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Abstract
Domain-specific language compilers need to close the gap
between the domain abstractions of the language and the low-
level concepts of the target platform. This can be challenging
to achieve for compilers targeting multiple platforms with
potentially very different computing paradigms. In this paper,
we present a multi-target, multi-paradigm DSL compiler for
algorithmic graph processing. Our approach centers around
an intermediate representation and reusable, composable
transformations to be shared between the different compiler
targets. These transformations embrace abstractions that
align closely with the concepts of a particular target platform,
and disallow abstractions that are semantically more distant.
We report on our experience implementing the compiler
and highlight some of the challenges and requirements for
applying language workbenches in industrial use cases.

CCS Concepts: • Software and its engineering → Do-
main specific languages.

Keywords: domain-specific languages, multi-paradigm com-
pilers, intermediate representation
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1 Introduction
Domain-specific languages (DSLs) provide high-level abstrac-
tions that are closely aligned with the domain for which the
language is built [40]. DSL compilers bridge the gap between
these abstractions and the low-level concepts of the target
platform. This becomes more challenging for compilers tar-
geting multiple platforms with significantly different charac-
teristics. We face this challenge in our work on a compiler for
PGX Algorithm, a DSL for algorithmic graph processing [25].
At its core, PGX Algorithm provides several abstractions for
concurrent iterations over vertices and edges of a graph. The
compiler is available as an option in several industrial prod-
ucts and an active research project. It currently targets four
different platforms:

• a Java-based graph-processing runtime, where the
graph is loaded into the memory of a single machine,

• a distributed graph-processing runtime implemented
in C++, where the graph is distributed over multiple
machines,

• a relational database, where the graph is stored in
database tables and can be processed in PL/SQL, and

• an experimental graph algorithm engine targeted at
in-memory columnar databases with transactional se-
mantics.

These target platforms do not only differ in their program-
ming languages, but also in their underlying paradigms for
supporting concurrent iteration. The single-machine run-
time relies on a parallel runtime system for multi-socket
single-machines [10]. The distributed runtime relies on a
distributed iteration abstraction that offers message sending
and receiving capabilities [12]. In the relational database, SQL
queries iterate concurrently over table rows [34], while the
in-memory engine canmake use of low-level multi-threading
mechanisms of the database.

Despite these differences, we see common patterns in the
compiler backends and in the generated code. For example,
the compiler generates top-level structures for each con-
current iteration occurring in a graph algorithm. While the
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details of these structures depend heavily on the target plat-
form, they share a common skeleton. The compiler backends
use similar transformations to collect concurrent iterations
from the graph algorithm and to create the corresponding
top-level structures. Furthermore, the compiler uses common
transformations such as procedure extraction and subexpres-
sion extraction for all target platforms. Common optimiza-
tions such as dead code elimination can generally be applied
in an early compilation stage, regardless of the backend in
question. Other optimizations such as loop fusion can benefit
some, but not all, target platforms.
In this paper, we present a multi-target, multi-paradigm

architecture for our compiler. This architecture embraces
similarities in the transformations and the optimizations re-
quired for different target platforms. It supports a modular
compiler implementation, allowing us to reuse transforma-
tions and optimizations, and to compose them as needed.
This modularity also makes it possible to add support for
additional target platforms without breaking or changing
the implementation for already supported target platforms.

Our approach centers around an intermediate representa-
tion (IR) at the level of which we implement reusable, com-
posable transformations to be shared between the different
compiler targets. These transformations ensure certain forms
of code designed to embrace abstractions that align with the
concepts of a particular target platform, and disallow abstrac-
tions that are semantically distant. They are then composed
into a multi-stage transformation, breaking down the seman-
tic gap towards the target platforms into several smaller gaps
bridged by these transformation [40].

Our contributions for this paper are:
• an IR for algorithmic graph processing (Section 2),
• a set of reusable, composable transformations over this
IR (Section 3),

• an experience report on implementing the PGX Al-
gorithm compiler with Spoofax [15], where we high-
light some of the the challenges and requirements that
language workbenches need to meet in order to be
suitable for industrial use (Section 4).

We conclude the paper with a discussion of related and future
work in Sections 5 and 6.

2 An Intermediate Representation for
Algorithmic Graph Processing

At the core of our compiler, we introduce an IR for algorith-
mic graph processing.

