

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	is	a	Secure	Programming	Language?		
	
Programming	Languages	Implementation	Summer	School	2019		

Cristina	Cifuentes	
Research	Director	and	Architect	
Oracle	Labs	
23rd	–	24th	May	2019	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	
It	is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	
contract.	It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	practices	at	any	time,	and	the	development,	release,	
and	timing	of	any	features	or	functionality	described	in	connection	with	any	Oracle	
product	or	service	remains	at	the	sole	discretion	of	Oracle.		Any	views	expressed	in	this	
presentation	are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.	

3	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 4	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 5	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Agenda	

Thursday	23rd	May	

	What	is	a	Secure	Programming	Language?	

	Quick	Intro	to	GraalVM	and	Simple	Language	(SL)		

Friday	24th	May	

	Hands-on	Session:	Let’s	add	a	TaintString	to	SL	

1	

2	

6	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	is	a	Secure	Programming	Language?		
Cristina	Cifuentes	and	Gavin	Bierman,	“What	is	a	Secure	Programming	Language?”,		
3rd	Summit	on	Advances	in	Programming	Languages	(SNAPL),	16-17	May	2019.		

7	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabilities	due	to		
buffer	errors	(2013-2017)	5899	

National	Vulnerability	Database,	http://nvd.nist.gov	

8	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabilities	due	to		
injection	errors	(2013-2017)	5851	

National	Vulnerability	Database,	http://nvd.nist.gov	

9	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabilities	due	to	
information	leak	(2013-2017)	3106	

National	Vulnerability	Database,	http://nvd.nist.gov	

10	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

(labeled)	exploited	vulnerabilities	in	
NVD	were	buffer	errors,	injections	
and	information	leak	(2013-2017)	53%	

National	Vulnerability	Database,	http://nvd.nist.gov	

11	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

(labeled)	exploited	vulnerabilities	in	
NVD	were	buffer	errors,	injections	
and	information	leak	(2013-2017)	53%	

National	Vulnerability	Database,	http://nvd.nist.gov	

12	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Buffer	overflow	used	in	
the	Morris	worm	

•  Cross-site	scripting	
exploits	

13	

•  SQL	injection	explained	in	
the	literature	

1988	 1990s	 1998	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Examples	of	the	Three	Vulnerability	
Categories	

14	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Buffer	Errors	

15	

void	host_lookup	(char	*user_supplied_addr){	
	struct	hostent	*hp;	
	in_addr_t	*addr;	
	char	hostname[64];	
	in_addr_t	inet_addr(const	char	*cp);	
	
	/*	routine	that	ensures	user_supplied_addr	is	in	the	right	format	for		
	conversion	*/	
	
	validate_addr_form(user_supplied_addr);		
	addr	=	inet_addr(user_supplied_addr);	
	hp	=	gethostbyaddr(addr,	sizeof(struct	in_addr),	AF_INET);	
	strcpy(hostname,	hp->h_name);	
}	

https://cwe.mitre.org/data/definitions/121.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Buffer	Errors	

16	

void	host_lookup	(char	*user_supplied_addr){	
	struct	hostent	*hp;	
	in_addr_t	*addr;	
	char	hostname[64];	
	in_addr_t	inet_addr(const	char	*cp);	
	
	/*	routine	that	ensures	user_supplied_addr	is	in	the	right	format	for	
	conversion	*/	
	
	validate_addr_form(user_supplied_addr);	
	addr	=	inet_addr(user_supplied_addr);	
	hp	=	gethostbyaddr(addr,	sizeof(struct	in_addr),	AF_INET);	
	strcpy(hostname,	hp->h_name);	
}	

https://cwe.mitre.org/data/definitions/121.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Buffer	Errors	

17	

#	define	BUFSIZE	256	
int	main	(int	argc,	char	**argv)	{	
	char	*buf;	
	buf	=	(char	*)malloc(sizeof(char)*BUFSIZE);	
	strcpy(buf,	argv[1]);	
}	

https://cwe.mitre.org/data/definitions/122.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Buffer	Errors	

18	

#	define	BUFSIZE	256	
int	main	(int	argc,	char	**argv)	{	
	char	*buf;	
	buf	=	(char	*)malloc(sizeof(char)*BUFSIZE);	
	strcpy(buf,	argv[1]);	
}	

https://cwe.mitre.org/data/definitions/122.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cross-Site	Scripting	

19	

<%	String	eid	=	request.getParameter("eid	");	%>	
...	
Employee	ID:	<%=	eid	%>	

https://cwe.mitre.org/data/definitions/79.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cross-Site	Scripting	

20	

<%	String	eid	=	request.getParameter("eid	");	%>	
...	
Employee	ID:	<%=	eid	%>	

https://cwe.mitre.org/data/definitions/79.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cross-Site	Scripting	

21	

<%	Statement	stmt	=	conn.createStatement();	
ResultSet	rs	=	stmt.executeQuery	(“select	*	from	emp	where	id="+eid);	
if	(rs	!=	null)	{	
			rs.next();	
			String	name	=	rs.getString	(“name");	
}%>	
	
Employee	Name:	<%=	name	%>	

https://cwe.mitre.org/data/definitions/79.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cross-Site	Scripting	

22	

<%	Statement	stmt	=	conn.createStatement();	
ResultSet	rs	=	stmt.executeQuery	(“select	*	from	emp	where	id="+eid);	
if	(rs	!=	null)	{	
			rs.next();	
			String	name	=	rs.getString	(“name");	
}%>	
	
Employee	Name:	<%=	name	%>	

https://cwe.mitre.org/data/definitions/79.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SQL	Injection	

23	

...	
string	userName	=	ctx.getAuthenticatedUserName();	
string	query	=	“SELECT	*	FROM	items	WHERE	owner	=	’"	+	userName	+	
															"’	AND	itemname	=	’"	+	ItemName.Text	+	"’";	
sda	=	new	SqlDataAdapter(query,	conn);	
DataTable	dt	=	new	DataTable();	
sda.Fill(dt);	
...	

https://cwe.mitre.org/data/definitions/89.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SQL	Injection	

