tion manifests in a build-time heap, which is persisted as part of the

resulting binary and, therefore, subject to the analysis, too. To make

these heap effects fit into our framework of facts and causal rules,

we employ a Java Virtual Machine Tool Interface (JVMTI) agent. It

tracks heap allocations and write operations during build time and

assigns the effects observed by the analysis to the responsible class

initializers.

5.2 Cut Tool
While our graph model allows us to compute the effects of cuts effi-

ciently, the Cut Tool serves as the front end, enabling the developer
to interact with the model. It is implemented as a client-side-only

web application. The heavy lifting part, i.e., recomputing the anal-

ysis as described in Section 4, is done in a hand-written library

shipped to the client as a WebAssembly module.

We demonstrate how the Cut Tool can be used for debloating

using the Minecraft Server
1
as a concrete real-world example. It is

used to host a multiplayer session for a game written in Java. Our

prior knowledge of the software is limited as we did not create it.

First, we played the game to generate coverage information. It

is not exhaustive, but it should be sufficient to prevent the Cut

Tool from suggesting overly aggressive cuts. After supplying the

coverage-enhanced rule graph to the Cut Tool, we see a user in-

terface mainly composed of two views: They both list the code

elements in their natural hierarchy, similar to the project overview

in an IDE. Elements of the hierarchy are modules, packages, classes,

and methods. The left panel offers elements that are available for

cutting. The right panel shows what is separated by the selected cut

1
https://www.minecraft.net/de-de/download/server

(a) Cutting DedicatedServer.showGui() separates 8.05 MB.

(b) Additionally cutting MinecraftServer$$Lambda.accept() sepa-
rates 2.57MB.

Figure 4: The effect of cuts indicated in our Cut Tool.

set. Each element comes with a bar of a certain length. On the right

side, the bar of an element indicates the code size of all methods in

its subtree. On the left side, it indicates the code size of all methods

separated after cutting the element.

Cut View. The batched cut simulation scheme introduced in

Section 4.2 allows us to efficiently compute the cut effectiveness for

all expanded elements on the left panel. By sorting them accordingly,

a developer can explore the ones that are most worth reconsidering.

When hovering over an element on the left side, the bars on the

right side are partially filled in orange to show a breakdown of

code size reduction across the hierarchy (see Figure 4). Clicking

on an element on the left side can add it to the cut set. Then, the

code size reduction previewed on the right side in orange turns red

permanently. Additionally, the cut effectiveness is recalculated for

each element on the left side. It now considers how much additional
code would be removed if the element was added to the cut set.

The cut effectiveness often decreases, indicating that additionally

cutting an element is redundant given the current cut selection. Yet,

it can also increase if a synergy effect arises between the existing

cut selection and the potential new cut.

The Cut Tool also provides a button to compute themost effective

cut method. Conceptually, it automates the process of expanding

every element to find the method with the largest bar. Applying it

twice for the Minecraft Server yields two cut methods:

(1) DedicatedServer.showGui()
(2) MinecraftServer$$Lambda.accept()

Cut 1 separates 8.05MB code in the module java.desktop (see Fig-
ure 4a), while cut 2 separates an additional 2.57MB (see Figure 4b).

Without the first cut, the second cut would only separate 0.56MB.

https://www.minecraft.net/de-de/download/server

Finding Cuts in Static Analysis Graphs to Debloat Software ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 5:Hyperpath to java.awt.image.ComponentColorModel.

So there must be code in java.desktop that becomes reachable

through either one of these two methods.

Reaching Path View. If developers suspect that an element is

bloat, they can obtain an explanation for why it has been considered

reachable in the form of a hyperpath. It is rendered as a Directed

Acyclic Graph (DAG) from bottom to top, with the target as the

topmost element. The developer may then either figure out that

the suspicious element is needed after all or find out where to start

cutting. As there can be multiple reaching hyperpaths, cutting an

element from the currently displayed path does not necessarily

make the target unreachable. In this case, the view is updated to

show another path.

