
Trace Register Allocation Policies
Compile-time vs. Performance Trade-offs

Josef Eisl
Institute for System Software
Johannes Kepler University

Linz, Austria
josef.eisl@jku.at

Stefan Marr
Institute for System Software
Johannes Kepler University

Linz, Austria
stefan.marr@jku.at

Thomas Würthinger
Oracle Labs

Zürich, Switzerland
thomas.wuerthinger@oracle.com

Hanspeter Mössenböck
Institute for System Software
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Register allocation has to be done by every compiler that targets a
register machine, regardless of whether it aims for fast compilation
or optimal code quality. State-of-the-art dynamic compilers often
use global register allocation approaches such as linear scan. Re-
cent results suggest that non-global trace-based register allocation
approaches can compete with global approaches in terms of allo-
cation quality. Instead of processing the whole compilation unit
at once, a trace-based register allocator divides the problem into
linear code segments, called traces.

In this work, we present a register allocation framework that
can exploit the additional flexibility of traces to select different allo-
cation strategies based on the characteristics of a trace. This allows
fine-grained control over the compile time vs. peak performance
trade-off.

Our framework features three allocation strategies, a linear-
scan-based approach that achieves good code quality, a single-
pass bottom-up strategy that aims for short allocation times, and
an allocator for trivial traces. We present 6 allocation policies to
decide which strategy to use for a given trace. The evaluation shows
that this approach can reduce allocation time by 3–43% at a peak
performance penalty of about 0–9% on average.

For systems that do not mainly focus on peak performance, our
approach allows adjusting the time spent for register allocation,
and therefore the overall compilation timer, finding the optimal
balance between compile time and peak performance according to
an application’s requirements.

CCS CONCEPTS
•Software and its engineering →Just-in-time compilers;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LCTES 2017, Barcelona, Spain
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM…$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Trace Register Allocation, Register Allocation, Trace Compilation,
Linear Scan, Just-in-Time Compilation, Virtual Machines, Com-
pile Time vs. Performance Trade-off

ACM Reference format:
Josef Eisl, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck.
2017. Trace Register Allocation Policies. In Proceedings of ACMSIGPLAN/SIGBED
Conference on Languages, Compilers, Tools and Theory for Embedded Systems,
Barcelona, Spain, June 2017 (LCTES 2017), 10 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Register allocation is a mandatory task in compilers that produce
code for register machines, which is the predominant type of archi-
tectures found in computers today. Its task is to map an arbitrary
number of variables to a limited set of physical registers of the
processor. Many sub-problems of register allocation are NP com-
plete in general, for instance spill free register allocation (Chaitin
et al., 1981), minimizing spill costs (Farach and Liberatore, 1998), or
register coalescing (Bouchez et al., 2007). Therefore, register alloca-
tion needs to find a trade-off between the time spent for finding
a solution and the resulting code quality. One of these trade-offs
is whether to perform register allocation locally, i.e. on the scope
of a basic block, or globally by looking at the whole compilation
unit, i.e., a method. The advantage of local approaches is that they
are simple since they do not need to handle control-flow. However,
optimization potential is limited by the narrow scope. Global algo-
rithms, on the other hand, offer more opportunities for improving
code-quality. However, due to the problem size, compile time eas-
ily becomes a bottleneck. In modern JIT compilers, compile-time
trade-offs become especially important, because aggressive inlining
leads to rather large compilation units, which is a challenge for
global approaches.

Trace-based register allocation, proposed by Eisl et al. (2016),
solves the problem with an approach that is neither global nor local.
Instead of processing a whole method at once, the basic blocks
of the control-flow graph are partitioned into traces, i.e., linear
sub-graphs of sequentially executed blocks. For each trace, register
allocation is performed without interaction with other parts of the

1

LCTES 2017, June 2017, Barcelona, Spain Eisl et al.

compilation unit. This simplifies the problem of register allocation
since control-flow can be ignored.

Register allocation of traces can be done independently. There-
fore, it allows the use of different allocation algorithms for different
traces within one compilation unit. This enables control over the
trade-off between compile time and code quality on a very fine-
grained level. It allows fine-tuning JIT compilation and optimizing
application performance, which is essential for systems where re-
sources are constrained and peak performance is not the sole goal.
In this paper, we evaluate the impact of heuristics to decide which
algorithm to use on a per-trace basis.

Eisl et al. already applied two different allocation approaches,
a simplified linear scan algorithm for general traces, and a special
purpose allocator for trivial traces, i.e., traces that consist of a single,
empty basic block. We propose a novel third algorithm, called
bottom-up allocator, which is 43% faster than the trace-based linear
scan strategy, with a peak-performance penalty of 9% on average.

The proposed framework is implemented in the Graal com-
piler (Duboscq, Würthinger, and Mössenböck, 2014; Simon et al.,
2015), an optimizing compiler for the Java HotSpot VM.1

The contributions of this paper are:

• A framework for using different register allocation strate-
gies within a compilation unit, based on the structure of
a trace. This enables us to make fine-grained trade-off
decisions between compile time and peak performance.

• A novel bottom-up register allocation strategy for traces,
which only requires a single pass backwards through the
instructions of the trace.

• Six different policies for selecting allocation strategies
based on the properties of a trace. Each heuristic exhibits
different compile-time vs. peak-performance behavior.

• A thorough compile time and peak performance evalua-
tion of the bottom-up allocator and the policies using the
DaCapo and the Scala-DaCapo benchmark suites.

2 BACKGROUND
This work is based on the trace-based register allocation approach
proposed by Eisl et al. (2016), which is publicly available as part of
the GraalVM.2 This section gives a brief overview of the GraalVM
and details trace-based register allocation.

2.1 GraalVM
The GraalVM is a Java virtual machine based on the HotSpot VM.
The HotSpot VM comes with an interpreter and two just-in-time
compilers, the client compiler (Kotzmann et al., 2008) and the server
compiler (Paleczny et al., 2001). The goal of the client compiler is to
provide fast compilation speed, whereas the server compiler aims
at good code quality at the cost of a higher compilation time.

In the GraalVM, the server compiler is replaced by the Graal
compiler as the second-tier compiler. This is done using the JVM
Compiler Interface,3 which will be part of the upcoming Java 9
release.

1http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
2https://github.com/graalvm/graal-core
3JEP 243: Java-Level JVM Compiler Interface; http://openjdk.java.net/jeps/243

The Graal compiler is itself written in Java, which eliminates
the need of recompiling the whole virtual machine for compiler
development. It is implemented in a modular way so that its com-
ponents, e.g. the register allocator, can be easily replaced with a
different implementation. This makes it a practical environment
for (dynamic) compiler research.

