Language-Independent Information Flow Tracking
Engine for Program Comprehension Tools

Mohammad Reza Azadmanesh and Matthias Hauswirth

University of Lugano
Lugano, Switzerland
Email: {azadmanm, matthias.hauswirth} @usi.ch

Abstract—Program comprehension tools are often developed
for a specific programming language. Developing such a tool from
scratch requires significant effort. In this paper, we report on our
experience developing a language-independent framework that
enables the creation of program comprehension tools, specifically
tools gathering insight from deep dynamic analysis, with little
effort. Our framework is language independent, because it is
built on top of Truffle, an open-source platform, developed in
Oracle Labs, for implementing dynamic languages in the form
of AST interpreters. Our framework supports the creation of a
diverse variety of program comprehension techniques, such as
query, program slicing, and back-in-time debugging, because it
is centered around a powerful information-flow tracking engine.

Tools developed with our framework get access to the
information-flow through a program execution. While it is pos-
sible to develop similarly powerful tools without our framework,
for example by tracking information-flow through bytecode
instrumentation, our approach leads to information that is closer
to source code constructs, thus more comprehensible by the user.

To demonstrate the effectiveness of our framework, we applied
it to two of Truffle-based languages namely Simple Language and
TruffleRuby, and we distill our experience into guidelines for
developers of other Truffle-based languages who want to develop
program comprehension tools for their language.

I. INTRODUCTION

Industry likes to reuse mature services for their products.
In addition to saving time and costs, reusing contributes to
more reliable products. The Truffle framework, together with
the Graal compiler, developed by Oracle Labs with a focus on
programming technologies, derives from this point of view.
Truffle and Graal are open source projects that aim at taking
advantage of the stability and performance of a mature Java
Virtual Machine (JVM) for providing competitive runtime
implementations of dynamic languages. They represent a pro-
gramming language implementation technology that signifi-
cantly reduces the effort for implementing dynamic languages,
while staying competitive in terms of runtime performance,
often exceeding traditional implementations of the specific
dynamic languages. Additionally, Truffle provides support for
low-overhead language interoperation, as well as a general
instrumentation framework that supports multi-language de-
bugging and other external developer tools. With the addition
of the JVM Compiler Interface (JVMCI), developed by the
Graal Project, the Graal compiler is now an option in the Java
9 VM and is under consideration as an eventual replacement

Michael L. Van De Vanter
Oracle Labs
Email: michael.van.de.vanter @oracle.com

for the existing C2 compiler.

As new languages emerge, there is also the need for tools
that support programmers in comprehending the programs
written in those languages. In fact, the accessibility of tools
for a language can affect the popularity of that language
among the users. However, developing tools from scratch
for different languages is not trivial. Developing program
comprehension tools that go beyond the syntactic level, and
that depend on the semantics of the numerous features of a
language, requires tool developers to cover a large number of
cases. To simplify tool development it would be beneficial to
have a tooling framework that takes care of and provides an
abstraction over the many language-specific details. There are
basically two issues in realizing such a framework: 1) language
independence, and 2) tool independence.

Language Independence. Language-level virtual machines
were built for a specific programming language. Specifically,
the JVM was built to run Java programs. However, it is pos-
sible to “abuse” such platforms as runtimes for different lan-
guages. The JVM actually strives to support other languages,
even dynamically typed languages (JSR-292). Many language
implementers now develop their runtime on top of the JVM
and take advantage of its mature features, such as memory
management and just-in-time compilation. Many languages
have been implemented on top of the JVM, including Ruby,
Python, Clojure, and Javascript. A side benefit of implement-
ing a language on top of the JVM is that software engineering
tools which target the JVM and its bytecode theoretically
can immediately be used for that language. However, the
fact that the JVM was originally designed for Java is visible
when looking at the implementation and the runtime behavior
of other JVM languages, especially for dynamically typed
languages [1]. Compilers of dynamically typed languages
targeting the JVM must work around the strict typing of
Java bytecode and the idiosyncrasies of the JVM to achieve
the desired execution model. These workarounds introduce
a considerable distance between the executed bytecode con-
structs and the source language constructs a developer is
familiar with. As a consequence, while a dynamic analysis
tool targeting Java bytecode can work for any JVM language,
the results of its analysis are often far from the language
constructs of that language, and thus are hardly usable directly
for program comprehension.

Tool Independence. There is a multitude of tools that
help in program comprehension. A useful framework for
developing program comprehension tools needs to provide
abstractions that are challenging to implement and that are
useful in implementing a multitude of tools. Program compre-
hension tools use static as well as dynamic analyses to collect
information about a program. Both kinds of information can
be equally useful, but in this paper we focus specifically on
dynamic information that has to be collected at runtime.

Our goal is to address the above problems by providing
access to the most detailed information about a program exe-
cution in a form that is closely tied to source code. Specifically,
our framework tracks and provides access to the explicit
information flow, capturing how values flow throughout the
whole program, and thus reflects program behavior across
program dependencies. The reason we chose information flow
tracking as the core of our framework is that the information
on the dependencies within a program is what many program
comprehension tools use for their analyses. As shown by
Horwitz and Reps [2], dependence graphs play an important
role as the basis for software engineering tools which address
program comprehension. There is a large body of research
on this topic, including approaches for program slicing [3],
[4], [5], feature location [6], [7], [8], and debugging [9], [10],
amongst the others.

Our framework has two characteristics:

1) It enables the creation of information-flow based pro-
gram comprehension tools with reasonable effort.

2) The captured information maps intuitively to parts of the
source code.