It can be assumed that smaller hyperpaths are easier to under-

stand. However, the problem of finding a path with the smallest

number of nodes is NP-hard (see Section 2.1). In our implementa-

tion, we present a path with minimum rank instead. The solution

happens to be benign in many cases. However, in a big project, after

cutting through paths of manageable size, we sometimes encounter

hyperpaths spanning more than 1,000 nodes.

Figure 5 shows why ComponentColorModel, a class in java
.desktop, is still reachable after our first cut: The second cut

method, passed as a lambda argument to Optional.ifPresent()
by MinecraftServer.updateStatusIcon(), uses ImageIO.

Bloat Identification. The source code shows that the first cut

method is invoked if a command line option requests the Graphical

User Interface (GUI). As the GUI provides little benefit apart from

wrapping a command line in a custom window, it is typically dis-

abled and also was not exercised in our coverage run. The second

cut method is responsible for sending a customizable server icon to

clients. If an icon PNG is in the current directory of the server pro-

cess, it goes through a questionable round trip via ImageIO.read()

and ImageIO.write() before being sent again as a PNG. When

dealing with the ImageIO-API, the static analysis could not reason

about potentially encountered file formats. Therefore, the program

is bloated with code for encoding and decoding various formats,

such as TIFF, JPEG, PNG, GIF, and BMP.

The application can be successfully debloated by replacing the

two cut methods with exception-throwing stubs and compiling

again with GraalVMNative Image. However, the debloated program

fails with an exception if the command line arguments request

the GUI. Therefore, the user of our approach is responsible for

ensuring that cut methods are never exercised in the anticipated

usage scenario.

6 Evaluation
Throughout this section, we compare the rule graph capturing a

VTA
<20

against one coarser approximation capturing a RTA to find

out whether the additional effort is worthwhile. The RTA graph

omits variable nodes and instead uses hyperedges to directly con-

nect virtual invocations and type instantiations with overridden

methods, effectively circumventing the precise tracking of types

through variables. Note that we denote the graph model with vari-

able information as VTA (without saturation cutoff). We do that

because saturation is only applied when querying the rule graph.

6.1 Projects
We use the following applications for the evaluation:

• Console HelloWorld: A simple Java application printing a text

to the standard output.

• DaCapo, Renaissance: Benchmark projects that are compati-

ble with GraalVM Native Image.

• {Quarkus, Micronaut, Spring} HelloWorld: Simple applications

for popular Java frameworks [18, 20, 30].

• Quarkus Tika2: A Quarkus application for parsing documents

using the Apache Tika library
3
.

• Micronaut ShopCart: A demo application for the Micronaut

framework.

• Spring PetClinic4: A large demo application for the Spring

framework.

Table 1 gives an overview of the size of each project: It shows

the number of methods discovered by the analysis of GraalVM

Native Image and the number of nodes in our graph model. The

number of nodes is reported for the VTA graph. The RTA graph

has approximately the same number of simple nodes but omits the

variable nodes.

6.2 Graph Collection Performance
Before the graph can be used for analysis recomputation, it has to

be collected once. For this, we instrumented the static analysis of

Native Image, causing some overhead. While the performance of

the collection is not critical to our approach, the overhead should

not exceed orders of magnitude.

For benchmarking the data collection, we use Spring PetClinic,

as it is the largest project we consider. Figure 6 shows the run-time

2
https://github.com/quarkiverse/quarkus-tika

3
https://tika.apache.org/

4
https://github.com/spring-projects/spring-petclinic

https://github.com/quarkiverse/quarkus-tika
https://tika.apache.org/
https://github.com/spring-projects/spring-petclinic

ISSTA ’24, September 16–20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruţ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

Table 1: Analysis recomputation times for selected projects using either RTA or VTA<20.