24	

...	
string	userName	=	ctx.getAuthenticatedUserName();	
string	query	=	“SELECT	*	FROM	items	WHERE	owner	=	’"	+	userName	+	
															"’	AND	itemname	=	’"	+	ItemName.Text	+	"’";	
sda	=	new	SqlDataAdapter(query,	conn);	
DataTable	dt	=	new	DataTable();	
sda.Fill(dt);	
...	

https://cwe.mitre.org/data/definitions/89.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Information	Leak	

25	

locationClient	=	new	LocationClient(this,	this,	this);	
locationClient.connect();	
currentUser.setLocation(locationClient.getLastLocation());	
...	
catch	(Exception	e)	{	
	AlertDialog.Builder	builder	=	new	AlertDialog.Builder(this);	
	builder.setMessage	("Sorry,	this	app	has	experienced	an	error.");	
	AlertDialog	alert	=	builder.create();	
	alert.show();	
	Log.e(“ExampleActivity",	“Caught	exception:	"	+	e	+	”	While	on	User:"	
						+	User.toString());	
}	

https://cwe.mitre.org/data/definitions/532.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Information	Leak	

26	

locationClient	=	new	LocationClient(this,	this,	this);	
locationClient.connect();	
currentUser.setLocation(locationClient.getLastLocation());	
...	
catch	(Exception	e)	{	
	AlertDialog.Builder	builder	=	new	AlertDialog.Builder(this);	
	builder.setMessage	("Sorry,	this	app	has	experienced	an	error.");	
	AlertDialog	alert	=	builder.create();	
	alert.show();	
	Log.e(“ExampleActivity",	“Caught	exception:	"	+	e	+	”	While	on	User:"	
						+	User.toString());	
}	

https://cwe.mitre.org/data/definitions/532.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Mainstream	Languages	and	Vulnerabilities	

27	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Top	Mainstream	Languages	Over	the	Past	10	Years	

Based	on	TIOBE	index	as	of		
January	2019	

Java	
C	
C++	

Python	
C#	
PHP	

JavaScript	
Ruby	

28	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Ruby,	
JS	1.1	Java,	C#,	

JavaScript	
No	buffer	
errors	

No	injections	

No	information	
leaks	

Mainstream	
Languages	

29	

PHP	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 30	

A	Secure	Language	is	One	that	Provides	First-class	Support	
for	These	Three	Categories	

No	buffer	
errors	

No	
injection	
errors	

No	information	
leak	errors	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	

31	

What	to	Consider	when	Talking	about	Abstractions	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	

32	

Unusable	
abstraction	

Ideal	
abstraction	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Language	Support	Addressing	Buffer	Errors	

33	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 34	

Buffer	Errors	–	The	Problem:	Unsafe	Abstraction	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Manual	
management	
of	pointers	
(C,	C++,	…)	

cognitive	load	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 35	

Buffer	Errors	–	Solutions:	Safe	Abstractions	

Managed	
memory	
(Lisp,	Java,	JS,	…)	

Lifetimes	+	
ownership	
(Rust)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Managed	memory	
•  Garbage	collection	was	first	

introduced	in	LISP	in	1958	

•  Now	in	
•  OO	languages:	Smalltalk,	Java,	C#,	

JavaScript,	Go	
•  Functional	languages:	ML,	Haskell,	

APL	
•  Dynamic	languages:	Ruby,	Perl,	PHP	

	

36	

Avoid	Buffer	Errors	Dynamically	

John	McCarthy,	1958	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Guarantees*	memory	safety	
through	new	type	system	
concepts	
•  Ownership	
•  Borrowing:		

shared	borrow	(&T)	
mutable	borrow	(&mut	T)	

	

	

	
*	Formal	guarantee	proofs	missing	

37	

Avoid	Buffer	Errors	Statically		

Graydon	Hoare,	2009	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Ownership	With	RAII	(Resource	Acquisition	is	Initialization)	
fn main() {
 let x = 5u32; // stack-allocated integer

 // *Copy* `x` into `y` - no resources are moved
 let y = x;
 // Both values can be independently used
 println!("x is {}, and y is {}", x, y);

 // `a` is a pointer to a _heap_ allocated integer
 let a = Box::new(5i32);
 println!("a contains: {}", a);

 // *Move* `a` into `b`
 let b = a;
 // The pointer address of `a` is copied (not the data) into
 // `b`. Both are now pointers to the same heap allocated
 // data, but `b` now owns it.
 println!("a contains: {}", a); // Error
}

•  Resources can only have
one owner

•  Not all variables own
resources (e.g., references)

•  Ownership of a resource is
transferred (i.e., move’d)
through assignments or
passing arguments by value

http://rustbyexample.com/scope/move.html	

38	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Lifetimes	
fn main() {
 let mut i = 3; // Lifetime for `i` starts. ────────────────┐
 { │
 let borrow1 = &i; // `borrow1` lifetime starts.─┐ │
 println!("borrow1: {}", borrow1); // │ │
 } // `borrow1` ends. ─────────────────────────────────┘ │
 │
 { │
 let borrow2 = &mut i; // `borrow2` lifetime starts.──┐ │
 *borrow2 = 5; // │ │
 } // `borrow2` ends. ────────────────────────────────────┘ │
 │
} // lifetime ends. ───┘

•  Rust compiler checks
lifetimes are valid to ensure
variables are used safely

•  Borrows allow data to be
used elsewhere, without
giving up ownership

•  There can be at most 1
mutable reference to a
resource

http://rustbyexample.com/scope/lifetime.html	

shared	borrow	

	mutable	borrow	

39	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Lifetimes	

fn main() {	
 {	
 let mut borrow3 = &mut i;	
 *borrow3 += 1;	
 println!("borrow3: {}", borrow3);	
 let borrow4 = &i; // error[E0502]: cannot borrow `i` as immutable	

 // because it is also borrowed as mutable	
 println!("borrow4: {}", borrow4);	
 }	
} 	

Confidential	–	Oracle	Internal/Restricted/Highly	Restricted	 40	

	
	
	

40	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Rust	Memory	Safety	Guarantees	
	