In this paper we emphasize the second characteristic, be-
cause the closeness to source code constructs of the pro-
vided information is essential for program comprehension. We
build our framework for the Truffle language implementation
technology. We focus on two of Truffle languages: Simple
Language (SL), a demonstration language for Truffle, and
TruffleRuby (TR), an implementation of Ruby on top of
Truffle.

This work is part of a collaborative project with Oracle
Labs. We make the following contributions:

1) A discussion of the comprehensibility of the infor-
mation flow provided by two fundamentally different
approaches, namely Java bytecodes vs Truffle ASTs. We
use JRuby as our case study.

2) An approach for tracking information flow within a
program regardless of the language in which it is im-
plemented.

3) Developing a language-independent tooling framework
usable by different program comprehension tools which
require information flow. We discuss how language
developers can employ this framework for their language
using the concepts introduced in the approach.

4) A set of guidelines for tooling teams to take into account
in their design decisions.

Section II motivates our approach using an example in Ruby.

Sections III and IV discuss some background information.
Section V explains our approach for having a language-
independent information flow tracking framework. Section VI
briefly presents the implementation details of the engine.
Section VII provides the results of the evaluation for a case
study, together with the messages we provide for the language
developers based on our experience. Section VIII discusses the
related work. We conclude the paper in section IX.

II. MOTIVATION

Consider the code snippet foo = 1. This is a very simple,
yet legitimate program in Ruby. One can explain/comprehend
the program easily: it initializes the variable foo with the
value 1. As for the dependencies, we would expect the value
of the variable foo to depend on the literal 1. In Table I,
under the column entitled Dependency Graph, we show
a simplified variant of the dependency graphs for this very
simple program extracted by 1) instrumenting Java-bytecodes
(first row) and 2) instrumenting Truffle AST (second row).
The codes from which the graphs were extracted are shown
under the column entitled with Code. In the case of Truffle,
we show the AST which TruffleRuby parser produces, and
in the case of bytecode, we show the Java bytecodes which
JRuby compiler generates for this program.

As can be seen, the AST is composed of only two nodes,
where the nodes map one-to-one to the source code elements.
However, the generated bytecode array is quite long and it
does not map to the instructions of the original Ruby source
code at all. As an example, the bytecode array has 4 invoca-
tions, whereas there is no invocation within the source code.
Moreover, there is no bytecode corresponding to assignment.

In fact, the characteristics of Ruby makes the compiled code
to be like that. In Ruby, every literal is represented as an object.
So, every occurrence of a literal in the Ruby source code, say
1 in our example Ruby source code, leads to an invocation of a
factory method (bytecode 12) in the generated class file by the
JRuby compiler. The factory method (£ixnum0 in this case)
provides a Ruby object corresponding to the specified literal.
To provide a Ruby object, this method first tries to return an
already cached object (bytecodes 22-24) and if it doesn’t exist,
it creates a new object of type RubyFixnum by calling a
library method with the required arguments (bytecodes 25-30),
caches it (bytecode 31) and returns the newly created object.
The assignment happens through another library method call
(bytecode 13). This happens because the runtime must first
determine the appropriate dynamic scope for the target variable
(foo in thise case) and store the value into that. Finding
the current dynamic scope is done through another method
invocation (bytecode 4) and store into that scope happens
through another library call (bytecode 13). It should be noted
that the graphs for the bytecode case is a simplified one,
because 1) we don’t trace the body of the library methods
in our studies, 2) the graph in Table. I represents a slice of the
full program trace. It only includes the nodes contributing to
the value stored in the variable, and not those trying to find
the value from cache.

TABLE I

THE COMPARISON OF JAVA-BYTECODE VS TRUFFLE AST APPROACH FOR THE RUBY PROGRAM Fo0 = 1

Code

Dependence Graph

I public static RUBYSscript(Lorg/jruby/runtime/ThreadContext;Lorg/!

jruby/parser/StaticScope;Lorg/jruby/runtime/builtin /!
IRubyObject ;[Lorg/jruby/runtime/builtin /IRubyObject; Lorg/!
jruby /runtime/Block ; Lorg/jruby /RubyModule; Ljava/lang/String!

11 : ALOAD 0

ThreadContext:)Lorg/jruby/RubyFixnum;

13 INVOKEVIRTUAL org/jruby/runtime/DynamicScope .!
setValueZeroDepthZeroVoid (Lorg/jruby/runtime/builtin/!
IRubyObject;)V

Bytecode 14 ALOAD 0
f 15 INVOKESTATIC LocalVarStoreDemo . fixnum0 (Lorg/jruby/runtime/!
or ThreadContext ;) Lorg/ jruby /RubyFixnum ;
program 16 ARETURN
17 L2
foo =1 18 FRAME FULL [] [java/lang/Throwable]
19 ATHROW

20
21 private static synthetic fixnumO(Lorg/jruby/runtime/!
ThreadContext;)Lorg/jruby/RubyFixnum;

22 GETSTATIC LocalVarStoreDemo . fixnum0 :

33 FRAME SAMEI org/jruby/RubyFixnum
34 ARETURN

;) Lorg/jruby/runtime/builtin /TRubyObject ;

2 Lo

3 ALOAD 0

4 INVOKEVIRTUAL org/jruby/runtime/ThreadContext. getCurrentScope !
()Lorg/jruby/runtime/DynamicScope ;

5 ASTORE 7

6 Nop

7 NOP

8 L1

9 LINENUMBER 1 L1

10 ALOAD 7

11 ALOAD 0

12 INVOKESTATIC LocalVarStoreDemo . fixnum0O (Lorg/jruby/runtime/!

Lorg/jruby/RubyFixnum;