Project size (in thousands) Time per Operation (ms)

Reachable Graph Nodes Single Cut Batched Cuts Most Effective Cut

Project Methods Ordinary Variable RTA VTA
<20

RTA VTA
<20

RTA VTA
<20

Console HelloWorld 17 99 56 6 23 0.001 0.006 21 109

Renaissance: future-genetic 26 154 93 12 46 0.002 0.011 51 232

DaCapo: luindex 27 170 107 13 47 0.002 0.009 51 226

Quarkus HelloWorld 53 247 239 25 106 0.007 0.054 125 654

Micronaut HelloWorld 67 421 315 38 150 0.009 0.069 243 1,183

Spring HelloWorld 80 528 400 46 182 0.004 0.032 292 1,310

Quarkus Tika 83 390 401 42 184 0.008 0.059 289 1,406

Micronaut ShopCart 74 465 350 44 179 0.008 0.070 263 1,337

Spring PetClinic 195 1,278 1,055 120 654 0.004 0.070 747 5,309

of GraalVM’s static analysis with different collection options: none,
RTA, VTA, and VTA with JVMTI agent. Disabling the JVMTI agent is

possible but forces the graph model to over-approximate untracked

effects by introducing more entry edges (see Section 5.1).

Our benchmark machine has 16 logical cores. We ran each config-

uration multiple times and observed a negligible standard deviation.

We measured the elapsed wall-clock time as well as the CPU-time

across all threads. Since they did not grow proportionally, we ana-

lyzed the parallel scalability: assuming that the program consists

of a perfectly parallelizable and a sequential part, according to

Amdahl’s law, we derived the parallel and sequential part of the

wall-clock execution time.

The results show that collecting the RTA model introduces an

overhead of 43%. Collecting the VTA model already needs signif-

icantly more time, accumulating to +191%. However, we see that
only the sequential part increased significantly. The post-processing

of the variable assignment graph is executed in a single thread. As

we have not spent any effort on its parallelization, this is currently a

bottleneck. Having the JVMTI agent hooked into the build process

results in a greater increase in build time, leading to an overhead of

up to 7x. So, while the current implementation has some parts that

introduce high costs, capturing the rule graph via instrumentation

of the analysis code itself is feasible.

Baseline RTA VTA VTA+JVMTI

Configuration

0

200

400

600

T
i
m
e
(
s
)

88

126

256

615Sequential

Parallel

Figure 6: Analysis data collection times for Spring PetClinic.

6.3 Analysis Recomputation Performance
We evaluate the performance of three key operations that are de-

fined on our model:

Single Cut. The run-time of a single cut simulation depends on

the actual cut set. As the operation is implemented using a BFS with

a subset of nodes marked as forbidden, we obtain the worst-case

run-time with an empty cutset.

Batched Cuts. We evaluate our incremental algorithm by cutting

a batch of (up to) 50,000 randomly selected nodes in succession.

Then, we report the average time needed for a single cut result.

Most Effective Cut. We use the incremental algorithm to com-

pute MostEffectiveCut𝐺 (1) ten times in succession. The difference

between this and the evaluation of Batched Cuts is twofold: On the

one hand, we now consider all methods except the ones included in

coverage, which is generally a higher number. On the other hand,

employing a Branch-and-Bound strategy allows us to skip the enu-

meration of most cut results. The computation of the 𝑛-th suggested

cut does not correlate with 𝑛 significantly. Yet, since bounding can

happen earlier or later, there is some variance in the time needed

for the next cut. Therefore, we report the average time needed for

each of the ten cut suggestions.

Results. All benchmarks are single-threaded and were run on an

Intel i7 4790 at 3.6GHz, with Turbo Boost disabled. The results are

shown in Table 1.

In general, we see that the RTA approximation is consistently

faster, yielding a speedup factor ranging between 3-9. Yet, even

for the large PetClinic, the time needed for the analysis recom-

putation allows for an interactive setup with both configurations

[12]. Furthermore, we see that our divide-and-conquer algorithm

is indeed much faster on real-world inputs despite having the same

worst-case time complexity as simulating single cuts repeatedly.