The compiler uses two different intermediate representations. In
the frontend Graal performs optimizations such as inlining, dead
code elimination, conditional elimination, partial escape analy-
sis (Stadler, Würthinger, et al., 2014), and loop unrolling (Stadler, Du-
boscq, et al., 2013) to name just a few. It uses a high-level represen-
tation (HIR), which is graph-based (Duboscq, Würthinger, Stadler,
et al., 2013) and in static single assignment (SSA) form (Cytron
et al., 1991). Although Java bytecode can describe irreducible pro-
grams (Aho et al., 2006), Graal only handles reducible control-flow.
This assumption simplifies all control-flow-sensitive phases. Since
Java programs are always reducible this restriction is not an issue
in practice.

After applying all optimizations, the graph-based representation
is converted into a low-level intermediate representation (LIR) be-
fore entering the backend. In the beginning, the LIR still adheres
to the SSA form. For every variable there is only one definition
which dominates all its usages. There are ϕ-functions to handle
control-flow merges. This simplifies liveness analysis. The back-
end’s main responsibility is register allocation and code emission.
The register allocator also destructs the SSA form. The LIR consists
of a control-flow graph with basic blocks. Critical edges are split, so
that every edge is either the only edge leaving its source or the only
edge entering its target block. This property is crucial for data-flow
resolution.

A block contains a list of LIR instruction, which are close to the
actual machine operations. Nevertheless, the backend phase are
implemented in a machine-independent manner.

For fixed register constraints, e.g. required by calling conventions,
the LIR instructions use register operands directly. These usages do
not adhere to the single definition property of the SSA form. How-
ever, a fixed register is never alive across a basic block boundary so
these requirements can be handled locally.

Machine instructions in modern architectures can often directly
addressmemory. Therefore, a LIR instruction differentiates between
usages thatmust have a register and those that could use a memory
operand, e.g. a stack slot. The register allocator is free to assign a
stack slot to the latter kind in order to reduce the register pressure.

2.2 Trace-based Register Allocation
Instead of solving the register allocation problem globally for the
whole compilation unit at once, the idea of trace-based register allo-
cation is to divide the problem into smaller pieces, so-called traces,
which are simpler to allocate due to their structural properties. The
sub-solutions are then combined to get a valid global solution.

Eisl et al. use the term trace as it was used in trace scheduling
papers, e.g. by Ellis, 1985 or Lowney et al., 1993, which operated on
the same structure. A trace is a linear list of sequentially executed
basic blocks. For programs in SSA form there are no lifetime holes
when restricted to traces. This simplifies the implementation of a
register allocator (Eisl et al., 2016).

2

http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
https://github.com/graalvm/graal-core
http://openjdk.java.net/jeps/243

Trace Register Allocation Policies LCTES 2017, June 2017, Barcelona, Spain

Linear Scan RA

Trivial RA

Bottom-Up RA

for each trace

Global Liveness Analysis

Trace Building

Data-flow Resolution

Allocate trace

Figure 1: Trace Register Allocation Overview

The remainder of this section gives an overview of the main
components of the trace register allocation approach as well as on
the allocation strategies that are employed.

2.2.1 Overview. Figure 1 shows the components of the trace
register allocation framework. We only cover them briefly. A
detailed discussion is provided by Eisl et al. (2016).

Trace Building. The trace building algorithm takes the basic
blocks of a control-flow graph as an input and returns a set of
traces. Traces are non-empty and non-overlapping. Every basic
block is contained in exactly one trace. For our experiments we
use the unidirectional trace building algorithm described by Eisl
et al. (2016). Figure 2 illustrates the trace-building process.

Global Liveness Analysis. To decouple the liveness of variables
at trace boundaries, a global liveness analysis is required. For
every inter-trace edge a liveout and livein set is computed. The
analysis is done in a single iteration over the blocks in reverse post
order, similar to the liveness analysis described by Wimmer and
Franz (2010) for SSA-based linear scan register allocation.

Allocate Traces. For each trace our algorithm selects an allocation
strategy. The following sections detail the three strategies that are
implemented in our system. Section 4 describes how we select a
strategy for a trace. Note that trace can be process in arbitrary order,
potentially even in parallel. However, traces that are allocated later
can exploit information about already processed traces for hinting
the algorithm towards a favorable solution to reduce the data-flow
resolution fix-up code. Therefore, traces are ordered with respect
to their importance. Note that this is optional and is only done to
improve the resulting code.

Data-flow Resolution. Since the location of a variable might be
different across an inter-trace edge, data-flow resolution is needed
for these edges. This is similar to the resolution pass in linear scan
allocators with interval-splitting (Traub et al., 1998; Wimmer and
Mössenböck, 2005).

The remainder of this section discusses the trace-based linear
scan and the trivial trace allocator proposed by Eisl et al. (2016).
The bottom-up strategy is part of our contributions and is detailed
in Section 3.

2.2.2 Trace-based Linear Scan. The trace-based linear scan al-
gorithm is an adaption of the global approach by Wimmer and
Franz (2010) to the properties of a trace. The main difference is that
there is no nee to maintain a list of live ranges for each interval,
since there are no lifetime holes in trace intervals. A from and to
position is sufficient to describe an interval.

First, the algorithm creates the lifetime interval in a backward
pass over the instructions of the trace. Following the linear scan
principles, these intervals are then visited in order of their start
position. Note that due to spilling optimizations the actual loca-
tion of a variable is not yet known during this iteration (Wimmer
and Mössenböck, 2005). Therefore the algorithm performs another
pass over the instructions to replace the variables with the actual
locations. Eisl et al. (2016) showed that the trace-based linear scan
algorithm is capable of producing code that achieves peak perfor-
mance which is close to the on of the global linear scan approach.

2.2.3 Trivial Trace Allocator. The trivial trace allocator is a special-
purpose allocator for trivial traces which have a specific structure.
They consist of a single basic block which does only contain a jump
instruction. These blocks are introduced by splitting critical edges,
and are common. For the DaCapo benchmark suite about 40% of
the traces are trivial (Eisl et al., 2016). A trivial trace can be allocated
by mapping the variable location at the beginning of the trace to
the locations at the end of the trace.

3 BOTTOM-UP ALLOCATOR
The bottom-up allocator is a novel general-purpose allocation strat-
egy that aims at fast allocation times. It requires only a single
combined backward pass over the instructions to compute the live-
ness requirements, select a register if required, and replace variables
by the assigned location.