3 pup
24 IFNONNULL LO
25 PoP
26 ALOAD 0
27 GET;;EI;E) org/jruby /runtime / ThreadContext. runtime : Lorg/jruby /!
s LDC 1
29 INVOKEVIRTUAL org/jruby /Ruby.newFixnum (1)Lorg/jruby /!
RubyFixnum ;
30 pup
31 PUTSTATIC LocalVarStoreDemo. fixnum0 : Lorg/jruby/RubyFixnum;
2 Lo

26: ALOAD 0

Truffle | WriteLocal VariableNode |
for
program
foo =1 IntegerFixnumLiteralNode

However, the generated AST for the same program is
composed of two nodes, namely IntegerFixnumLiteralNode
and WriteLocalVariableNode. As a result, the dependency
graph for a literal in case of instrumenting ASTs contains two
nodes: One node representing the loading of literal and the
other node representing the store into the local variable. So, a
programmer in this case needs to go through only two nodes
to understand where the value came from, where as in the case
of bytecode instrumentation, she has to go through 13 nodes.
Moreover, the content of the graph for bytecodes includes
some information which do not map to the source code. We
discuss how our approach can abstract all the complexities in
the compiled code.

III. INFORMATION FLOW

The dependencies in a program cause information flow.
The notion of Information Flow is mostly tied to the area
of computer security where provisions are made to prevent

from unauthorized information flow during a program execu-
tion [11]. Unauthorized information flow happens as a result
of using a tainted value in a trusted computation. Thus, an
information flow tracking system focuses on the origin of
values in computations.

The same notion can be applied to other areas such as
debugging, and program comprehension. In this case, a tainted
value would be the one not being expected at a point of the
execution. A programmer would need to figure out how the
unexpected value came to be or where it originated from. For
our discussions, we define information flow as follows:

Definition 3.1: An information flow from X to Y happens
when Y observes a change to its value which is directly or
indirectly dependent on the value of X over the course of a
program execution.

An information flow in a program can happen either ex-
plicitly or implicitly. An explicit information flow is the one
that happens through assignment statements. For example, in

w N

the statement X = y, the value of program variable y flows
into the program variable x. An explicit flow can happen
indirectly through intermediate assignments, as the following
code snippet shows:

X

y
Z

7

X

In this example, the value of x (in this case 1) flows into z
through the intermediate assignment statement y

An explicit flow can also happen when there is partial usage
of some value. For example, in the statement x y + z,
there is a flow from y to x, even though the values may not
be the same.

An implicit information flow happens as a result of control
flow instructions. For our discussions, we ignore implicit
information flow.

A. Shadow Graph

We represent the information flow using a variant of Dy-
namic Depedence Graph (DDG) [12], [13]. A DDG is a
directed graph where each node represents an occurrence of a
program statement during the execution. An edge between two
nodes represent either the data or control dependency between
those two nodes. The information flow tracking engine records
every step of execution in the form of a sub-graph which
becomes part of the whole program information flow graph.
Each sub-graph represents the executed AST node and the
value defined by that node. The nodes provide some meta-
data about what existed at runtime. Therefore, we call this
graph as Shadow Graph. In this section, we demonstrate the
structure of the shadow graph.

B. Nodes

A node in the shadow graph corresponds to a value defined
at a particular point of execution. The node provides meta-
data about the creation of the value, as a result, we call it
as Shadow Node. A shadow node provides two pieces of
information: 1) the instruction which defines the current value,
2) the memory location where the current value resides. In
our implementation, we keep track of the instruction using a
pointer to the AST node which defined the current value. The
AST node provides information regarding the source section
to which it belongs. As for the memory location, the meta
information could differ among different types of memory
locations. For example, for an instance variable, the meta
information could be the identifier of the instance object and
the name of the variable, whereas for a local variable, the meta

X.

information is the identifier of the frame in which the variable -

is defined and the name of the local variable.

C. Edges

The edges in the shadow graph represents the flow of
information. Fig. 1 shows a sample graph for a program where:
1) the AST node I1 generates the value V1 in the memory
location L1, 2) the AST node I2 generates the value V2 in
the memory location L2, and 3)I2 uses the value residing in
Ll1.

4

Fig. 1. The graph representing information flow

v1’, 11/, L1/, v2’, 12/, and L2’ represent the meta-data
about V1, I1,L1, V2, I2 and L2, respectively.

IV. TRUFFLE FRAMEWORK

Truffle is a library for writing AST interpreters [14], part
of Oracle Labs open source Graal platform [15] for imple-
menting programming languages. Graal enables high perfor-
mance implementations that share a large amount of language-
independent code and services. Truffle-based languages cur-
rently include Ruby, Javascript, R, and Python, among others.

The Truffle Instrumentation and Debugging Framework pro-
vides a language-independent runtime API for low-overhead
access to execution events. It is designed to simplify the
construction of a wide variety of developer tools [16], and
can support any number of independent tools as clients. The
framework currently supports debugging and profiling services
in the Graal runtime, as well as experimental tools inside and
outside the company.

A Truffle event describes the execution of a single node
in a Truffle AST, together with the static context (AST node
and corresponding source code), dynamic environment (stack,
etc.), and returned value. Clients of the framework subscribe
to events at instrumented nodes by providing a filter. Events
are delivered synchronously with extremely low overhead [17]
through dynamic insertion of wrapper nodes that capture
execution state at AST nodes where subscriptions are active.

Instrumentation clients rely on Truffle language implemen-
tors to mark up AST nodes that correspond to significant
program elements such as blocks, statements, and expressions.
One kind of markup is a SourceSection, which identifies
the specific text corresponding to the node, together with a
description (including language) of the source that contains
the text. Another kind of markup is a set of fags: symbolic
names that identify the kind of program element represented
by a node. For example, the debugging services halt while
stepping only at nodes tagged as “statements”. Subscription
filters can be expressed using any combination of sources,
languages, text locations, and tags.