Finding the most effective cut only takes up to a few seconds, even

with the PetClinic using VTA
<20

.

Finding Cuts in Static Analysis Graphs to Debloat Software ISSTA ’24, September 16–20, 2024, Vienna, Austria

0

1

2

3

4

5

6

0.329 MB

5.77 MB

Console HelloWorld

0

2

4

6

8

1.98 MB

9.28 MB

Renaissance: future-genetic

0

2

4

6

8

10

12

3.37 MB

12.4 MB

DaCapo: luindex

0

5

10

15

20

3.82 MB

22.9 MB

Quarkus HelloWorld

0

5

10

15

20

25

30

7.02 MB

32.2 MB

Micronaut HelloWorld

0

10

20

30

40

7.57 MB

40.5 MB

Spring HelloWorld

1 10 100

0

10

20

30

40

5.81 MB

42.6 MB

Quarkus Tika

1 10 100

0

5

10

15

20

25

30

35

7.99 MB

35.7 MB

Micronaut ShopCart

1 10 100

0

20

40

60

80

100

20.4 MB

97.8 MB

Spring PetClinic

Number of Cuts

R
e
m
a
i
n
i
n
g
c
o
d
e
s
i
z
e
(
M
B
)

RTA (predicted)

RTA (actual)

VTA
≤20

(predicted)

VTA
≤20

(actual)

Full

Covered

Figure 7: Effectiveness of the first 100 suggested cuts for various projects.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruţ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

6.4 Effectiveness of Suggested Cuts
The central assumption of this paper is that the dependency infor-

mation contained in the graph is useful for finding effective cuts. In

order to test that assumption automatically, we repeatedly searched

for and applied the most effective cut 100 times. For a developer, a

cut set of size 100 should already be considered too large to handle.

Yet, we are curious to see how the cut effectiveness develops as the

number of cuts increases.

To avoid getting suggested unrealistic cuts, we again restricted

the set of methods available for cutting with coverage information.

The coverage information was obtained through manual testing or

by running each benchmark, depending on the subject application

type. Additionally, we compiled the projects with the suggested

cut set of methods removed to validate the prediction made by our

graph.

In Figure 7, we plotted the remaining code size of a project against

the number of methods that were cut. The continuous lines show

the predicted debloating effect, while the crosses show the actual

result after compilation with GraalVM Native Image. The black

horizontal line indicates the size without cuts. The red horizontal

line shows the size of all methods included in the coverage report,

setting a hard boundary on how much can be separated. We chose a

logarithmic axis for the number of cuts, as we observe diminishing

returns: usually, with more cuts, each additional cut is less effective

than the previous ones. However, there are exceptions. In cases

where multiple cuts are required to eliminate some part of the

universe, an additional cut can lead to a greater reduction in size.

Results. First, we see that our model accurately predicts the ac-

tual debloating effect in general. An exception is the Console Hel-
loWorld project: Our model overestimates the remaining code size.

We attribute this to the very small coverage, allowing our algorithm

to suggest cutting core JDK methods, some of which get special

treatment in GraalVM Native Image.

In all projects, the advantage of VTA
<20

becomes small when

applying 100 cuts. For fewer cuts, the situation varies: The Renais-
sance/DaCapo benchmark projects show only a small difference

between RTA and VTA
<20

. In the framework projects, VTA
<20

starts with a distinct advantage for a small cut set. In the Quarkus-

and Micronaut-based projects, RTA suddenly catches up at around

10 cuts. Oddly, in the Quarkus HelloWorld project, RTA suddenly

yields a better result than VTA
<20

: With exactly three cuts, the

greedy strategy happens to select methods that form a globally

more optimal combination.

Overall, we see that while the advantage of VTA
<20

over RTA

is not proportional to the increase in computation time needed, it

can yield significantly more effective suggestions, especially if we

demand smaller cutsets.