• No	buffer	overflows	
• No	null	pointer	dereference	
• No	double	freeing	memory	
• No	stale	pointers	
• No	data	races	
• No	arithmetic	overflows	
• Warns	about	uninitialised	memory	and	variables	

41	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Rust’s	Unsafe	Features	

• Calling	foreign	code	
• Calling	unsafe	code	
• Dereferencing	a	raw	pointer	

Must	opt-in	to	use	them	

42	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Rust	
• Ownership	and	lifetimes	allow	for	memory	safety	guarantees	

– No	buffer	overflows,	no	null	pointer	dereferences,	no	double	freeing	memory,	no	
stale	pointers,	no	data	races,	no	arithmetic	overflows	

• Unsafe	code	
– Needed	to	interface	with	native	C	code	
– To	implement	low-level	libraries	(e.g.,	Rust’s	own	libraries,	a	user’s	library)	
– Unsafe	code	can	void	memory	safety	guarantees	

43	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Language	Support	Addressing	Injection	
Errors	

44	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 45	

Injections	–	The	Problem:	Unsafe	Abstraction	

cognitive	load	

Manual	string	
concatenation	and	
sanitization	
(C,	PHP,	Python,	Java,	
JavaScript,	…)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 46	

Injections	–	Solutions:	Safe	Abstractions	

cognitive	load	

Taint	mode	
(Perl,	Ruby)	

LINQ	to	SQL	
(.NET)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  .NET’s	Language	INtegrated	Query	
framework	

•  LINQ	to	SQL	manages	relational	
data	as	objects	without	losing	the	
ability	to	query	
•  Statically-typed	
•  Not	100%	compatible	

•  Avoids	SQL	injections	by	passing	
all	data	to	PreparedStatement	
using	SQL	parameters		
•  Not	strings	or	string	concatenation	

47	

Avoid	SQL	Injections	Statically	

Microsoft,	2007	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Taint	mode	
•  Perl	3,	1989	
•  Automatic	checks	when	program	

running	with	different	real	and	
effective	user	or	group	IDs	

•  -T	flag	to	turn	it	on	

•  Similar	ideas	in		
•  Ruby	

	

48	

Avoid	Injection	Errors	Dynamically	

Larry	Wall,	1987	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Taint	Mode	Perl	3,	4,	5	
• Default	tainted	values	

– All	command-line	arguments,	environment	variables,	locale	information,	results	of	
some	system	calls	(readdir(),	readlink()),	the	variable	of	shmread(),	the	
messages	returned	by	msgrcv(),	the	password,	gcos,	and	shell	fields	returned	by	the	
getpwxxx()	calls,	and	all	file	inputs	

•  Tainted	data	may	not	be	used	directly	or	indirectly	in		
– any	command	that	invokes	a	sub-shell,	nor	in		
– any	command	that	modifies	files,	directories,	or	processes;	except	for	

•  Arguments	to	print	and	syswrite	
•  Symbolic	methods	and	symbolic	subreferences	
•  Hash	keys	are	never	tainted	

	
49	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Taint	Mode	Perl	3,	4,	5	
$arg	=	shift;																				#	$arg	is	tainted	
$hid	=	$arg	.	‘bar’;													#	$hid	is	also	tainted	
	
$line	=	<>;																						#	tainted	
$line	=	<STDIN>;																	#	also	tainted	
	
open	FOO,	“/home/me/bar”	or	die	$!;	
$line	=	<FOO>;																			#	still	tainted	
	
$path	=	$ENV{‘PATH’};												#	tainted	
$data	=	‘abc’;																			#	not	tainted	
	
system	“echo	$arg”;														#	insecure	
system	“echo	$data”;													#	insecure	until	PATH	set	
	
exec	“echo	$arg”;																#	insecure	
exec	“sh”,	‘-c’,	$arg;											#	very	insecure	
	

50	

•  Any	value	that	is	retrieved	from	an	
external	source	to	the	script	is	tainted	

•  Applies	to	individual	scalar	values	

•  One	tainted	value	taints	the	whole	
expression	

•  Except	when	using	the	ternary	
conditional	operator		

 $result	=		
										$tainted_value	?	
										"Untainted"	:		
										"Also	untainted";	

https://perldoc.perl.org/perlsec.html#Taint-mode	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Taint	Mode	Perl	3,	4,	5	
•  Two	modes	
1.  Automatic	–	when	running	a	script	with	different	setuid	and	setgid	
2.  Manual	–	activate	with	–T	cmdline	option	to	the	Perl	interpreter	

• Untainting	is	done	automatically	
– Using	a	tainted	value	as	key	in	a	hash	
– Regexp	match	on	a	tainted	value	
 if	($data	=~	/^([-\@\w.]+)$/)	{	
								$data	=	$1;																		#	$data	now	untainted	
				}	

51	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Ruby	

•  Expands	Perl’s	taint	mode	–	4	safe	levels	
– 0:	no	safety	
– 1:	disallows	use	of	tainted	data	by	potentially	dangerous	operations	
								default	on	Unix	systems	when	Ruby	script	running	as	setuid	
– 2:	prohibits	loading	of	program	files	from	globally-writable	locations	
– 3:	all	newly	created	objects	are	considered	tainted	

https://www.ruby-lang.org	
	

52	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Sample	Vulnerable	Code	Due	to	Tainted	Input	
require	‘cgi’	
cgi	=	CGI::new(“html4”)	

#	Assume	input	is	an	arithmetic	expression	
#	Fetch	the	value	of	the	form	field	“expression”	
expr	=	cgi[“expression”].to_s	

begin	
result	=	eval(expr)	
rescue	Exception	=>	detail	
#	handle	bad	expressions	
end	

#	display	result	of	arithmetic	expression	back	to	user	

•  External	data	is	tainted	

•  User	can	type	into	the	form	
system(“rm	*”)	

	

http://phrogz.net/ProgrammingRuby/taint.html	

53	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SAFE	Level	and	Untaint	Example	
require	‘cgi’	
$SAFE	=	1	
cgi	=	CGI::new(“html4”)	