3.1 Tracking Liveness Information
The liveness information is never maintained for the whole trace but
is only known locally for the current instruction. This information
is tracked using two data structures. The register content map
stores the current content of every register. The entry for a register
points to a variable if the variable is currently stored in this register.
The entry can also point to the register itself, which indicates that
there is a fixed register constraint, e.g. due to calling convention
requirements. An entry in the register content map might be empty
in case the register is currently unused. The second data structure
is the variable location map. It tracks the current location of every
variable, which is either a register, a stack slot, or empty if the
variable is not live. We also track whether a register is used in the
current instruction. The memory requirement is therefore linear
in the number of registers and the number of variables. Only the
second map depends on the compilation unit while the first one is
fixed for a given architecture.

3.2 Register Allocation
Register allocation is done in a single backward pass over the in-
struction of a trace. If the last block of the trace has a successor that
has already been allocated, we use the allocation information to
initialize the variable location and register content maps, to reduce
data-flow mismatch.

3

LCTES 2017, June 2017, Barcelona, Spain Eisl et al.

boolean equals(int[] a, int[] b) {
/*B1*/ if (b.length != a.length)
/*B2*/ return false;
/*B3*/ int i = 0;
/*B4*/ while (i < a.length) {
/*B5*/ if (a[i] != b[i])
/*B6*/ return false;
/*B7*/ i++;

}
/*B8*/ return true;

}

(a) Java Source

B1

B2 B3

B4

B8 B5

B6 B7

(b) Control-flow Graph

T1 T2 T3 T4

B1

B2 B3

B4

B5

B6B7

B8

(c) After Trace-building

Figure 2: Trace-based Register Allocation

When visiting an instruction, we first process fixed register
usages to mark them as used in the register content map. Next, we
iterate the variable operands of the instruction. For variables that
are defined by the current instruction, we already have a location
since the algorithm iterates the instructions in reverse order. We
replace the variable with the corresponding location in the variable
location map. If the location happens to be a register, we mark it
as free by setting the entry in the register content map to empty.
For variables that are read by the current instruction, we query the
variable location map the current location. There are three cases to
cover.

• The variable might already be in a register. In this case we
only need to replace the occurrence of the variable in the
instruction with the register and are done.

• If the location of the variable is not yet defined, i.e., it
is the first usage of the variable, we need to find a free
register. To do so, we iterate the list of registers and look
up their register content entry. If we find a register that is
currently unused, i.e., its entry is empty, we can assign it
to the current variable.

• If the variable is currently stored on the stack, but the
instruction cannot directly use memory operands, we also
need to find a register. In addition to that, we insert amove
from the register to the stack slot where the variable is
currently stored.

If all registers are occupied, we need to spill a variable. If the
current operand can directly address memory, we assign it to a stack
slot. Otherwise we search the available registers for one that can
be spilled. We skip registers that are used in the current instruction
as well as those with a fixed register constraint. The variable that
was previously contained in the register is now stored in a stack
slot. We insert a move from the stack to the selected register after
the current instruction to fix the data flow.

Note that the bottom-up approach does not strictly require the
SSA-property and could deal with lifetime holes without modifica-
tion. In fact, it does so for fixed register constraints which do not
adhere to the SSA properties.

3.3 Example
Figure 3 depicts bottom-up allocation of a simple trace with two
blocks, B1 and B2. For readability, we omitted the details of the
instructions and only show the operandmodeuse ,de f andusestack .
To the right of the blocks we visualize the live intervals of the
variables. This information is never explicitly stored. Next to the
intervals, we describe the action that is performed when processing
the corresponding instruction. Actions are numbered from (0) to (9)
in chronological order. On the right-hand side of Figure 3, we
display the contents of the variable location and the register content
maps after the instruction has been processed.

The allocator starts with the outgoing values at line L6 at the
end of block B2. The successor has already been allocated so the
algorithm can match the incoming variable location livein(reд0) of
block B0 with the outgoing variable locations liveout (a) in B2. This
initializes the variable location entry of a to reд0 and the register
content of reд0 to a. In addition to that, a is replaced with reд0 in
the instruction at L6 (0). We continue with the instruction in line
L5. Variable b has no location assigned so we query the register
content map for the next free register which is reд1 (1). The next
instruction to be processed is the usage of c in line L4. All registers
are currently occupied so the allocator arbitrarily selects reд0 for
spilling (2). Since the location of a changes from a register to a
stack we insert a move from the stack slot sta to reд0 right after the
instruction that is currently processed (3) at line L4. We continue
at line L3 with the usage of variable a, which is currently stored in
stack slot sta . Since the instruction can directly address the stack,
the allocator simply replaces the variable with sta (4). Next we
process the instruction in line L2. Variable a is currently located
in stack slot sta , but the current usage requires a register. Since
all register are occupied, we need to select one for spilling. We
cannot use reд0 because it is the location of c , which is used in the
current instruction. Therefore, we choose reд1 and assign it to a (5).
As reд1 used to contain the value of variable b we need to insert
a move from stb to reд1 after line L2 (6). Variable a also changed
its location from sta to reд1. To adjust the data-flow the allocator
inserts a move form reд1 to the stack slot sta before the current
instruction on line L2 (7). The allocator advances to line L1 which
contains the definition of variable c . We mark the register reд0 as
free and clear the entry for c in the variable location map (8). The
last instruction on line L0 contains pseudo usages of variables a

4

Trace Register Allocation Policies LCTES 2017, June 2017, Barcelona, Spain

L0: l ivein(a, b)

L1: def {c }
L2−: sta ← r eд1

L2: use {a, c }

L2+: r eд1 ← stb

L3: usestack {a }

L4: use {c }

L4+: r eд0 ← sta

L5: use {b }

L6: l iveout (a)

Lx: l ivein(r eд0)
. . .

B1

B2

B0

a b c a b c reд0 reд1

reд0

reд1

stack

variable location register content

(0) assign a to r eд0 r eд0 — — a —

(1) assign b to r eд1 r eд0 r eд1 — a b

(2) assign c to r eд0 sta r eд1 reд0 c b

(3) insert r eд0 ← sta

(4) use a on stack, i.e., sta sta r eд1 reд0 c b

(5) assign a to r eд1 r eд1 stb reд0 c a

(6) insert r eд1 ← stb

(7) insert sta ← r eд1

(8) free r eд0 r eд1 stb — — a

(9) finished r eд1 stb — — a

Figure 3: Bottom-Up Allocation Example

and b. Operands of the instruction are replaced with the current
location of the variables.