7 Limitations
Decrementality. Our graph only contains those rule instantia-

tions and facts discovered by the captured analysis, so it can only

predict the effects of code removal. If a developer considers replac-

ing the usage of a particular API with another, our model cannot pre-

dict the potential benefit. Additionally, when fitting an imperative

static analysis into our declarative rule-based model, the soundness

of predictions relies on the analysis code behaving monotonically.

Precision. While sophisticated PTAs could be captured and re-

computed with our approach, the high number of discovered facts

leads to an extended run-time, prohibiting interactive use. Further-

more, in our concrete model, only the removal of entire methods

can be modeled due to the graph’s granularity. If predictions on

a finer granularity level are desired, e.g., for removing individual

lines, more nodes would need to be created in the graph.

8 Related Work
This section presents related work on debloating, understandability

of static analyses, and points-to analyses.

8.1 Debloating
The problem of debloating Java applications has been approached

with multiple strategies. JShrink [7] uses static analysis to compute

the set of reachable methods. For dealing with dynamic language

features, it relies on execution traces.

Coverage-Based Debloating. The authors of "Coverage-Based De-

bloating for Java Bytecode" [26] show that JShrink yields universes

significantly larger than the code covered by automated tests and,

therefore, still contain potential bloat. We observe a similar situ-

ation with our projects built with GraalVM Native Image, which

include more methods than those actually exercised at run-time.

The authors then applied coverage-based debloating to a large set

of libraries, which reduces artifact size to a minimum. While the

large majority of the client projects’ individual tests still passed

when using the debloated libraries, many clients had at least one

broken test. So ultimately, they cannot guarantee that the test suite

covers the behavior of actual programs completely.

Input Specialization. Approaches such as TRIMMER [22] start

with a user-provided manifest constraining the environment at

execution time. This can include the contents of program argu-

ments, environment variables, and configuration files. A program

transformation then uses partial evaluation techniques to specialize

the program, eliminating function calls that belong to certain un-

used features. Similar to our approach, TRIMMER eliminates code

that can be proved dead after adding assumptions. The domain of

its assumptions differs from ours: it assumes input strings to be

known constants at compile-time, while we assume our cut meth-

ods to be unreachable. Unlike our approach, TRIMMER can only be

used for prediction. It cannot suggest input constraints suitable for

eliminating specific features or removing a large amount of code.

8.2 Understanding Static Analyses
With more sophisticated analyses employed, slight changes to the

code can greatly affect the outcome in a desirable way. Therefore,

the question of how to convey the verdict of static analysis to the

developer is increasingly getting attention.

Optimization Coaching. Optimization Coaching aims at inform-

ing developers about missed opportunities to optimize their pro-

gram [27]. The authors introduce a textual feedback channel from

the optimizing compiler to the developer. For example, when declar-

ing a variable with a more concrete type would allow the optimizer

to eliminate virtual dispatch, the developer receives a suggestion to

Finding Cuts in Static Analysis Graphs to Debloat Software ISSTA ’24, September 16–20, 2024, Vienna, Austria

reconsider the typing decision. To implement this, the authors anno-

tate the optimizer’s code patternswith logmessages that are emitted

when the preconditions of an optimization are nearly missed. Their

concept of a near miss is similar to a small but effective cut set in

our rule graph. However, their system cannot reason transitively,

as further optimizations only enabled by a nearly missed one are

not considered.

Explaining Static Analyses with Rule Graphs. Rule graphs have
been introduced to explain the outcome of a static analysis to the

user [9]. The authors report an improved ability of users to under-

stand analysis warnings and identify weak analysis rules. Their

running example is a taint analysis that reports false positives. Sim-

ilar to our graph model, the insights gained should enable users

to modify the program so that the analysis verdict matches the

actual behavior more closely. Also, it can be used as a feedback

mechanism to the analysis developer.