As an example, consider the following code snippet:

foo
bar

1;
foo;

An AST for this program could be like the one shown in
Fig. 2-a. There are different types of AST nodes in this tree:
two nodes for assignment, a node for loading a variable, and
a node for a literal. To get the specific details about each
node at runtime, the language developer can tag different AST
node classes based on their functionality. The instrumentation
framework adds the appropriate wrapper nodes, leading to the
AST shown in Fig. 2-b. The wrapper nodes can intercept the

Fig. 2. (a) AST, (b) instrumented AST, (c) shadow graph for the program foo =1

e

-" Wrapper JUEEER .

(@)

Wrapper
Node

Wrapper
Node |
@

access to the wrapped node by invoking event listeners before
and after the node is visited. The shadow graph representing
the information flow for this example is shown in Fig. 2-c. To
build the shadow graph, for each use of a memory location,
say L, by an AST node, say I, we need to add an edge from
the shadow node corresponding to the last store into L, to the
newly created shadow node for the value defined by I. For
example, the access to variable foo in the second statement
should be connected to the definition in the first statement.

V. APPROACH

As we said earlier, our goal is to have a language-
independent source-level information flow tracking engine.
The information flow happens once an instruction gets exe-
cuted. In terms of AST interpreters of Truffle languages, each
step of execution can be seen as executing an AST node.
An AST node may use some runtime values located in some
memory locations (such as a local variable), it performs some
computation on the values, and it may define some new values
in some memory locations. From the point of view of an
information flow tracking engine, there is a flow of information
from the origins to the target memory location, through the
executed AST node.

The instrumentation framework can inform the engine about
each executed AST node and the value generated by that node.
In order to keep the information flow graph consistent, we
need to connect the shadow node corresponding to the newly
executed AST node to its origins within the current shadow
graph. The challenge is how to look up in the current shadow
graph for a shadow node representing the last definition of
the memory location used by the newly executed AST node.
Remember that each shadow node represents a value defined
at runtime by an AST node for a specific memory location. So,
we can uniquely find the shadow node, if we store the shadow
nodes in a hierarchy similar to the runtime memory of the
program. But, the problem is that the hierarchy of memory for
different languages is not necessarily the same. In section V-A,
we show how we abstract the hierarchy of memory locations
for different languages, leading to a language-independent
classification with a clear hierarchy within each class.

Given such a classification and the hierarchy within each
class, to find the shadow node corresponding to a value,
we need specific details about the runtime location of that

>

Node

Wrapper \\x\ LT ’
Node Trso--7T ==

value. We use this information as the key for mapping to the
corresponding shadow node. We can expect the AST node
to provide the details on the memory location to which it
depends. However, we need to deal with different languages,
each having many different AST node classes. So, Just as
in the case of an Instruction Set Architecture (ISA) where
different instructions may fall into the same instruction format,
we need to identify different kinds of AST node classes and the
memory locations on which they perform. Once we have such
a model, we can implement it as an engine with limited cases
to deal with. Section V-B shows how to use the classification
of the memory locations for defining different kinds of AST
node classes.

(b) (c)

A. Memory Locations

An AST node can use a set of memory locations (use-set)
and define a set of memory locations (def-set). A specific
memory location at runtime resides in a memory region such
as stack or heap, and the program usually can refer to the
location using a name binding (for operand stack slots, there
is no name binding normally). While there are different types
of memory regions at the runtime of a program execution, from
which the values are accessed, these regions are a small finite
set which is usually common among different programming
languages. Besides, for each type of AST node, we can
determine the regions for its use and def set statically.

While different languages can have different memory re-
gions for their runtime environment, but we find the following
regions quite common among many popular programming
languages:

1) Local space: This is the region where the information
local to a method call is kept. For a stack-based computational
model, it goes by Call Stack. It is private to the thread which
runs the invocation. It normally consists of intermediate values,
local variables table, argument values, and possibly a return
value. For each invocation of the method, a new set of memory
locations are reserved to keep the values. The local variables
table keeps track of the variables which are defined within that
lexical scope, though not declared to be static. A return value
keeps track of the value returned by the current invocation of
the method.

2) Heap space: This is the space where dynamically allo-
cated data structures reside. For an object oriented language,

this includes the objects created at runtime. This region is
normally shared among all threads of execution. The lifetime
of an object residing in this region, for a managed runtime
environment with automatic memory management, depends
on its reachability.

3) Static space: The space where the variables whose
addresses are determined statically, reside. The name of such
a variable must be bound to a lexical context such as a class,
a module, or a method definition. As a result, it differs from
global variables whose names are not bound to any specific
lexical context. The lifespan of a static variable is equal to the
whole program run.

4) Global space: The global space resembles static space
in the sense that addresses are determined statically, but as
opposed to static variables, there is no lexical context to which
the name of these variables belong and they are accessible
from everywhere within the program. The lifespan of a global
variable is equal to the whole program run.

The knowledge about the region to which a memory location
belongs narrows down the search space within the shadow
graph for the corresponding shadow nodes, though, it is
not enough. To uniquely locate a shadow memory location,
we need extra information about the location. Such extra
information is not the same for different regions, but once
we know about the region, we can expect the AST node to
provide those information. That is why we need to classify
the AST nodes based on the memory regions they read from
and write to. The discussion in the next section is based on
this observation.