4 TRACE REGISTER ALLOCATION POLICIES
Themain goal of this work is to exploit the advantage of trace-based
register allocation, namely that we can decide per trace, whether
to use the linear scan, the bottom-up, or the trivial trace strategy
for allocation. This is a major difference to other approaches that
are restricted to a per-method choice.

First, we identify properties of traces. Based on these proper-
ties, we describe 6 different decision methods to select either the
linear scan, the bottom-up, or the trivial allocator. We call these
conditions allocation policies. The list of properties and policies is
non-exhaustive. We will discuss alternatives in the Conclusion.

4.1 Properties
Our allocation policies are based on properties of basic blocks,
traces, the complete compilation unit, or a combination of them.

Block Properties. A trace consists of a sequence of basic blocks.
For every block b we know its relative execution frequency, which
we denote as f req(b). It is a real number estimating how often this
block is executed per invocation of the compilation unit. A value of
0.5means that the block is executed every second time the compiled
code is entered. For blocks inside of loops this value can be above
1. For example a block with a frequency of 10 is executed in a loop
with an estimated iteration count of 10. Note that these number are
relative to the invocation. Therefore, the frequency of the method
entry block is always 1. We cannot infer absolute execution counts
from these numbers. The block frequency is calculated from branch
profiles collected by the virtual machine in previous executions of
the compilation unit.

Another block metric is the loop nesting level, or loopDepth(b). It
indicates on which level of the loop tree a block is located. However,

this metric can be misleading since not all branches inside a loop
are equally likely. It should be used as a structural indicator only.

Trace Properties. The properties of the blocks of a trace can be
aggregated to define a property for the trace. For example, the
frequency of a trace can be defined as the maximum frequency of
its blocks.

Another important property of a trace is triviality, i.e., the fact
that a trace consists of a single block containing just a jump instruc-
tion. It determines whether we can use the trivial trace allocator or
not.

We also consider the trace building order, denoted by id(trace).
The trace building algorithm identifies important traces first (Eisl
et al., 2016). That means a trace with a lower number is in general
more performance critical than one with a higher number.

Compilation Unit Properties. For compilation units we can apply
the same aggregation techniques as for traces. We use compilation
unit properties to set trace properties into relation. For example,
the maximum block frequency of a trace vs. the maximum block
frequency of the whole compilation unit. We exploit structural
properties of a compilation unit to switch between different sub-
policies. For instance, if a method contains a loop we might want to
choose a different decision model than for methods without loops.

Aggregation of Properties. As outlined above, we aggregate the
block properties to calculate new metrics for traces of the compila-
tion unit. We consider different aggregation functions including
maximum, minimum, sum, average, or count.

4.2 Policies
Based on the identified properties, we developed a set of 6 allocation
policies. A policy is a decision function that selects an allocation
strategy for a given trace.

5

LCTES 2017, June 2017, Barcelona, Spain Eisl et al.

For trivial traces, we always use the trivial trace allocator. For
non-trivial traces, we therefore only need to decide whether to use
the trace-based linear scan or the bottom-up approach. We describe
this decision as a hotness condition. If the condition is true the trace
is considered important, i.e., we use the linear scan approach for
register allocation.

In the remainder of this section, trace refers to the trace for
which we want to choose a strategy. We use the termmethod to
describe the set of all blocks of the method (i.e., the compilation
unit).

TraceLSRA. This policy uses the linear scan strategy for all traces
that are not trivial. The configuration is equivalent to the one
evaluated by Eisl et al. (2016).

BottomUp. The BottomUp policy always uses the bottom-up
strategy for non-trivial traces. Due to implementation reasons there
is one exception to this rule, namely traces with edges to compiled
exception handlers. These edges require a slightly different handling.
It could be easily implemented in the bottom-up allocator, but it
would make the algorithm more complicated. Since exceptions in
Graal are usually handled via deoptimization, this case is uncom-
mon. To keep the implementation simple, we decided to ignore this
special case and fall back to the linear scan strategy if it occurs. The
entries for the BottomUp policy in Figure 5 show that the fraction
of linear scan compiled traces is indeed marginal.

MixedPol. This policy uses linear scan for a fixed fraction p of
the traces.

id(trace) ≤ |traces | × p
Since traces are processed in trace-building order (i.e., in the

order of their importance) a fraction of p = 0.5 means that the
first half of the traces created by the trace builder is allocated with
linear scan (or the trivial allocator).

LoopPol. The LoopPol condition uses the linear scan strategy
for all traces that contain at least one block that is in a loop.

HasLoop(trace) ∨ ¬HasLoop(method)

where HasLoop(blocks) is defined as:

∃ b ∈ blocks where (loopDepth(b) > 0)

The idea is that we consider loops to be performance critical, so
we want to find a good allocation for them.

In addition to that, linear scan is used if the current compilation
unit does not contain a loop at all. The rationale behind this is that
the virtual machine only compiles methods which either exceed a
certain invocation or loop-backedge threshold. If a method without
a loop is queued for compilation, the runtime did so due to the
invocation count only. This means it was called often enough to be
considered important.

FreqPol. This policy considers a trace important if the maximum
execution frequency of all blocks in the trace is greater than a
fractionp of themaximum frequency of all blocks in the compilation
unit.

max
b1∈trace

f req(b1) > max
b2∈method

f req(b2) × p

Only traces with high frequency blocks are allocated with the
linear scan strategy since these traces are most critical for perfor-
mance.

LoopFreqPol. This policy combines the LoopPol policy with
the FreqPol policy. Instead of using linear scan for all compilation
units without loops, we apply the FreqPol condition.

HasLoop(trace) ∨
(
¬HasLoop(method) ∧ FreqPol(trace)

)
The resulting policy can decrease compile time compared to

the LoopPol policy since less traces are allocated with linear scan.
Nevertheless, loop traces are still prioritized.

BudgetPol. The BudgetPol policy is a budget-based approach.
The idea is to allocate traces with the linear scan strategy in trace-
building order until we run out of budget.

©«
∑

t∈traces
id(t)<id(trace)

∑
b ∈t

f req(b)
ª®®¬ <

(∑
b ∈method

f req(b)

)
× p

The cost function is the sum of the block frequencies of a trace.
The budget is a fraction of the sum of the frequencies of all blocks
in the compilation unit.