#	Assume	input	is	an	arithmetic	expression	
#	Fetch	the	value	of	the	form	field	“expression”	
expr	=	cgi[“expression”].to_s	

if	expr	=~	%r{^[-+*/\d\seE.()]*$}	
			expr.untaint	
			result	=	eval(expr)	
			#	display	result	of	arithmetic	expression	back	to	user	
else	
			#	display	error	message	

•  Run	CGI	script	at	a	safe	level	of	1	
•  Raises	exception	if	program	

passes	the	form	data	to	eval	

•  Simple	sanity	check	performed	on	
the	form	data	to	untaint	if	the	
data	looked	innocuous	

	

http://phrogz.net/ProgrammingRuby/taint.html	

54	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SAFE	Level	and	XSS	Example	
require	‘cgi’	
$SAFE	=	1	
	
cgi	=	CGI::new(“html4”)	
expr	=	cgi[“expression”].to_s	

if	expr	=~	%r{^[-+*/\d\seE.()]*$}	
			expr.untaint	
			result	=	eval(expr)	
end	
print	“#{expr}:#{result}\n”

•  External	data	is	tainted	

•  Tainted	data	is	sanitized	

•  Taint	is	not	tracked	to	print	
	

Modification	of	http://phrogz.net/ProgrammingRuby/taint.html	

55	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Perl	

• Runtime	tracks	tainted	data	not	to	
be	used	in	subshell	commands,	or	
commands	that	modify	files,	
directories,	or	processes	(with	
some	exceptions)	

Ruby	

•  Extends	Perl’s	taint	mode	to	track	
direct	data	flows	through	SAFE	
modes	1-3	

• Programmatic	taint/untaint	
methods	

Perl	and	Ruby’s	Taint	Mode	

Cannot	track	XSS	as	do	not	track	taint	to	print	and	syswrite		
Do	not	track	indirect/implicit	data	flows	

56	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Language	Support	Addressing	Information	
Leak	Errors	

57	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 58	

Information	Leaks	–	The	Problem:	Unsafe	Abstraction	

cognitive	load	

Manual	tracking	
of	sensitive	data	
(C,	Java,	JavaScript,	…)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 59	

Information	Leaks	–	Solutions:	Safe	Abstractions	

cognitive	load	

Policy-agnostic	
programming	
(Jeeves)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Policy	
annotations	
(JIF,	Fabric)	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Extends	Java	with	information	
flow	and	access	control,	enforced	
at	compile	time	and	run	time	
•  Integrity	and	confidentiality	
•  Can	prevent	covert	information	leaks	

•  Security	policies	are	expressed	as	
label	annotations	restricting	how	
the	information	may	be	used	

60	

Avoid	Information	Leaks	and	Injections	Statically	

Andrew	Myers,	2002+	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Faceted	values:	a	policy	guarding	
both,	the	security-sensitive	and	
non-sensitive	values	
•  The	runtime	keeps	track	of	policies	

associated	with	conditionals	
•  Faceted	database	saves	faceted	

values	

•  Sample	web	applications	yield	
reasonable	(<	2x)	overheads	

	

61	

Avoid	Information	Leaks	Dynamically	

Jean	Yang,	2013+	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Faceted	values	
– Used	for	sensitive	values	
– Policy	guards	secret	and	non-secret	
value,	i.e.,		
																		<s | ns>(p)

			equivalent	to:		if (p) <s> else <ns>;

• Developer	specifies	policies	outside	
the	code	

•  Language	runtime	enforces	policy	

•  Faceted	records	in	the	DB	
– Faceted	record	(p ? s : ns)	
– Stored	as	two	faceted	rows	of	non-
faceted	relational	records	

 id val fid fpolicy

 1 s 1 p==True

 2 ns 1 p==False

– Allows	for	faceted	queries	using	
WHERE	and	JOIN	clauses	

Faceted	Values	

62	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Alice	wants	to	plan	a	surprise	party	for	
Bob	at	7pm	next	Tuesday.		She	should	be	
able	to	create	an	event	such	that	
information	is	visible	only	to	guests.		Bob	
should	see	that	he	has	an	event	7pm	next	
Tuesday,	but	not	that	it	is	a	party.		
Everyone	else	may	see	that	there	is	a	
private	event,	but	not	event	details.	

class Event(Model):
 name = CharField(max_length=256)
 time = DayTimeField()
 ...

 # public value for name field
 def jacqueline_get_public_name(event):
 return “Private event”

 # policy for name field
 @label_for(‘name’)
 def jacqueline_restrict_event(event, ctxt):
 return(EventGuest.objects.get(
 event=self, guest=ctxt) != None)

class EventGuest(Model):
 event = ForeignKey(Event)
 guest = ForeignKey(UserProfile)

Example:	Social	Calendar	App	

http://www.cs.cmu.edu/~jyang2/papers/p631-yang.pdf	

63	

Person	ID	 Event	name	 Faceted	ID	 Policy	

1	 ‘Surprise	party’	 1	 ‘p=True’	

2	 ‘Private	event’	 1	 ‘p=False’	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Without	faceted	records;	policy	not	
enforced	at	the	query	level	

 SELECT EventGuest.event,
 EventGuest.guest
 FROM EventGuest
 JOIN UserProfile
 ON EventGuest.guest_id =
 UserProfile.id
 WHERE UserProfile.name = ‘Alice’;

• Automatically-generated	code	with	
faceted	records*;	policy	enforced	
at	query	time	

 SELECT EventGuest.event,
 EventGuest.guest,
 EventGuest.fid,
 EventGuest.fpolicy,
 UserProfile.fpolicy
 FROM EventGuest
 JOIN UserProfile
 ON EventGuest.guest_id =
 UserProfile.fid
 WHERE UserProfile.name = ‘Alice’;

Example:	Social	Calendar	App	Query	

SQL	API	used	by	developer,	facets	introduced	by	the	system	

64	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Applications	
– Conference	management	system	
– Health	record	manager	
– Course	manager	

• Reduced	lines	of	code	
– Policy	code:	106	LOC	central	vs	130	
LOC	spread	out	in	the	code	

– Auditing	policy	code:	200	LOC	vs	575	
LOC	=>	65%	reduced	size	of	
application-specific	trusted	code	base	