8.3 Points-to Analyses
PTAs track allocated objects throughout a program. They differ

primarily in the granularity of the equivalence classes used for

modeling allocated objects and variables ("contexts") [23]. Analyses

with k-caller context-sensitivity maintain many different sets for a

variable, distinguished by which k methods precede on the abstract

call stack. When such a PTA is used to construct a call graph, it is

also called 𝑘-context sensitive Control Flow Analysis (k-CFA).

Computational Effort. While research has established that context-

insensitive analyses sacrifice a significant amount of precision, fully

context-sensitive analyses demand long computation times, ren-

dering them unpractical. With their incremental algorithm, the

authors of Rethinking Incremental and Parallel Pointer Analysis [15]
could greatly reduce the amortized time spent for updating the

Pointer Assignment Graph of a context-sensitive analysis. They

save time after code deletions by skipping unaffected parts of the

graph. However, in unfavorable cases, their algorithm still needs

minutes to do a single update. Therefore, hybrid context sensitivity

is currently a field of study [13] and is employed in practice.

Declarative Specification. PTAs can be categorized as being either
imperative or declarative. In the Doop framework [6], sophisticated

analyses can be specified in a declarative way, using Datalog rules.

Given a set of initial facts, called the Extensional Database, a Datalog
engine computes all derivable facts using the analysis rules. This

approach accelerates the development of an analysis significantly.

However, the run-time performance may suffer compared to a hand-

written imperative implementation.

In our case, by using adjacency lists, our graph model can effi-

ciently discover successor nodes. Datalog engines would employ

database-join operations to match nodes with their outgoing edges.

Additionally, the expressiveness of Datalog rules quickly reaches

its limits: efficient representation of our Saturation rule requires

frequency support goals—comparison with a counting aggregate.

Even though these would not break fact derivation monotonicity,

they are not supported by standard Datalog engines [17].

9 Conclusions
Debloating software by only shipping code exercised during testing

is risky: since a developer is not able to oversee the huge set of

removed methods, the reliability in production becomes uncertain.

However, only relying on static analysis leaves much of the bloat to

remain. Hence, we suggest leveraging analysis results to identify a

concise set of impactful methods for effective software debloating.

In order to predict the effects of a cut, we capture the analysis in

a directed hypergraph model. To enable interactive computation,

we introduce a call graph construction scheme that provides a rea-

sonable trade-off between existing ones. Furthermore, we present

an incremental algorithm that speeds up the amortized computa-

tion time for each prediction on batches. We show how it can be

used both in an interactive setting to guide a developer towards

worthwhile cuts, and to compute the next most effective cut in a

fully-automated way.

We find that the cognitive and computational overhead intro-

duced by pragmatically modeling the propagation of types through

variables pays off in more concise cut suggestions. Finally, as the

automatically generated cuts indicate, manually removing only a

few methods of a project has significant potential for debloating.

10 Data Availability
We provide our CutTool, our implementation of the graph search

algorithm, and the scripts used for evaluation as an artifact [4]. In

order to not require building our fork of GraalVM Native Image,

we additionally provide the collected graph files for the example

projects.

Acknowledgments
Oracle and Java are registered trademarks of Oracle and/or its affil-

iates. Other names may be trademarks of their respective owners.

References
[1] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-

gios Portokalidis. 2019. Nibbler: Debloating Binary Shared Libraries. In Proceed-
ings of the 35th Annual Computer Security Applications Conference (ACSAC ’19).
ACM. https://doi.org/10.1145/3359789.3359823

[2] Giorgio Ausiello, Paolo G. Franciosa, and Daniele Frigioni. 2001. Directed Hyper-

graphs: Problems, Algorithmic Results, and a Novel Decremental Approach. In

Proceedings of the 7th Italian Conference on Theoretical Computer Science (ICTCS
’01). Springer. https://doi.org/10.1007/3-540-45446-2_20

[3] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of C++ Virtual

Function Calls. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA ’96). ACM. https:

//doi.org/10.1145/236337.236371

[4] Christoph Blumschein, Fabio Niephaus, Codrut Stancu, Christian Wimmer, Jens

Lincke, and Robert Hirschfeld. 2024. Finding Cuts in Static Analysis Graphs to
Debloat Software - Artifact. https://doi.org/10.5281/zenodo.12669148

[5] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.