5 EVALUATION
In this evaluation we present experimental results to substantiate
our claim that selective register allocation based on traces is an
appropriate approach for controlling the compile time vs. peak
performance trade-off on a fine-grained level.

We use the implementation of the trace-based linear scan strat-
egy in Graal by Eisl et al. (2016). We added the bottom-up allocation
strategy, the policy selection logic, and the policies described in the
previous section.

The source code of our implementation is available on Github.4
Our experiments were performed using revision 7d0e15f0e169.

5.1 GraalVM configuration
The default configuration of the Graal compiler is tuned for peak
performance. The majority of the compile time is spent in the
frontend on code optimizations. While some optimizations increase
register pressure (e.g., partial escape analysis; Stadler, Würthinger,
et al., 2014), Graal in general aims to simplify the code as much
as possible. Since we want to study the compile-time behavior of
the backend, more precisely of the register allocator, aggressive
optimizations in the frontend are not helping. They can even distort
the result since theymight reduce the pressure on register allocation.
We therefore focus on the economy configuration of Graal5 which
aims at fast compilation time instead of peak performance. In
this configuration, most optimization phases are disabled. For
completeness we also show the results for the default configuration.
However, we will not discuss these results in detail but give a
general comparison between the behavior of the two configurations
at the end of the section.

4https://github.com/zapster/graal-core/tree/tracera-policy-experiments
5To enable the economy configuration start the GraalVM with the following system
property: -Dgraal.CompilerConfiguration=economy

6

https://github.com/zapster/graal-core/tree/tracera-policy-experiments

Trace Register Allocation Policies LCTES 2017, June 2017, Barcelona, Spain

Graal (economy) Graal (default)

run
tim

e
(low

er
is
bett

er)

Peak
Perform

ance

total(low
er

is
bett

er)

R
egister

A
llocation

Tim
e

GlobalLSRA
TraceLSRA

MixedPol
LoopPol

LoopFreqPol
FreqPol

BudgetPol
BottomUp

GlobalLSRA
TraceLSRA

MixedPol
LoopPol

LoopFreqPol
FreqPol

BudgetPol
BottomUp

95%

100%

105%

110%

115%

120%

125%

130%

135%

40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%
160%
170%

Va
lu
es

re
la
ti
ve

to
G
lo
ba
lL
SR

A
m
ea
n

Figure 4: Peak Performance and Register Allocation Time
econom

y
default

0% 20% 40% 60% 80% 100%

TraceLSRA
MixedPol
LoopPol

LoopFreqPol
FreqPol

BudgetPol
BottomUp

TraceLSRA
MixedPol
LoopPol

LoopFreqPol
FreqPol

BudgetPol
BottomUp

Trivial Strategy Linear Scan Strategy Bottom-Up Strategy

Figure 5: Distribution of the Allocation Strategy per Policy

5.2 Benchmark Suites
We evaluated our results using the DaCapo 9.12 (Blackburn et al.,
2006) as well as the Scala-DaCapo (Sewe et al., 2011) benchmark
suites. We excluded the eclipse, tomcat, tradebeans, and trades-
oap benchmarks from DaCapo due to Java 8 compatibility issues.
Together with Scala-DaCapo we have 22 different benchmarks in
total. The DaCapo-style benchmarks are iteration-based, mean-
ing that they run the same workload for a predefined number of
times in order warm up the virtual machine. We chose this number
high enough to make sure that all important methods are compiled
Since the work performed in one iteration varies considerably from
benchmark to benchmark the iteration numbers range from 8 to
180. The run time of the last iteration is the performance result of
the benchmark.

5.3 Hardware Environment
We performed the experiments on a cluster of 64 identical Sun
Server X3-2,6 equipped with two Intel ”Sandy Bridge” Xeon E5-
2660 @ 2.20GHz with 8 cores per processor, and 256GB of DDR3-
1600 memory. The machines were running an Oracle Linux Server
2.6 operating system with Linux Kernel version 2.6.32. For the
experiments we disabled all frequency scaling modes (e.g. scaling
governors or Intel Turbo Boost).

For every experiment we randomly selected a node from the
cluster to execute a benchmark suite (DaCapo or Scala-DaCapo)
with a single configuration. For each benchmark we started a new
Java VMwith an initial and maximum heap size of 8GB. To improve
the precision of the results we fixed the CPU and the memory of
the process to a single NUMA node using the hwloc-bind utility.7

To minimize the effect of disk I/O we executed the benchmarks
on a 10GB ram disk. For some benchmarks, for instance lusearch,
luindex, h2, or batik, this is necessary to get stable results.

5.4 Evaluation Metrics
We repeated every experiment 30 times to compensate for variation
factors we cannot control, such as low-level hardware differences
or non-determinism of the virtual machine. For every metric we cal-
culated the mean for each benchmark and every configuration. We
present these means as box plots (Tukey, 1977) to give an unbiased
impression of the distribution of results.

Peak Performance. The reported performance result for theDaCapo-
style benchmarks is the time required for the last iteration. Ideally,
in this iteration the VM does no perform any compilation. In reality,

6Sun Server X3-2: http://docs.oracle.com/cd/E22368_01/
7hwloc-bind(1) - Linux man page: https://linux.die.net/man/1/hwloc-bind

7

http://docs.oracle.com/cd/E22368_01/
https://linux.die.net/man/1/hwloc-bind

LCTES 2017, June 2017, Barcelona, Spain Eisl et al.

however, we cannot omit compilations completely due to the behav-
ior of the harness and the benchmark code. The peak performance
is shown in the top half of Figure 4.

Compile Time. Defining a meaningful compile time metric is
inherently more difficult for a dynamic compilation system than
for a static compiler. On the one hand, the compilation and the
execution of every benchmark are intermingled. Compile time is
an integral part of the run time. On the other hand, experiments
are harder to reproduce, since the executed machine code can be
different for every run after recompilation and depends on non-
deterministic factors such as timing.

The meta-circular aspect of the GraalVM adds another layer
of challenges to the problem. Since the compiler itself is sub-
ject to compilation, changes in the compiler influence not only
the generated machine code, but also the compile time it takes to
translate the compiler itself. To minimize this effect, Graal avoids
self-compilation, i.e. methods in the Java packages jdk.vm.ci and
org.graalvm.compiler are only compiled by the HotSpot client
compiler.

The total compile time results for all Graal compilations are
depicted at the bottom of Figure 4.