• Performance	
– 1.75x	overhead	on	stress	tests	
– At	par	viewing	profiles	for	a	single	user	
– Faster	viewing	profiles	for	a	single	
paper	in	conference	mgmt	system	(as	
policies	resolved	once)	

Status	–	Results		

65	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Policy-Agnostic	Programming	
• New	paradigm	that	centralises	policy	code	outside	of	the	main	application	
and	tracks	information	flows	relevant	to	information	leak	at	runtime	

• Main	benefits	
– Application	and	database	code	do	not	need	to	be	trusted	
– Policies	are	localised	
– The	size	of	the	policy	is	smaller	due	to	automatic	policy	enforcement	

•  Status	
– Academic	prototype	

66	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Concluding	Remarks	

67	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

(labeled)	exploited	vulnerabilities	in	
NVD	were	buffer	errors,	injections	
and	information	leak	(2013-2017)	53%	

National	Vulnerability	Database,	http://nvd.nist.gov	

68	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

(labeled)	exploited	vulnerabilities	in	
NVD	were	buffer	errors,	injections	
and	information	leak	(2013-2017)	53%	

National	Vulnerability	Database,	http://nvd.nist.gov	

69	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Top	Mainstream	Languages	Over	the	Past	10	Years	

Based	on	TIOBE	index	as	of		
January	2019	

Java	
C	
C++	

Python	
C#	
PHP	

JavaScript	
Ruby	

70	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 71	

A	Secure	Language	is	One	that	Provides	First-class	Support	
for	These	Three	Categories	

No	buffer	
errors	

No	
injection	
errors	

No	information	
leak	errors	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Today’s	mainstream	languages	do	not	
support	our	developers	in	writing	secure	

code	that	is	free	of	buffer	errors,	injections,	
or	information	leaks.	

72	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	mainstream	languages	are	not		
secure	languages.	

	

73	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Managed	
memory	

Ownership		
and	lifetimes	

Taint	tracking	

Memory	
Safety	

Integrity	

Confidentiality	

Secure	
Abstractions	

Built-in	
sanitization	

Policy-agnostic	
programming	

Policy	
annotations	

74	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

New	
languages	

Abstraction	1	 Abstraction	2	

Abstraction	3	

Abstraction	4	
Abstraction	5	

Abstraction	6	

Abstraction	N+1	
Abstraction	N	

Abstraction	N+2	

Memory	
Safety	

Integrity	

Confidentiality	

75	

Future	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Issue	

•  Interoperability/Foreign	Function	
Interface	and	properties	provided	
by	each	language	

• Complexity	of	modifying	a	VM	

Approaches	explored	in	the	
research	community	
• Multi-lingual	compilers	and	
runtimes,	and	linking	types	
	

• Compilation	that	preserves	security	
properties	via	translations	that	are	
fully	abstract	

76	

Some	Practical	Issues	to	Consider	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	If	We	Solved	These	Three	Issues?		What’s	Next?		
• Other	types	of	vulnerabilities	would	become	prevalent,	or	other	types	of	
vulnerabilities	are	prevalent	in	your	domain	
– Security	features	

•  Permissions,	privileges	and	access	control	
•  Cryptographic	issues	

– Poor	code	quality	
•  Resource	management	

– Time	and	state	
•  Race	conditions	

77	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	If	We	Solved	These	Three	Issues?		What’s	Next?		
• Other	types	of	vulnerabilities	would	become	prevalent,	or	other	types	of	
vulnerabilities	are	prevalent	in	your	domain	
– Security	features	

•  Permissions,	privileges	and	access	control	
•  Cryptographic	issues	

– Poor	code	quality	
•  Resource	management	

– Time	and	state	
•  Race	conditions	

78	

Rust and Pony prevent data race issues by design	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	If	We	Solved	These	Three	Issues?		What’s	Next?		
• Other	types	of	vulnerabilities	would	become	prevalent,	or	other	types	of	
vulnerabilities	are	prevalent	in	your	domain	
– Security	features	

•  Permissions,	privileges	and	access	control	
•  Cryptographic	issues	

– Poor	code	quality	
•  Resource	management	

– Time	and	state	
•  Race	conditions	

• New	paradigms	may	develop	new	types	of	issues	
– E.g.,	microservices	–	vulnerabilities	or	security	at	the	edge?		

79	

Rust and Pony prevent data race issues by design	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

million	software	developers	
worldwide	(11M	professional,		
7.5M	hobbyist)	

80	

18.5		
http://www.idc.com,	2014	Worldwide	Software	Developer	and	ICT-Skilled	Worker	Estimations	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Security	is	not	just	for	expert	developers	

81	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 82	

✗

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

It’s	time	to	introduce	security	
abstractions	into	our	language	

design	

83	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

cristina.cifuentes@oracle.com	
gavin.bierman@oracle.com	

http://labs.oracle.com	
@criscifuentes	
@GavinBierman	

	

84	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

A	Quick	Introduction	to	GraalVM	and		
Simple	Language	(SL)	

85	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 86	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	Truffle	Idea	

87	

Collect	
profiling	
feedback	

Optimize	using	partial	
evaluation	assuming	stable	

profiling	feedback	

U

U U

U

U I

I I

S

S I

I I

S

S

Deoptimize	if	profiling	
feedback	is	invalid	and	

reprofile	

I S

One	VM	to	Rule	Them	All,	Thomas	Würthinger	et	al,	Onward!	2013	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SL:	A	Simple	Language	
•  Language	to	demonstrate	and	showcase	features	of	Truffle	

– Simple	and	clean	implementation	
– Not	the	language	for	your	next	implementation	project	

•  Language	highlights	
– Dynamically	typed	
– Strongly	typed	
– Arbitrary	precision	integer	numbers	
– First	class	functions	
– Dynamic	function	redefinition	
– Objects	are	key-value	stores	

•  Key	and	value	can	have	any	type,	but	typically	the	key	is	a	String	

88	

About 2.5k lines of code	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Types	
SL	Type	 Values	 Java	Type	in	Implementation	
Number	 Arbitrary	precision	integer	

numbers	
long	for	values	that	fit	within	64	bits	
java.lang.BigInteger	on	overflow	