B. AST node classes

As we said, we need to get some extra information from
each executed AST node to uniquely locate the shadow
memory locations corresponding to its origins and targets,
within the shadow graph. The expected information differs
from one memory region to the other, but it is the same for a
single region. For example, for a read from a local variable, the
name of the variable and the activation in which the variable
is defined are required, whereas, for a read from a global
variable, only the name matters. As a result, we abstract the
behavior of AST nodes by just focusing on the regions of their
use/def set, regardless of the language to which they belong.
We can now tag different types of AST nodes, based on how
they move data between these regions. A tag is a combination
of the the name of the region(s) where the operands are coming
from and the name of the regions the output are written to. This
implies that , in theory, the number of different tags should
be the size of the set corresponding to the Cartesian product
of different regions for the use-set and def-set. However, in
practice, many of the combinations are not realistic for an
AST node, and only a small set of them are possible. For
example, for an AST node which is aimed at reading a local
variable, it is not common to write the read value in the heap
space, but normally it is returned as an intermediate value.

Table II shows the tags and their meaning. There are couple
of points about the content of the table. First, the Truffle

languages use an AST interpreter model. So, the intermediate
values are passed around as the return value of the method
which evaluates the AST node. In our model, we use the
notion of operand stack for representing intermediate values.
We assume each method invocation has an operand stack, and
each intermediate value computed at runtime is stored in a
slot of the operand stack. Second, the column NoL specifies
the case where no memory location is involved. Third, for
the rows corresponding to read and write into an instance
variable, the requirements are followed by a question mark.
The reason for that is that this requirement is not consistent
among different language implementations. We discuss the
details in section VII-E.

V1. ENGINE IMPLEMENTATION

The implementation of the information flow tracking en-
gine is composed of a set of event listeners. Each listener
corresponds to one of the tags which we already identified
in the previous section. The instrumentation framework, upon
the execution of an AST node, delivers an event to its
corresponding event listener. The event listener is responsible
to update the shadow graph with the information about the
newly executed AST node. This happens through creating a
shadow node for the newly executed AST node and attaching
it to its origins within the current shadow graph.

In order to locate the shadow nodes in the graph, we store
each shadow node in a container object corresponding to the
memory region of the value defined in that node. It implies that
we have four container objects, representing the four different
memory regions we identified in section V-A. While this
narrows down the search space, it is not sufficient. To uniquely
find a shadow node, we need to use the specific information
required for each region, as shown in the last column of the
table II. So, for each tag, we introduce a Java interface which
contains methods to get the specific information to that tag
from the AST node. It means that tagging an AST node class
requires implementing the methods declared for the interface
corresponding to that tag.

We use an example to explain the behavior of an event
listener. Assume an AST node which reads from a local
variable gets executed. The instrumentation framework invokes
the event listener corresponding to the tag for the nodes using
local variable (forth row of the table II). Such a listener targets
the local-space container object. The local space container
object is a set of Shadow Frame Objects, as shown in Fig. 3.
A shadow frame object represents meta information about a
runtime frame. The instrumentation framework provides the
runtime frame object for all the event listeners. We map from
the runtime frame object, say the frame for the invocation
i of method foo, to a shadow frame object in the local
space container object. The shadow frame object contains all
the local-space-specific memory locations. Within the shadow
frame object, we look up in the local variables table using the
name of the variable. The AST node provides the name of the
local variable, say varl, given the interface of its tag.

TABLE 11
TAGS FOR DIFFERENT KINDS OF AST NODES. EACH ROW REPRESENTS ONE TAG. THE REQUIREMENTS COLUMN SPECIFY THE INFORMATION WHICH THE
NODES LABELED WITH THAT TAG SHOULD PROVIDE. OS = OPERAND STACK, LV = LOCAL VARIABLE, A = ARGUMENT, RV = RETURN VALUE, IV =
INSTANCE VARIABLE, CV = CLASS VARIABLE, GV = GLOBAL VARIABLE, NOL = NO MEMORY LOCATION

OS | LV A RV | IV | CV | GV | NoL Comment Requirements
AST nodes that read no memory location, and define a value onto the
D U :
operand stack, e.g.: a literal node
AST nodes that pop at least one value from top of the operand stack and
u/b
define a value onto the operand stack, e.g.: an operator node
D U AST nodes that read a local variable and push the value onto the operand | Frame, Name of
stack. local variable
U D AST nodes that pop a value from the operand stack and write the value Frame, Name of
into a local variable local variable
D U AST nodes that read an argument value and push the value onto the local Index of
operand stack argument
AST nodes that pop a value from the operand stack and define the return
U D
value for the current method, e.g.: a return node
U) AST nodes that pop .Values from the. operand stack and write a value into Field name?
an instance field within the heap space
AST nodes that pop values from the operand stack to find an object
U/D U within the heap, read the value of the instance field and push the value Field name?
onto the operand stack
D U AST nodes that read the value of a statically scoped variable and push Field name,
the value onto the operand stack static scope id
U D AST nodes that read a value form the operand stack and assign it to Field name,
statically scoped variable static scope id
D U AST nodes that read a global value and push the value on top of the Variable name
operand stack
U D AST nodes that pop a value from the ope_rand stack and assign the value Variable name
to a global variable

Fig. 3. The structure of a local space container object

Local Space Container Object

Shadow
- - A Frame
Shadow frame for invocation i of foo
Shadow
Local Var. Operand Stack Frame
- — Shadow
var 1 Frame
var 2

VII. EVALUATION

Initially, we plugged the engine to Simple Language. As
the name suggests, it is a simple language for demonstration
purposes of Truffle. We tagged all the AST node classes of
the language using the tags we discussed in Table II. The next
step was to try the engine for another language. This time
we targeted TruffleRuby. TruffleRuby is an implementation of
Ruby on Truffle. While we tagged the most essential features
of the language, it is not covering all the language. The reason
we did not tag all AST nodes is that it requires the knowledge
about the behavior of each AST node class. Usually, it is the
language developer who has this knowledge for all the nodes.
The current implementation of TruffleRuby includes 244 AST
node classes directly extending the top level class RubyNode
in the class hierarchy. We identified 21 AST node classes
whose behavior was obvious from their names and tagged
them accordingly. The tagging of each AST node class boils
down to 10 lines of code on average, so for the full language

coverage, roughly 2500 lines of code are required, where most
of the code is repeating. We also suspect that most of the
AST nodes which we did not tag fall in the category of the
nodes dealing only with the operand stack. In the following,
we discuss a case study on the comparison of our approach
versus the bytecode instrumentation approach.