5.5 Analysis of the Results
The baseline for all our experiments is the trace-based linear scan
configuration, denoted by TraceLSRA. To visualize all benchmarks
on the same scale, we show the numbers relative to the mean of
the baseline of a given benchmark. Regarding compile time, we
are interested in the time spent for register allocation. In case of
the trace-based register allocator we include trace-building, global
liveness analysis as well as the actual allocation algorithm including
the allocation strategy selection.

Figure 4 shows the total register allocation time relative to trace-
based linear scan. We include all compilations of the benchmark
run, including warm-up iterations, since they all contribute to the
peak-performance result in the last iteration.

GlobalLSRA. For comparison, we also show the global linear
scan results. It completes about 5% faster than the TraceLSRA
policy. TraceLSRA’s overhead is mostly due to extra compiler
phases required for trace register allocation, i.e. the global liveness
analysis and trace building. Figure 4 shows an allocation time
outlier in favor of the trace-based policies. This is the result for the
jython benchmark from the DaCapo suite where the global linear
scan implementation exhibits a non-linear behavior.

TraceLSRA. The TraceLSRA configuration performs best with
respect to peak performance. Figure 4 shows that on average the
benchmark take about 3%more time to execute than with the global
linear scan register allocator. The reason for this slowdown are
disadvantages of the trace-based approach, especially with respect
to spilling in hot loops, which were detailed previously by Eisl
et al. (2016).

The TraceLSRA policy marks the upper bound in terms of regis-
ter allocation time and in terms of performance for all policies.

BottomUp. The BottomUp policy, on the other hand, is the
lower bound with respect to allocation time. It requires only about

43% of the time compared to TraceLSRA. In terms of peak per-
formance, this policy is the slowest with an average performance
decrease of about 9%. For the sunflow benchmark from the DaCapo
suite, however, the performance penalty is 28%.

MixedPol. In our experiment we used theMixedPol policy with
a parameter p = 0.5. From the peak-performance perspective this
configuration is almost on the same level as the TraceLSRA ap-
proach. Register allocation time went down by about 3% compared
to TraceLSRA. This improvement is due to the reduced number of
linear scan allocations, which is depicted in Figure 5.

LoopPol. The LoopPol configuration is a sightly slower than
the MixedPol when it comes to peak performance. The register
allocation time is on same level although it seems to vary more.
Figure 5 shows that when using the LoopPol policy more traces are
compiled with linear scan than with the MixedPol configuration.

FreqPol. For the FreqPol we also used a factor of p = 0.5.
Compared to the trace-based linear scan algorithm it is 2% slower
on peak performance on average. Again, sunflow exhibits a worst-
than-average behavior with a performance decrease of 16%. Allo-
cation time, on the other hand, is 16% better than TraceLSRA.

LoopFreqPol. The LoopFreqPol policy (p = 0.5) combines the
advantages of LoopPol, i.e. good and stable peak performance,
with the fast allocation time of the FreqPol policy. With respect
to peak performance it is almost on the same level as the LoopPol
configuration while compile time is more than 8% better on average.
Figure 5 shows that significantly less traces are allocated with
linear scan. In addition, the peak-performance outlier caused by
sunflow, seen in the FreqPol configuration, is no longer present.
This indicates that the benchmark is very sensitive to the register
allocation in loops. A behavior that has also been observed by Eisl
et al. (2016).

BudgetPol. The budget-based BudgetPol policy, with parame-
ter p = 0.5, uses linear scan only for a small fraction of the traces,
as depicted in Figure 5. Noteworthy is its peak-performance behav-
ior for sunflow. Although FreqPol is superior in the average case,
BudgetPol performs better on this benchmark. On average the
BudgetPol policy is about 2% faster regarding peak performance
than the BottomUp configuration. The allocation time is about
37% better than the TraceLSRA policy.

5.6 Graal Economy vs. Default
One evident difference between the economy and the default con-
figuration of Graal is the relative number of trivial traces, which
is depicted in Figure 5. While in the economy configuration only
about 10% of the traces are trivial, it is almost 40% for the default
configuration. The higher number indicates that the control-flow is
more complicated. The entries for the LoopPol policy in Figure 5
also show that less of the non-trivial traces contain loop blocks.
This results in a compile-time gap between the TraceLSRA and
LoopPol policy that is almost 10% bigger in the default configu-
ration. This suggests that the default configuration offers more
opportunities for saving compile time. From the peak-performance
perspective both configurations behave similar.

8

Trace Register Allocation Policies LCTES 2017, June 2017, Barcelona, Spain

6 RELATEDWORK
The trade-off between time spent for executing application code
and time spent in the runtime is an important design parameter for
a virtual machine.

6.1 Dynamic and Adaptive Compilation
Modern high-level language virtual machines use dynamic compi-
lation to produce efficient native machine code. However, for such
systems, the time constraints for the compiler are very strict. For
instance, the CACAOVM (Krall, 1998), performs optimizations only
on a local scope. Later systems such as the JalapeñoVM (Arnold
et al., 2000) or the HotSpot VM (Paleczny et al., 2001), introduce
adaptive compilation to focus compilation on relevant parts of an
application. They use multiple optimization stages that are invoked
for performance critical parts only. Methods are usually selected for
optimization based on profiling information, for instance invoca-
tion and loop counters, or stack sampling. Although, these systems
can select thresholds to control the compile time, they can do so
only on a per-method basis. Our approach is orthogonal to that.
For a compilation that is considered hot by the virtual machine,
we can make a fine-grained compile time vs. peak performance
decision.

6.2 Trace Compilation
Instead of focussing on methods as the unit of operation, trace
compilation systems, such as Dynamo by Bala et al. (2000) or Hot-
PathVM by Gal et al. (2006), take a different route. They trace the
execution of the program, potentially across method boundaries,
an then select such a recorded trace for compilation. This way they
only compile the parts of a program that are performance critical,
which narrows the scope of the compilation unit and therefore
improves compile time. However, we are not aware of any trace
compilation system that chooses different algorithms based on the
structure of a trace to further improve compile time.

6.3 Register Allocation
The design decisions taken for a compiler depend heavily on its ap-
plication domain and intended usage. This is especially relevant for
register allocation since it is typically mandatory. Compilers used
for static compilation are less restricted in terms of compile time
than a dynamic compiler in a virtual machine, where compilation
time adds to the overall program execution time. The major design
decision of a register allocator in this context is whether it should
work on a global scope, on a local one, or a middle ground like the
trace-based approach. We showed in this paper that a trace-based
approach enables fine-grained control over how and where to spent
time on register allocation.