Boolean	 true,	false	 boolean	
String	 Unicode	characters	 java.lang.String	
Function	 Reference	to	a	function	 SLFunction	
Object	 key-value	store	 DynamicObject	
Null	 null	 SLNull.SINGLETON	

Null is its own type; could also be called "Undefined"

89	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Syntax	
• C-like	syntax	for	control	flow	

– if,	while,	break,	continue,	return	
• Operators	

– +,	-,	*,	/,	==,	!=,	<,	<=,	>,	>=,	&&,	||,	()	
– +	is	defined	on	String,	performs	
String	concatenation	

– &&	and	||	have	short-circuit	semantics	
– .	or	[]	for	property	access	

•  Literals	
– Number,	String,	Function	

• Builtin	functions	
– println,	readln:	Standard	I/O	
– nanoTime:	to	allow	time	measurements	
– defineFunction:	dynamic	function	
redefinition	

– stacktrace,	helloEqualsWorld:	
stack	walking	and	stack	frame	
manipulation	

– new:	Allocate	a	new	object	without	
properties	

90	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SL	Examples	

function	main()	{			
		println("Hello	World!");			
}	

Hello World:	
function	main()	{			
		i	=	0;			
		sum	=	0;			
		while	(i	<=	10000)	{			
				sum	=	sum	+	i;			
				i	=	i	+	1;			
		}			
		return	sum;			
}	

Simple loop:	

function	foo()	{	println(f(40,	2));	}	
	
function	main()	{	
		defineFunction("function	f(a,	b)	{	return	a	+	b;	}");	
		foo();	
	
		defineFunction("function	f(a,	b)	{	return	a	-	b;	}");	
		foo();	
}		

Function definition and redefinition:	

function	add(a,	b)	{	return	a	+	b;	}	
function	sub(a,	b)	{	return	a	-	b;	}	
	
function	foo(f)	{		
		println(f(40,	2));	
}	
	
function	main()	{	
		foo(add);	
		foo(sub);	
}		

First class functions:	

function	f(a,	b)	{	
		return	a	+	"	<	"	+	b	+	":	"	+	(a	<	b);	
}	
	
function	main()	{			
		println(f(2,	4));	
		println(f(2,	"4"));	
}		

Strings:	

91	

function	main()	{			
		obj	=	new();	
		obj.prop	=	"Hello	World!";	
		println(obj["pr"	+	"op"]);			
}	

Objects:	

Hello	World!	

2	<	4:	true	
Type	error	

50005000	
42	
38	

42	
38	

Hello	World!	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Getting	Started	
• Download	GraalVM	Community	Edition	19.0.0	

– https://github.com/oracle/graal/releases	

•  Install	GraalVM	
–  tar	–xvf	graalvm-ce.tar	

• Download,	install	and	verify	Simple	Language	(steps	1-5	+	load	Maven	
project	into	your	favourite	IDE)	
– https://www.graalvm.org/docs/graalvm-as-a-platform/implement-language/	

92	

GraalVM version used in this tutorial: graalvm-ce-19.0.0	

SL version used in this tutorial: 323876b.
git checkout 323876b 	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Program	Agenda	

Thursday	23rd	May	

	What	is	a	Secure	Programming	Language?	

	Quick	Intro	to	GraalVM	and	Simple	Language	(SL)		

Friday	24th	May	

	Hands-on:	Let’s	add	a	TaintString	to	SL	

1	

2	

93	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Recap:	What	is	a	Secure	Language?		
• One	that	addresses	today’s	most	common	types	of	vulnerabilities,	namely,	
buffer	errors,	injection	errors,	and	information	leak	errors.		

94	

No	buffer	
errors	

No	injection	
errors	

No	information	
leak	errors	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Buffer	errors	 •  Injections	 •  Information	leaks	

Recap:	The	Problem:	Unsafe	Abstractions	
pe

rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	
pe

rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	

Manual	
management	
of	pointers	
(C,	C++,	…)	

Manual	string	
concatenation		
&	sanitization	
(C,	Python,	Java,	JS,	…)	

Manual	
tracking	of	
sensitive	data	
(C,	Java,	JS,	…)	

95	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Buffer	errors	 •  Injections	 •  Information	leaks	

Recap:	Examples	of	Solutions:	Safe	Abstractions	
pe

rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	
pe

rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

cognitive	load	

Managed	
memory	
(Lisp,	Java,	JS,	…)	

Lifetimes	+	
ownership	
(Rust)	

Taint	mode	
(Perl,	Ruby)	

LINQ	to	SQL	
(.NET)	

Policy	
annotations		
(JIF,	Fabric)	

Policy-agnostic	
programming	
(Jeeves)	

96	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Hands-On	Practice	
•  Focus	on	taint	

– Use	types	to	introduce	secure	abstraction	concepts	
– Use	GraalVM	and	SL	

•  Task	
– Modify	SL	to	include	the	type	tainted	string	(TaintString)	and	test	your	
implementation	by	adding	JUnit	tests	

• Reflect	on	the	pros/cons	of	your	new	language	

97	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Taint	String	Concepts	
• User-input	string	is	considered	tainted	
• Cannot	write/print	tainted	string		
•  Tainted	string	can	be	sanitized	by	a	specific	method	
•  Tainted	string	can	operate	with	other	String	and	TaintString	values	

98	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

TaintString	as	a	Type	

•  @Specialization	
•  @CompilerDirectives.TruffleBoundary	
•  @NodeInfo	

99	

Use	Truffle	DSL	annotations	to	make	changes	to	SL;	no	changes	to	the	SL	parser	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

@Specialization	

100	

I

S

U

instanceof
String

instanceof
Integer

T

F

T

F

value instanceof
{Integer, String}

U

value instanceof
{}

I

U

instanceof
Integer

T

F

value instanceof
{Integer}

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Addition	
@NodeChildren({@NodeChild("leftNode"),	@NodeChild("rightNode")})	
public	abstract	class	SLBinaryNode	extends	SLExpressionNode	{	}	
	
public	abstract	class	SLAddNode	extends	SLBinaryNode	{	
	
		@Specialization(rewriteOn	=	ArithmeticException.class)	
		protected	final	long	add(long	left,	long	right)	{	
				return	ExactMath.addExact(left,	right);	
		}	
	