The design of this IR was informed by our previous work
on a compiler for Green-Marl, a DSL for algorithmic graph
processing [11]. This compiler initially targeted only the
Java-based graph processing runtime. We implemented the
compiler with multi-stage transformations to bridge the gap
between the DSL and this target platform. At several stages,
the compiler enhanced the representation of an algorithm

Figure 1. Components of the PGX Algorithm Compiler.

with additional information, which could then be used in
subsequent transformations. This fixed the order of transfor-
mations to some degree, since each transformation worked
only on a particular representation. While we were able to
re-order transformations that were applied on the same rep-
resentation, it was harder to re-order transformations that
were applied on different representations. This turned out
to be problematic when we extended the compiler to tar-
get the distributed graph processing runtime in C++, which
presents a different computing paradigm for concurrent iter-
ation. We could not simply reuse existing transformations,
since we needed to apply them in a different order, requiring
a different representation than the one handled by the trans-
formation. We also needed new representations that would
explicitly capture details of the distributed target platform.
We ended up with a non-modular implementation, where
similar transformations were implemented multiple times
over different representations and where changes in trans-
formations tend to influence the compilation for both target
platforms.

Based on this experience, we now support a modular com-
piler architecture, which separates frontend components,
intermediate representation, and backend components for
various target platforms, as depicted in Figure 1. The IR
presented in this section is at the center of this architec-
ture. Transformations over this IR are shared across different
backend components without breaking existing implementa-
tions. As a consequence, backend components are mutually
independent and changes in one backend do not affect other
components.
We introduce the IR with a small example algorithm, be-

fore we introduce its syntax in detail in the remainder of
the section. We mainly care about the abstract syntax of the
IR, but provide example programs in concrete syntax for
readability.

Figure 2 shows a simplified version of the infamous Page-
Rank algorithm [26]. The algorithm takes a graph as an input
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1procedure void pagerank(in graph G,

2 out property<vertex(G), double> rank

3) {

4 long N;

5 double diff;

6 property<vertex(G), double> newRank;

7 double x;

8 N = numVertices(G);

9 setProperty(G, rank, 1d/(double) N);

10 x = 0.15d/(double) N;

11 do {

12 diff = 0.0d;

13 foreach(v: V(G)) (true) {

14 double inSum =

15 sum(w -[e]-> _: E(G, v)) (true) {

16 let
17 double rankVal = w.rank;

18 long degree = outDegree(G, w);

19 in
20 rank/(double) degree

21 };

22 double newRankVal = x+0.85d*inSum;

23 double rankVal = v.rank;

24 diff += |newRankVal-rankVal|;

25 v.newRank = newRankVal;

26 }

27 copyProperty(G, rank, newRank);

28 } while (diff>0.001d);

29}

Figure 2. PageRank algorithm expressed in IR.

parameter and calculates the rank of each vertex in an output
parameter (line 2). Similar to Green-Marl, the IR adopts the
property graph model, in which vertices and edges can be
associated with arbitrary properties as key-value pairs. The
algorithm relies on a vertex property to store the rank of each
vertex. After initializing the rank property to the inverse of
the number of vertices in the graph (lines 8, 9), the algorithm
performs a fixpoint iteration until the aggregated error be-
tween new and old rank values hits a threshold (lines 11-28).
In each iteration, the algorithm iterates over the vertices of
the graph (lines 13-26), aggregates a sum over the incoming
neighbors of each vertex (lines 14-21), calculates the new
rank value for each vertex (line 22), and aggregates the dif-
ference between old and new rank values (line 24). Finally,
new values are copied into the rank property (line 27).

Imperative Core Constructs. At its core, the IR resem-
bles procedural, imperative, general-purpose programming
languages. Figure 3 provides a syntax definition for the im-
perative core of the IR. In our metasyntax notation, we print
sorts in italics and reserved words in bold. Sorts are defined
with the symbol =. Alternative definitions are separated by
the choice operator |. The ∗ operator indicates zero or more
repetitions.