A global approach such as graph coloring (Chaitin et al., 1981;
Briggs et al., 1989; George and Appel, 1996) does not provide this
flexibility. Optimizations focus here on the heuristics to improve
code quality. For just-in-time compilation these approaches are
often too costly.

To meet the compile-time requirements for the dynamic code
generation system tcc (Poletto, Engler, et al., 1997), Poletto and
Sarkar (1999) introduced linear scan as a simple and fast method
for global register allocation. They achieved peak performance

that was within 10% of a graph coloring approach. Wimmer and
Mössenböck (2005) improved code quality achieved with linear scan
by making it more precise and moving spill code out of loops. How-
ever, this makes the algorithm computationally more expensive. By
exploiting SSA properties, Wimmer and Franz (2010) where able
to decrease allocation time with virtually no peak-performance
regression. However, the overall approach did not change with
respect to its granularity. A single algorithm is applied to all code
independent of whether it is performance critical or not.

Related to our proposed bottom-up allocator is the work by Yang
et al. (1999). They describe LaTTe, a compile-only Java VM that
focusses on compilation speed, including a fast, non-local register
allocation. Register allocation is performed on tree regions, that is a
tree of basic blocks with a single entry and potentially multiple exits.
The allocator does a backward pass to collect register preferences
based on the requirements at the exits of the allocation region.
After collecting the preferences a forwards pass performs the actual
register allocation. Their handling of spilled variables is similar
to the approach used by our bottom-up allocator. However, we
perform allocation on traces instead of trees, and require only a
single backward pass.

Our work builds on top of the trace-based register allocator
of Eisl et al. (2016), as detailed in Section 2. The idea of using traces
as unit of operation was introduced by Fisher (1981) for instruction
scheduling for Very Long Instruction Word (VLIW) architectures
to exploit Instruction Level Parallelism (IPL). Freudenberger et
al. (1994) studied the connection of instruction selection and register
allocation on traces. However, to the best of our knowledge, none
of these approaches applied different allocation algorithms within a
compilation unit and provide the flexibility of our framework. Also,
since their system was designed for static compilation, compile
time was not a priority.

7 CONCLUSION
The trace-based register allocation approach offers the flexibility
to switch between allocation algorithms within one compilation
unit. This gives us fine-grained control over the trade-off between
compile time vs. peak performance, which is not supported in other
register allocation approaches.

Our framework can choose between three different register allo-
cation strategies: a linear-scan-based algorithm, a novel bottom-up
allocator and a specialized approach for trivial traces. The bottom-
up allocator is 43% faster then the trace-based linear scan imple-
mentation at a performance degradation of only 9% on average.

We implemented and evaluated 6 different policies for deciding
which register allocator is to be used for a specific trace. The Bud-
getPol policy, for instance, improves register allocation time by
37% on average compared to the trace-based linear scan approach
with an average peak-performance slowdown of only 7% but a bet-
ter worst-case behavior than the bottom-up-only approach. On the
other hand, the LoopFreqPol policy decreases allocation time by
about 13% with a performance degradation of only 1% compared
to TraceLSRA. Most policies can be parameterized, which allows
adjusting the trade-off between compile time and peak performance
on a fine-grained level.

9

LCTES 2017, June 2017, Barcelona, Spain Eisl et al.

This paper evaluates 6 allocation policies to show the flexibility
of our approach. Future work could investigate other policies that
might have better performance trade-offs. One specific aspect is that
most of our policies can be parameterized. While we experimented
with different setting we did not evaluate the tuning potential
exhaustively. Furthermore, combining existing policies can result
in new useful configurations, as suggested by our evaluation of the
LoopFreqPol policy. Since the search space for policies is large, we
believe that utilizing auto-tuning tools, such as OpenTuner (Ansel
et al., 2014), is an idea that is worth investigating.

It should also be further explored, on which properties policies
should be based. We focused on trace properties that are exposed in
our experimentation platform or are simple to compute. For exam-
ple, while we have direct access to (bytecode) branch probabilities,
we do not have access to the global execution count of a method.
Therefore, evaluating such metrics is left for future work. It could
also be explored whether considering the specific instructions in a
trace can be exploited to select an allocation policy.

The trace-based approach in general, and our policy model in par-
ticular, is not restricted to the problem of register allocation. Other
optimizations, such as instruction scheduling or instruction selec-
tion could apply the same idea to benefit from a fine-grained control
over the compile-time vs. quality-of-result balance. Furthermore,
the proposed policies are not specific to register allocation but can
be applied to other problems in compiler design and optimization.

ACKNOWLEDGMENTS
We thank the Graal community, the Virtual Machine Research
Group at Oracle Labs and the Institute for System Software at the
Johannes Kepler University Linz for their support and feedback
on this work. Josef Eisl is funded by a research grant from Oracle
Labs. Stefan Marr is funded by a grant of the Austrian Science Fund
(FWF), project number I2491-N31.

REFERENCES
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (2006). Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc. url: http://dragonbook.stanford.edu/.

Ansel, Jason, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey
Bosboom, Una-May O’Reilly, and Saman Amarasinghe (2014). “OpenTuner: An
Extensible Framework for ProgramAutotuning”. In: PACT ’14. doi: 10.1145/2628071.
2628092.

Arnold, Matthew, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney
(2000). “Adaptive Optimization in the Jalapeño JVM”. In: SIGPLAN Not. doi: 10.
1145/1988042.1988048.

Bala, Vasanth, Evelyn Duesterwald, and Sanjeev Banerjia (2000). “Dynamo: A Transpar-
ent Dynamic Optimization System”. In: SIGPLAN Not. doi: 10.1145/358438.349303.

Blackburn, S. M. et al. (2006). “The DaCapo Benchmarks: Java Benchmarking Develop-
ment and Analysis”. In: OOPSLA’06. ACM Press. doi: 10.1145/1167473.1167488.

Bouchez, Florent, Alain Darte, and Fabrice Rastello (2007). “On the Complexity of
Register Coalescing”. In: CGO’07. doi: 10.1109/cgo.2007.26.

Briggs, P., K. D. Cooper, K. Kennedy, and L. Torczon (1989). “Coloring Heuristics for
Register Allocation”. In: SIGPLAN Not. doi: 10.1145/74818.74843.

Chaitin, Gregory J, Marc AAuslander, Ashok KChandra, JohnCocke,Martin EHopkins,
and Peter W Markstein (1981). “Register Allocation via Coloring”. In: Computer
languages. doi: 10.1016/0096-0551(81)90048-5.

Cytron, Ron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck (1991). “Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph”. In: ACM Trans. Program. Lang. Syst. doi: 10.1145/
115372.115320.