		@Specialization	
		protected	final	BigInteger	add(BigInteger	left,	BigInteger	right)	{	
				return	left.add(right);	
		}	
	
		@Specialization(guards	=	"isString(left,	right)")	
		protected	final	String	add(Object	left,	Object	right)	{	
				return	left.toString()	+	right.toString();	
		}	
	
		protected	final	boolean	isString(Object	a,	Object	b)	{	
				return	a	instanceof	String	||	b	instanceof	String;	
		}	
}	

For all other specializations, guards are
implicit based on method signature	

101	

The order of the @Specialization
methods is important: the first matching
specialization is selected	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Generated code with factory method:	

Code	Generated	by	Truffle	DSL	(1)	

@GeneratedBy(SLAddNode.class)	
public	final	class	SLAddNodeGen	extends	SLAddNode	{	
	
		public	static	SLAddNode	create(SLExpressionNode	leftNode,	SLExpressionNode	rightNode)	{	...	}	
	
		...		
}	 The parser uses the factory to create a node

that is initially in the uninitialized state	

102	

The generated code performs all the transitions
between specialization states	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Code	Generated	by	Truffle	DSL	(2)	
@GeneratedBy(methodName	=	"add(long,	long)",	value	=	SLAddNode.class)	
private	static	final	class	Add0Node_	extends	BaseNode_	{	
		@Override	
		public	long	executeLong(VirtualFrame	frameValue)	throws	UnexpectedResultException	{	
				long	leftNodeValue_;	
				try	{	
						leftNodeValue_	=	root.leftNode_.executeLong(frameValue);	
				}	catch	(UnexpectedResultException	ex)	{	
						Object	rightNodeValue	=	executeRightNode_(frameValue);	
						return	SLTypesGen.expectLong(getNext().execute_(frameValue,	ex.getResult(),	rightNodeValue));	
				}	
				long	rightNodeValue_;	
				try	{	
						rightNodeValue_	=	root.rightNode_.executeLong(frameValue);	
				}	catch	(UnexpectedResultException	ex)	{	
						return	SLTypesGen.expectLong(getNext().execute_(frameValue,	leftNodeValue_,	ex.getResult()));	
				}	
				try	{	
						return	root.add(leftNodeValue_,	rightNodeValue_);	
				}	catch	(ArithmeticException	ex)	{	
						root.excludeAdd0_	=	true;	
						return	SLTypesGen.expectLong(remove("threw	rewrite	exception",	frameValue,	leftNodeValue_,	rightNodeValue_));	
				}	
		}	
	
		@Override	
		public	Object	execute(VirtualFrame	frameValue)	{	
				try	{	
						return	executeLong(frameValue);	
				}	catch	(UnexpectedResultException	ex)	{	
						return	ex.getResult();	
				}	
}	

103	

The generated code can and will change
at any time	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

@Specialization	

• Defines	a	method	of	a	Node	subclass	to	represent	one	specialization	of	an	
operation	
– Multiple	specializations	can	be	defined	
– Inputs	are	defined	through	a	method	signature	and	the	annotation	attributes	

•  #	parameters	<=	#	nodes	in	the	@NodeChild	annotation	declared	for	the	enclosing	operation	node	

– Semantics	are	defined	using	the	body	of	the	annotated	Java	method	

104	

public	@interface	Specialization	

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

@Specialization:	Annotation	type	specialization	

• Kinds	of	input	values	are	declared	using	guards.		Types	of	guards:		
– Type:	optimistically	assume	the	type	of	an	input	value.		Object	by	default	
– Expression:	optimistically	assume	the	return	type	value	is	true.		If	false,	the	
specialization	is	no	longer	applicable	and	the	operation	is	re-specialized.		Guard	
expressions	are	declared	using	the	Specialization.guards()	attribute.	

– Event:	trigger	re-specialization	in	case	an	exception	is	thrown	in	the	specialization	
body.	A	list	of	such	exceptions	is	declared	using	the	
Specialization.rewriteOn()	attribute.		

– Assumption:	optimistically	assume	that	the	state	of	an	Assumption	remains	true.		
Assumptions	are	assigned	using	the	Specialization.assumptions()	attribute.		

105	

public	@interface	Specialization	

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

@CompilerDirectives.TruffleBoundary	

• Marks	a	method	that	is	considered	as	a	boundary	for	Truffle	partial	
evaluation	
– For	functions	not	designed	for	PE	(e.g.,	JDK,	external	libraries,	etc)	
– For	logic	that	is	difficult	to	partially	evaluate	

106	

public	static	@interface	CompilerDirectives.TruffleBoundary	

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/CompilerDirectives.TruffleBoundary.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

@TruffleBoundary	–	Slow	Path	Annotation	
public	abstract	class	SLPrintlnBuiltin	extends	SLBuiltinNode	{	
	
		@Specialization	
		public	final	Object	println(Object	value)	{	
				doPrint(getContext().getOutput(),	value);	
				return	value;	
		}	
	
		@TruffleBoundary	
		private	static	void	doPrint(PrintStream	out,	Object	value)	{	
				out.println(value);	
		}	
}	 Why @TruffleBoundary? Inlining something as big as

println() would lead to code explosion	

When compiling, the output stream is a constant 	

107	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

@NodeInfo	

• Annotation	for	providing	additional	
information	on	Nodes	

• Optional	elements	
– String	shortName:	short	name	
representing	the	Node	that	can	be	used	
for	debugging	

•  In	SL	
– the	shortName	is	looked	up	and	a	
specialisation	that	executes	that	Node	is	

added	to	the	SL	function	registry,	so	that	
when	someone	calls	a	function	with	that	
name,	the	builtin	is	there	

108	

public	@interface	NodeInfo	

@NodeInfo(shortName	=	“println”)	
public	abstract	class	SLPrintlnBuiltin	extends	
SLBuiltinNode	{	
		@Specialization	
		public	long	println(long	value)	{	...	}	
		@Specialization	
		public	boolean	println(boolean	value)	{	...	}	
		...	
}	