A. Case Study

In this section, we discuss on the comprehensibility of the
dependencies detected through our approach on Truffle for
TruffleRuby vs an alternative approach based on bytecode
instrumentation for JRuby. For the latter case, we use JRuby
compiler to generate bytecodes. We go over different language
features and extract the shadow graph for those features in
both cases. Table III shows the results. We provide two types
of metrics. For each language feature, the Element Count
column specifies the number of AST nodes, and the number of
bytecodes generated in the case of Truffle and Java-Bytecodes,
respectively. The other two columns show the size of the
sliced shadow graph in each case. The sliced shadow graph
is computed with respect to the final result. For example,
for a store, we find the slice for the already stored value.
This provides more fair results, because not all the bytecodes
are involved in a specific computaiton. Yet, we provide the
element count because it is an indicator of the number of
elements which need to be instrumented. The more elements
to be instrumented, the larger the final code is. Due to the
lack of space, we cannot go through all the results in detail.
Instead, we discuss some of them in details.

[¢¢)

[@X\e}

e
N -

TABLE III
COMPARISON OF OUR APPROACH ON TRUFFLE VS JAVA BYTECODE
INSTRUMENTATION ON JVM

Element Count Shadow Graph Size
Language Feature | Bytecode | AST | Bytecode | AST
Load Literal 11 1 8 1
Load local Var. 6 1 6 1
Store Local Var. 6 1 6 1
Method Invocation 31 2 NA 2
Binary Operator 14 3 NA 3
Load Instance Var. 21 3 13 3
Store Instance Var. 21 4 13 4
Load Class Var. 6 1 6 1
Store Class Var. 8 1 8 1
Load Global Var. 2 1 2 1
Store Global Var. 4 1 4 1

B. Storing a local variable
Consider the simple assignment statement var = 1. The

bytecode array generated by the JRuby compiler for this

assignment statement is as follows:
public static RUBY$script (Lorg/Jjruby/runtime/ThreadContext

;Lorg/jruby/parser/StaticScope; Lorg/jruby/runtime/
builtin/IRubyObject; [Lorg/jruby/runtime/builtin/
IRubyObject; Lorg/jruby/runtime/Block; Lorg/ jruby/
RubyModule; Ljava/lang/String;)Lorg/jruby/runtime/
builtin/IRubyObject;

Lo

ALOAD 0

INVOKEVIRTUAL org/jruby/runtime/ThreadContext.
getCurrentScope ()Lorg/jruby/runtime/DynamicScope;
ASTORE 7

NOP

NOP

Ll

LINENUMBER 1 L1

ALOAD 7

ALOAD 0

INVOKESTATIC locals.fixnum0 (Lorg/jruby/runtime/
ThreadContext;)Lorg/jruby/RubyFixnum;
INVOKEVIRTUAL org/jruby/runtime/DynamicScope.
setValueZeroDepthZeroVoid (Lorg/Jjruby/runtime/builtin/
IRubyObject;)V

The code starts with a determination of the current dynamic
scope. The scope determines the value of local variables that
are accessible at any point of execution. As a result, for any
access to a local variable, the runtime needs to first determine
the current dynamic scope (bytecode index 4). In case of
Truffle, the instrumentation framework provides the frame
for each event listener and the frame contains the variables
active in that scope. The invocation at bytecode index 12
is for loading the right-hand side value (literal). The actual
store happens through another method invocation at bytecode
index 13 using the currently found dynamic scope. The sliced
shadow graph for this simplified scenario is shown in Fig. 4.
Each node shows the executed bytecode and the memory
location defined by that bytecode. Remember that the final
store to the local variable is happening through the library call
and we do not see it in the code. So, we provide a slice with
respect to the bytecode index 13, assuming that it stores the
value to the appropriate local variable. We do not trace the
body of library methods, because it increases the trace size
even more with details on the library execution. The graph

has 7 nodes, but 6 of them are involved in storing and the
dashed node is for loading the literal.

Fig. 4. The shadow graph for an assignment to a local variable in JRuby

3:ALOAD 0
Stack[0]

4 : INVOKEVIRTUAL
Stack[0]
5:ASTORE 7
Local[7]

10 : ALOAD 7
Stack[0]
13 : INVOKEVIRTUAL
Stack[0]

In TruffleRuby, the AST for the same code snippet, i.e.,
var = 1 has two nodes: a node for loading the right hand
side, and another node for storing the right hand side value
into a local variable. The resulting shadow graph for such an
AST has also 2 nodes, one representing the load of the literal
to a slot in the operand stack, and one node corresponding to
using the value at the top of the operand stack and storing it
into the local variable var. In fact, the store into the local is
shown by a single shadow node. Not only the shadow graph
size gets much smaller in this case, but also, the nodes in the
shadow graph have a corresponding element in the concrete
source code. This makes it more intuitive for the programmer
to reason about the graph. The three invocations, in case of
bytecode, plus all indirections make the results of a query
language quite misleading.