Taming Reflection: Aiding Static Analysis in the Presence of Reflection and

Custom Class Loaders. In Proceedings of the International Conference on Software
Engineering (ICSE ’11). ACM. https://doi.org/10.1145/1985793.1985827

[6] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifi-

cation of Sophisticated Points-to Analyses. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’09). ACM. https://doi.org/10.1145/1640089.1640108

[7] Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung

Kim. 2020. JShrink: In-Depth Investigation into Debloating Modern Java Ap-

plications. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’20). ACM. https://doi.org/10.1145/3368089.3409738

[8] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-

Oriented Programs Using Static Class Hierarchy Analysis. In Proceedings of the

https://doi.org/10.1145/3359789.3359823
https://doi.org/10.1007/3-540-45446-2_20
https://doi.org/10.1145/236337.236371
https://doi.org/10.1145/236337.236371
https://doi.org/10.5281/zenodo.12669148
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/3368089.3409738

ISSTA ’24, September 16–20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruţ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

9th European Conference on Object-Oriented Programming (ECOOP ’95). Springer.
https://doi.org/10.1007/3-540-49538-X_5

[9] Lisa Nguyen Quang Do and Eric Bodden. 2022. Explaining Static Analysis With

Rule Graphs. IEEE Transactions on Software Engineering 48, 2 (2022). https:

//doi.org/10.1109/TSE.2020.2999534

[10] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. 1993. Di-

rected Hypergraphs and Applications. Discrete Applied Mathematics 42, 2 (1993).
https://doi.org/10.1016/0166-218X(93)90045-P

[11] Ara Hayrapetyan, David Kempe, Martin Pál, and Zoya Svitkina. 2005. Unbalanced

Graph Cuts. In Algorithms – ESA 2005 (ESA 2005). Springer. https://doi.org/10.

1007/11561071_19

[12] Jeff Johnson. 2020. Designing with theMind inMind: Simple Guide to Understanding
User Interface Design Guidelines (third ed.). Morgan Kaufmann.

[13] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-Sensitivity

for Points-to Analysis. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’13). ACM. https:

//doi.org/10.1145/2491956.2462191

[14] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for

Static Analysis of Java Reflection: Literature Review and Empirical Study. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE.
https://doi.org/10.1109/ICSE.2017.53

[15] Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. 2019. Rethinking Incremen-

tal and Parallel Pointer Analysis. ACM Transactions on Programming Languages
and Systems 41, 1 (2019). https://doi.org/10.1145/3293606

[16] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson

Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller,

andDimitrios Vardoulakis. 2015. In Defense of Soundiness: AManifesto. Commun.
ACM 58, 2 (2015). https://doi.org/10.1145/2644805

[17] MirjanaMazuran, Edoardo Serra, and Carlo Zaniolo. 2013. Extending the Power of

Datalog Recursion. The VLDB Journal 22, 4 (2013). https://doi.org/10.1007/s00778-
012-0299-1

[18] Micronaut foundation. 2023. Micronaut. https://micronaut.io

[19] Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Resolv-

ing and Exploiting the K-CFA Paradox: Illuminating Functional vs. Object-

Oriented Program Analysis. In Proceedings of the 31st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI ’10). ACM.

https://doi.org/10.1145/1806596.1806631

[20] RedHat. 2023. Quarkus. https://quarkus.io

[21] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,

and Christopher Kruegel. 2019. BinTrimmer: Towards Static Binary Debloating

Through Abstract Interpretation. In Detection of Intrusions and Malware, and

Vulnerability Assessment. Springer. https://doi.org/10.1007/978-3-030-22038-

9_23

[22] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.