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/nodes/NodeInfo.html	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Add	TaintString	to	SL	

• Read	and	write	tainted	strings	
–  readln(),	println()	

• Concatenate	tainted	strings	and	strings	
–  add()	

• Compare	equality	of	two	tainted	strings	
–  equal()	

•  Sanitise	tainted	string	
–  sanitize()	

109	

Functionality	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Create	TaintString:	Implement	as	a	Wrapper	to	SL	String	

• Methods	
– public	TaintString(String)	constructor	
– public	String	getValue()	
– public	int	compareTo(TaintString):	compare	two	strings	lexicographically	
	

110	

com.oracle.truffle.sl.runtime.TaintString	

Hint:	use	SLBigNumber.java	as	a	guide.		
SLBigNumber	wraps	BigInteger	and	

specializes	various	methods	

Compile	often,	i.e.,	mvn	compile	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Create	SanitizeTaintStringBuiltin	

• Declare	your	sanitization	methods,	e.g.,	
– public	String	sanitize(TaintString)	

111	

com.oracle.truffle.sl.builtins.SanitizeTaintStringBuiltin	

Hint:	use	SLNanoTimeBuiltin.java	as	
a	guide		

Compile	and	check	that	SanitizeTaintStringBuiltinFactory	was	generated	in	
target/generated-sources/annotations/com.oracle.truffle.sl/builtins/	

Hint:	add	a	NodeInfo	annotation		

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Modify	SLContext	

• Register	your	builtin	methods	by	adding	your	
SanitizeTaintStringBuiltinFactory	to	installBuiltins()	

112	

com.oracle.truffle.sl.runtime.SLContext	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Modify	SLReadlnBuiltin	

• Modify	readln()	to	return	a	tainted	string	when	reading	from	stdin	
– TaintString	readln(SLContext)	

113	

com.oracle.truffle.sl.builtins.SLReadlnBuiltin	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Modify	SLPrintlnBuiltin	

• Modify	SLPrintlnBuiltin	to	have	a	println()	method	that	throws	an	
SLException	when	passed	a	tainted	string,	as	tainted	strings	cannot	be	
written	to	stdout	
– public	void	println(TaintString,	SLContext)	

114	

com.oracle.truffle.sl.builtins.SLPrintlnBuiltin	

Hint:	order	of	specializations	matters	

Compile:	mvn	compile	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Modify	SLAddNode	

• Add	new	methods	to	add/concatenate	tainted	strings	
–  protected	TaintString	add(TaintString	left,	TaintString	right)	
–  protected	TaintString	add(TaintString	left,	String	right)	
–  protected	TaintString	add(String	left,	TaintString	right)	

115	

com.oracle.truffle.sl.nodes.expression.SLAddNode	

Hint:	order	of	specializations	matters	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Modify	SLEqualNode	

• Add	new	method	to	test	equality	of	two	tainted	strings	
–  protected	boolean	equal(TaintString	left,	TaintString	right)	

116	

com.oracle.truffle.sl.nodes.expression.SLEqualNode	

Compile:	mvn	compile	
Build	‘sl’	executable:	mvn	-Dmaven.test.skip=true	package	OR	mvn	package	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Add	JUnit	Tests	

• Add	your	tests	
–  mytest.sl:	SL	test	file	
–  mytest.input:	any	input	to	mytest.sl	
–  mytest.output:	expected	output	when	
running	mytest.sl	

•  Functionality	to	test	
–  readln	
–  println	
–  sanitize	
–  add	(+)	
–  equal	

117	

language/tests/TaintStringTests	

Run	one	test	manually:		
./sl	language/tests/TaintStringTests/mytest.sl	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Add	JUnit	Tests	

• Run	regression	test	suite	
– Turn	off	tests	for	SL	instrumentation:	in	
com.oracle.truffle.sl.test.SLInstrumentTest,	add	@Ignore	prior	to	the	class	

	

118	

language/tests/TaintStringTests	

Run	your	tests	and	regression	test	suite:		
mvn	test	

Debug	failing	tests:	
mvn	–X	test	

Refer	to	relevant	language/target/surefire-reports/<report> for	more	information	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Gotcha’s	
•  SL’s	String	implements	a	small	subset	of	Java’s	String	
• Builtin’s	use	the	convention	of	post-pending	Builtin	to	their	name	in	
order	to	create	the	BuiltinFactory	

•  Specialization	order	matters	
•  println	takes	one	string,	not	a	comma-separated	list	of	strings	
•  Trying	to	use	internal	TaintString	methods	for	SL	(user)	development	

119	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Reflect	on	Pros/Cons	of	TaintString	in	SL	
• What	methods	are	useful	for	sanitisation?		
• What	impact	does	TaintString	have	on	the	use	of	libraries?	
• What	about	interoperability	with	other	languages?		
• How	can	you	provide	prevention	of	different	types	of	vulnerabilities	
through	TaintString	concepts?		E.g.,	for	XSS	and	SQLi?	

120	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Homework:	Hands-On	Practice	2	
•  Focus	on	information	leak	

– Use	types	to	introduce	secure	abstraction	concepts	
– Use	GraalVM	and	SL	

•  Task	
– Time	permitting,	add	the	concept	of	leaking	sensitive	data	on	String	and/or	Integer	
(SensitiveString,	SensitiveInteger)	

• Reflect	on	the	pros/cons	of	your	new	language	

121	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Concluding	Remarks	

122	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

No	buffer	
errors	

No	injection	
errors	

No	information	
leak	errors	

123	

Your	new	
secure	
language	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Internships	and	Postdoc	Opportunities:	
	Program	Analysis	(static	&	dynamic)	

http://labs.oracle.com/locations/australia	(Careers	tab)	
Email:		cristina.cifuentes@oracle.com	

124	

Internships	and	Permanent	Opportunities:	
GraalVM	(optimisations,	tooling,	GC/runtime)	

Email:		thomas.wuerthinger@oracle.com	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

cristina.cifuentes@oracle.com	
http://labs.oracle.com	

@criscifuentes	
	

125	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 126	