11 : ALOAD 0
Stack[1]

)

C. Method Invocation

For a simple method invocation with no arguments, say
foo, the compiler generates 31 bytecodes. Due to the
lack of space, we do not show the code here. The gen-
erated bytecode array consists of four parts. 1) register-
ing the already compiled method foo using the runtime
helper function defCompiledInstanceMethod, 2) in-
voking a synthetic method (a method introduced by the
compiler that does not have a corresponding construct in the
source code) containing the code for finding the call site
for method foo, 3)invoking a runtime helper function called
newVariableCachingCallSite to find the call site for
method foo, and 4) invoking the method call on the already
resolved call site object which ultimately ends up in calling the
method foo. As can be seen, for a simple method invocation
within a Ruby source code, three other irrelevant invocations
of the runtime library needs to be done before the actual
invocation takes place. Even though we do not trace the body
of library methods, but this is already a lot indirection which
happens inside the bytecode. In the case of Truffle, the AST

for the same Ruby code snippet consists of just a single node,
namely RubyCallNode and this node has the SelfNode as
its child. The SelfNode loads the current object on which the
method is to be invoked. In the case of byteocode, we cannot
provide the shadow graph for an invocation, because the actual
invocation happens dynamically from within a library method
and given that we do not trace library methods, our shadow
graph for the invocation becomes detached from its origins.

D. Operators

In Ruby, every data item is an object, so all operations
on these data items happen through method invocations on
objects. Given the need to a method invocation, the generated
bytecode array has similarities to the bytecode array generated
for a normal method invocation in the source. This implies that
the resulting value of applying an operator on some operands
can not be traced backward. However, the AST for an operator
is composed of a specific node responsible for invoking library
methods. Given that this node is specific, we can instrument
this node and connect its operands to its return value.

E. Messages for the language developers

In this section, we provide some key messages for the
language developers based on our experience.

1) A well-defined hierarchy of classes for AST nodes.
The reason is that tagging can be done much easier if the
AST nodes with the same behavioral semantics inherit from a
common base class.

2) For some of AST node classes, the number of operands
and the order of evaluating them are quite language-specific.
For example, for a store into an instance variable, usually
there are three operands, namely the receiver object, the
right hand side value and the name of the field. These three
can be evaluated in any order for different languages. The
instrumentation cannot tell in which order the operands reside
on the operand stack, once it encounters a store instance
variable node. Besides, the number of operands may also differ
from language to language. For example, in SL, there are
three dynamic operands to be evaluated at runtime, whereas
for TruffleRuby, there are two operands and the name is a
compile-time constant. We solve this problem by extending
the interface of the tag with methods that return an index (into
operand stack) that identify where particular information is to
be found. If such a method returns -1 then the framework
will assume that this is the two-argument case and handle
accordingly. The question mark in the last column of the
Table II refers to this problem.

3) As we said, for each tag, there is a corresponding Java
interface which determines the specific requirements to be
provided by the AST nodes labeled with that tag. Currently,
tagging an AST node and implementing the interface are inde-
pendent from each other. In other terms, tagging as AST node
class does not force the language developer to implement the
corresponding interface. We learned from our experience that
the instrumentation framework should be updated such that
tagging happens through implementing the specific interface

of the tag. In this way, the event handler can safely down cast
the AST node object to the specific tag interface and get the
required information out of it.

4) For any set of statements which can be grouped together
lexically, such as the body of a method or statements in a
module, it is always a good idea to wrap them under a common
AST node. This can specify the boundary of entrance and exit
to that module. The instrumentation framework can use this
boundary for initialization and disposal purposes.

VIII. RELATED WORK

Dynamic program analysis is crucial to program compre-
hension, because it has the potential to provide an accurate
picture of the actual behavior of a program at runtime [18].
In this paper, we focused on dynamic analyses centered around
program dependencies and information flow.

The Program Dependence Graph (PDG) was introduced by
Ferrante et al. [19] as a program representation that provides
a unified framework for applying program optimization tech-
niques. Horwitz et. al. [2] discuss how the PDG as a language
independent program representation, can provide the basis for
powerful program comprehension tools.

Program slicing is a technique that can benefit from depen-
dence graphs. The term program slicing was originally coined
by Weiser [3] as the technique which prunes a program such
that those parts that could not have contributed to the failure
are ruled out. Weiser’s approach was to solve a sequence
of static dataflow-analysis problems. Ottenstein and Otten-
stein [20] proposed another approach based on PDG traversals.
Korel and Laski [21] extended Weiser’s static approach for
the dynamic case. Agrawal and Horgan [5] discuss several
approaches for computing dynamic slicing using a Dynamic
Dependence Graph (DDG). They also introduce a Reduced
DDG as an economical variation. In this paper, we used a
variation of DDG for representing a program’s execution.

The notion of information-flow is used for program com-
prehension. Bergeretti and Carré [22] use information-flow
relations to support program comprehension tasks in writing,
debugging and updating a program. Their approach is based
on syntactic information, whereas ours is purely dynamic.
Lienhard et al. [23] introduce the notion of object-flow analy-
sis for identifying and comprehending dependencies between
features. Fine-grained dynamic analysis traces the transfer of
object references at runtime. Our approach, in addition to
tracing all transfers of object references, tracks flows through
primitive values. Yazdanshenas and Moonen [24] present a
technique that supports system-wide tracking of information
flow in component-based systems. The technique is shown to
be useful in software development and software certification.

Dependence graphs play an important role in modern de-
bugging tools. WhyLine [9] is based on causal relationships
between the output and the program’s execution, using both
static and dynamic analysis. The developer can ask “why
something happened/did not happen”. The infor-
mation flows detected by our approach can feed a tool to
provide similar responses about an execution, though only

for “why” questions. The “Why did not” questions require
some static analysis, which we do not support. The dynamic
analysis tool presented by [10] uses a variation of DDGs to
represent a program’s execution. It enables the querying about
an execution history, rather than a specific state.