Duboscq, Gilles, Thomas Würthinger, and Hanspeter Mössenböck (2014). “Speculation
without regret”. In: PPPJ’14. doi: 10.1145/2647508.2647521.

Duboscq, Gilles, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon,
andHanspeterMössenböck (2013). “An Intermediate Representation for Speculative
Optimizations in a Dynamic Compiler”. In: VMIL’13. doi: 10.1145/2542142.2542143.

Eisl, Josef, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter
Mössenböck (2016). “Trace-based Register Allocation in a JIT Compiler”. In: PPPJ
’16. ACM. doi: 10.1145/2972206.2972211.

Ellis, John R. (1985). “Bulldog: A Compiler for VLIW Architectures”. PhD thesis. Yale
University.

Farach, Martin and Vincenzo Liberatore (1998). “On Local Register Allocation”. In:
SODA’98. Society for Industrial and Applied Mathematics. doi: 10.1006/jagm.2000.
1095.

Fisher, Joseph Allen (1981). “Trace Scheduling: A Technique for Global Microcode
Compaction”. In: Computers, IEEE Transactions on Computers. doi: 10.1109/TC.1981.
1675827.

Freudenberger, Stefan M., Thomas R. Gross, and P. Geoffrey Lowney (1994). “Avoidance
and Suppression of Compensation Code in a Trace Scheduling Compiler”. In: ACM
Transactions on Programming Languages and systems.

Gal, Andreas, ChristianW. Probst, and Michael Franz (2006). “HotpathVM: An Effective
JIT Compiler for Resource-constrained Devices”. In: VEE’06. ACM. doi: 10.1145/
1134760.1134780.

George, Lal and Andrew W. Appel (1996). “Iterated register coalescing”. In: TOPLAS’96.
doi: 10.1145/229542.229546.

Kotzmann, Thomas, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez,
Kenneth Russell, and David Cox (2008). “Design of the Java HotSpot™client com-
piler for Java 6”. In: TACO’08. doi: 10.1145/1369396.1370017.

Krall, Andreas (1998). “Efficient JavaVM Just-in-Time Compilation”. In: PACT’98. IEEE
Computer Society. doi: 10.1109/PACT.1998.727250.

Lowney, P. Geoffrey, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein,
Robert P. Nix, John S. O’donnell, and John C. Ruttenberg (1993). “The Multi-
flow Trace Scheduling Compiler”. In: Journal of Supercomputing. doi: 10.1007/
BF01205182.

Paleczny, Michael, Christopher Vick, and Cliff Click (2001). “The Java HotSpot™ Server
Compiler”. In: JVM’01. USENIX Association. url: https://www.usenix.org/legacy/
events/jvm01/full_papers/paleczny/paleczny.pdf.

Poletto, Massimiliano, Dawson R. Engler, and M. Frans Kaashoek (1997). “tcc: A System
for Fast, Flexible, and High-level Dynamic Code Generation”. In: SIGPLAN Not. doi:
10.1145/258916.258926.

Poletto, Massimiliano and Vivek Sarkar (1999). “Linear Scan Register Allocation”. In:
TOPLAS’99. doi: 10.1145/330249.330250.

Sewe, Andreas, Mira Mezini, Aibek Sarimbekov, and Walter Binder (2011). “Da capo
con scala”. In: OOPSLA’11. doi: 10.1145/2048066.2048118.

Simon, Doug, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler, and
Thomas Würthinger (2015). “Snippets: Taking the High Road to a Low Level”. In:
TACO’15. doi: 10.1145/2764907.

Stadler, Lukas, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and Doug
Simon (2013). “An Experimental Study of the Influence of Dynamic Compiler
Optimizations on Scala Performance”. In: SCALA’13. ACM. doi: 10.1145/2489837.
2489846.

Stadler, Lukas, Thomas Würthinger, and Hanspeter Mössenböck (2014). “Partial Escape
Analysis and Scalar Replacement for Java”. In: CGO ’14. ACM. doi: 10.1145/2544137.
2544157.

Traub, Omri, Glenn Holloway, and Michael D. Smith (1998). “Quality and Speed in
Linear-scan Register Allocation”. In: SIGPLAN Not. doi: 10.1145/277652.277714.

Tukey, John W. (1977). Exploratory data analysis. Reading, Mass.
Wimmer, Christian and Michael Franz (2010). “Linear Scan Register Allocation on SSA

Form”. In: CGO’10. ACM. doi: 10.1145/1772954.1772979.
Wimmer, Christian and Hanspeter Mössenböck (2005). “Optimized Interval Splitting in

a Linear Scan Register Allocator”. In: VEE’05. ACM. doi: 10.1145/1064979.1064998.
Yang, Byung-Sun, Soo-Mook Moon, Seongbae Park, Junpyo Lee, SeungIl Lee, Jinpyo

Park, Y.C. Chung, Suhyun Kim, K. Ebcioglu, and E. Altman (1999). “LaTTe: a Java
VM just-in-time compiler with fast and efficient register allocation”. In: PACT’99.
doi: 10.1109/pact.1999.807503.

10

http://dragonbook.stanford.edu/
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/1988042.1988048
https://doi.org/10.1145/1988042.1988048
https://doi.org/10.1145/358438.349303
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1109/cgo.2007.26
https://doi.org/10.1145/74818.74843
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1006/jagm.2000.1095
https://doi.org/10.1006/jagm.2000.1095
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/229542.229546
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1109/PACT.1998.727250
https://doi.org/10.1007/BF01205182
https://doi.org/10.1007/BF01205182
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
https://doi.org/10.1145/258916.258926
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/277652.277714
https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1145/1064979.1064998
https://doi.org/10.1109/pact.1999.807503

	Abstract
	1 Introduction
	2 Background
	2.1 GraalVM
	2.2 Trace-based Register Allocation

	3 Bottom-Up Allocator
	3.1 Tracking Liveness Information
	3.2 Register Allocation
	3.3 Example

	4 Trace Register Allocation Policies
	4.1 Properties
	4.2 Policies

	5 Evaluation
	5.1 GraalVM configuration
	5.2 Benchmark Suites
	5.3 Hardware Environment
	5.4 Evaluation Metrics
	5.5 Analysis of the Results
	5.6 Graal Economy vs. Default

	6 Related Work
	6.1 Dynamic and Adaptive Compilation
	6.2 Trace Compilation
	6.3 Register Allocation

	7 Conclusion
	Acknowledgments