TRIMMER: Application Specialization for Code Debloating. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering (ASE
’18). ACM. https://doi.org/10.1145/3238147.3238160

[23] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations
and Trends in Programming Languages 2, 1 (2015). https://doi.org/10.1561/

2500000014

[24] Yannis Smaragdakis andMartin Bravenboer. 2011. UsingDatalog for Fast and Easy

Program Analysis. In Datalog Reloaded. Springer. https://doi.org/10.1007/978-3-

642-24206-9_14

[25] César Soto-Valero, Thomas Durieux, and Benoit Baudry. 2021. A Longitudinal

Analysis of Bloated Java Dependencies. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2021). ACM, New York, NY, USA.

https://doi.org/10.1145/3468264.3468589

[26] César Soto-Valero, Thomas Durieux, Nicolas Harrand, and Benoit Baudry. 2023.

Coverage-Based Debloating for Java Bytecode. ACM Transactions on Software
Engineering and Methodology 32, 2 (2023). https://doi.org/10.1145/3546948

[27] Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Op-

timization Coaching: Optimizers Learn to Communicate with Programmers.

In Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA ’12). ACM. https:

//doi.org/10.1145/2384616.2384629

[28] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,

Patrick Lam, Etienne Gagnon, and Charles Godin. 2000. Practical Virtual Method

Call Resolution for Java. In Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
’00). ACM. https://doi.org/10.1145/353171.353189

[29] Frank Tip and Jens Palsberg. 2000. Scalable Propagation-Based Call Graph

Construction Algorithms. In Proceedings of the 15th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
’00). ACM. https://doi.org/10.1145/353171.353190

[30] VMWare. 2023. Spring. https://spring.io/

[31] Christian Wimmer, Codruţ Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer,

Peter B. Kessler, Oleg Pliss, and Thomas Würthinger. 2019. Initialize Once,

Start Fast: Application Initialization at Build Time. Proceedings of the ACM on
Programming Languages 3, OOPSLA (2019). https://doi.org/10.1145/3360610

[32] Christian Wimmer, Codrut Stancu, David Kozak, and Thomas Würthinger. 2024.

Scaling Type-Based Points-to Analysis with Saturation. Proceedings of the ACM
on Programming Languages 8 (2024). https://doi.org/10.1145/3656417

https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1109/TSE.2020.2999534
https://doi.org/10.1109/TSE.2020.2999534
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1007/11561071_19
https://doi.org/10.1007/11561071_19
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1145/3293606
https://doi.org/10.1145/2644805
https://doi.org/10.1007/s00778-012-0299-1
https://doi.org/10.1007/s00778-012-0299-1
https://micronaut.io
https://doi.org/10.1145/1806596.1806631
https://quarkus.io
https://doi.org/10.1007/978-3-030-22038-9_23
https://doi.org/10.1007/978-3-030-22038-9_23
https://doi.org/10.1145/3238147.3238160
https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1145/3468264.3468589
https://doi.org/10.1145/3546948
https://doi.org/10.1145/2384616.2384629
https://doi.org/10.1145/2384616.2384629
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/353171.353190
https://spring.io/
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3656417

	Abstract
	1 Introduction
	1.1 Context
	1.2 Cut-Based Approach
	1.3 Contributions

	2 Background
	2.1 Directed Hypergraphs
	2.2 Call Graph Construction

	3 Capturing an Analysis Run in a Directed Hypergraph
	3.1 Rules
	3.2 Graph Model

	4 Analysis Recomputation with Cuts
	4.1 Finding Promising Cutsets
	4.2 Simulating Many Disjoint Cuts

	5 Implementation
	5.1 Extended Rule Graph
	5.2 Cut Tool

	6 Evaluation
	6.1 Projects
	6.2 Graph Collection Performance
	6.3 Analysis Recomputation Performance
	6.4 Effectiveness of Suggested Cuts

	7 Limitations
	8 Related Work
	8.1 Debloating
	8.2 Understanding Static Analyses
	8.3 Points-to Analyses

	9 Conclusions
	10 Data Availability
	Acknowledgments
	References