IX. CONCLUSION

We present a language-independent approach for tracking
information flow within a program execution, motivated by the
industry trend towards shared frameworks for implementing
languages. We believe such a framework should also include
tools for use with those languages. Access to tools increases
the usability and thus the popularity of languages, As soon as
a new language is released, mature tools will be available for
assisting programmers with program comprehension tasks.

We implemented an engine for tracking information flow
that can be adapted to a language by labeling AST node
classes of the language. We represent information flow using
a variant of dynamic dependence graph called shadow graph,
which can be the basis for many program comprehension
techniques such as program slicing, query, and debugging.
Our case study compared our approach for TruffleRuby, a
Truffle implementation of Ruby, against an approach based
on Java-bytecode for JRuby. In order to extract the shadow
graph out of the program execution, we instrumented the
ASTs and bytecode arrays for the two approaches. Case study
results show that our approach provides information closer to
source code constructs, thus more user comprehensible. We are
considering applying this approach to other Truffle languages.

ACKNOWLEDGMENT

The authors are indebted to members of the Virtual Machine
Research Group at Oracle Labs and the Institute of System
Software at the Johannes Kepler University Linz for creat-
ing the language implementation technologies that make this
work possible. We thank group member Christian Humer in
particular for his contributions to parts of this work.

REFERENCES

[11 A. Sarimbekov, L. Stadler, L. Bulej, A. Sewe, A. Podzimek, Y. Zheng,
and W. Binder, “Workload characterization of jvm languages,” Software:
Practice and Experience, 2015.

[2] S. Horwitz and T. Reps, “The use of program dependence graphs
in software engineering,” in Proceedings of the I4th International
Conference on Software Engineering, ser. ICSE *92. New York, NY,
USA: ACM, 1992, pp. 392-411.

[3] M. Weiser, “Program slicing,” in Proceedings of the 5th international
conference on Software engineering, ser. ICSE ’81. Piscataway, NIJ,
USA: IEEE Press, 1981, pp. 439-449.

[4] ——, “Programmers use slices when debugging,” Commun. ACM,
vol. 25, no. 7, pp. 446452, Jul. 1982.

[5] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” SIGPLAN
Not., vol. 25, no. 6, pp. 246-256, Jun. 1990.

[6] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph,” in Program Comprehension, 2000. Proceedings. IWPC
2000. 8th International Workshop on. 1EEE, 2000, pp. 241-247.

[7]1 A. Rohatgi, A. Hamou-Lhadj, and J. Rilling, “An approach for mapping
features to code based on static and dynamic analysis,” in The 16th [EEE
International Conference on Program Comprehension. IEEE, 2008, pp.
236-241.

[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” IEEE Transactions on software engineering, vol. 29, no. 3, pp.
210-224, 2003.

A. J. Ko and B. A. Myers, “Finding causes of program output with
the java whyline,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2009, pp. 1569-1578.

M. R. Azadmanesh and M. Hauswirth, “Blast: Bytecode-level analysis
on sliced traces,” in Proceedings of the Principles and Practices of
Programming on The Java Platform. ACM, 2015, pp. 152-158.

D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, no. 5, pp. 236-243, May 1976.

S. Horwitz, J. Prins, and T. Reps, “Integrating noninterfering versions
of programs,” ACM Trans. Program. Lang. Syst., vol. 11, no. 3, pp.
345-387, Jul. 1989.

B. P. Miller and J.-D. Choi, “A mechanism for efficient debugging
of parallel programs,” in Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation, ser.
PLDI ’88, New York, NY, USA, 1988, pp. 135-144.

T. Wiirthinger, A. WoB, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer, “Self-optimizing ast interpreters,” in Proceedings of the
8th Symposium on Dynamic Languages, ser. DLS *12, New York, NY,
USA, 2012, pp. 73-82.

T. Wiirthinger, C. Wimmer, A. W68, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko, “One vm to rule them all,”
in Proceedings of the 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software,
ser. Onward! 2013, New York, NY, USA, 2013, pp. 187-204.

M. L. Van De Vanter, “Building debuggers and other tools: We can have
it all. A Position Paper,” in Proceedings of the Workshop on the Im-
plementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, ser. ICOOOLPS *15. ACM Press, 2015.
C. Seaton, M. L. Van De Vanter, and M. Haupt, “Debugging at full
speed,” in Proceedings of the Workshop on Dynamic Languages and
Applications, ser. DYLA *14, New York, NY, USA, 2014, pp. 2:1-2:13.
B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Trans. Softw. Eng., vol. 35, no. 5, pp. 684-702,
Sep. 2009.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319-349, 1987.
K. J. Ottenstein and L. M. Ottenstein, “The program dependence graph
in a software development environment,” SIGPLAN Not., vol. 19, no. 5,
pp. 177-184, Apr. 1984.

B. Korel and J. Laski, “Dynamic program slicing,” Inf. Process. Lett.,
vol. 29, no. 3, pp. 155-163, Oct. 1988.

J.-F. Bergeretti and B. A. Carré, “Information-flow and data-flow analy-
sis of while-programs,” ACM Trans. Program. Lang. Syst., vol. 7, no. 1,
pp. 37-61, Jan. 1985.

A. Lienhard, O. Greevy, and O. Nierstrasz, “Tracking objects to detect
feature dependencies,” in Program Comprehension, 2007. ICPC’07. 15th
IEEE International Conference on. 1EEE, 2007, pp. 59-68.

A. R. Yazdanshenas and L. Moonen, “Tracking and visualizing infor-
mation flow in component-based systems,” in Program Comprehension
(ICPC), 2012 IEEE 20th International Conference on. 1EEE, 2012, pp.
143-152.