(1) p = td td∗

(2) td = procedure rt id ( pd∗ ) b
(3) pd = pt id
(4) pt = a t
(5) a = in | out | in − out
(6) t = int | long | float | double | number

| bool | string
(7) rt = void | t
(8) ft = pt∗ → rt
(9) b = { vd∗ s∗ r }

vd = t id ;
(10) s = if ( e ) b else b

| while ( e ) b | do b while ( e ) ;
| lr = e ;

(11) | lr = tr ( e∗ ) ; | tr ( e∗ ) ;
r = return e ; | return; | 𝜀

(12) e = n | s
(13) | e + e | e − e | e ∗ e | e / e | e % e | − e | | e |
(14) | ( t ) e
(15) | e < e | e ≤ e | e > e | e ≥ e | e = e | e ≠ e
(16) | true | false | e ∧ e | e ∨ e | ¬ e
(17) | lr
(18) lr = [ a param t ] id | [ local t ] id | id
(19) tr = [ procedure ft ] id | [ builtin ft ] id | id

id names
n numeric literals
s string literals

Figure 3. Syntax of imperative core constructs of the IR.

A program p consists of a main procedure and additional
local procedures, which are declared at the top-level (1).
There is no syntactic distinction between main and local
procedures: the first top-level declaration is considered to be
the main procedure and any following top-level declarations
are considered local procedures. A top-level declaration td
specifies the return type, the name, the parameters, and a
block of statements of a procedure (2). Each parameter dec-
laration pd includes explicit access information, the type of
the parameter, and its name (3, 4). We distinguish in param-
eters (read-only), out parameters (write-only), and in − out
parameters (5).

The IR provides primitive types for numbers (6), booleans,
and strings. For procedures without a return value, void can
be used as a return type (7). We rely on function types (8)
to represent the types of top-level declarations in semantic
analysis and in annotated references to top-level declara-
tions (19).

The syntax for statements aims to minimize syntactic vari-
ants, reducing the number of cases transformations have
to cover. Variables have to be declared at the start of a
block, while return statements can only occur at the end
of a block (9). Blocks are required as child nodes in control-
flow statements (10).
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Expressions include numeric and string literals (12), nu-
meric expressions (13), explicit casts (14), comparisons (15),
boolean expressions (16), and references to local parameters
and variables (17). We disallow procedure calls in expres-
sions, as they might have output parameters, which compli-
cates compilation. Instead, we provide dedicated statements
for procedure calls (11).
References to parameters, local variables, and top-level

declarations can be optionally annotated with static seman-
tics information. These annotations can be used to make
semantic analysis results explicit, such that they can be em-
ployed and maintained in transformations without the need
for semantic re-analysis. Annotations for local references
capture whether a variable refers to a parameter or a local
variable and indicate its type information (18). In the case
of a parameter reference, the annotation contains additional
information indicating the parameter’s access information.
Annotations for calls to top-level declarations capture the
kind of top-level declaration and type information (19).

Domain-Specific Constructs. We extend the imperative
core constructs of our IR with domain-specific constructs for
graph processing, namely graph-related types, statements for
iterations over graph elements, and expressions for property
access and aggregations over graph elements.
The clear separation between core and graph constructs

simplifies compilation, since core constructs can directly
be mapped to their semantic equivalents, while graph con-
structs often require lowerings before being translated to the
target languages. Figure 4 shows the syntax definition for
the IR graph constructs. It uses the same notation as Figure 3.
For sorts already defined in the core grammar, we provide
additional alternative definitions (. . .). These extensions do
not create ambiguities in concrete syntax, with the exception
of the block sort, which is easy to disambiguate in favor of
the new construct.
Our IR supports four kinds of types related to property

graphs: graph types, graph element types for vertices and
edges, property types, and collection types. Graph types (1)
can only be used for input parameters in top-level declara-
tions. Graph element types (2, 5) explicitly include the graph
they belong to. Property types (3) include two type param-
eters: the first parameter specifies the graph element type
the property is associated with (that is, whether it is a vertex
property or an edge property), and the second parameter
specifies the type of the data stored in the property. Similarly,
graph collection types (4) include a single type parameter,
specifying the type of elements in the collection. Collections
can only contain vertices or edges of a graph.

We extend the block construct with instructions for mem-
ory allocation (7) and de-allocation (8) of graph properties
and collections (6). These instructions surround the block’s
list of statements.

t = . . .

(1) | graph | directed graph | undirected graph
(2) | et
(3) | property < et , t >
(4) | set < et > | sequence < et >

| order < et > | stack < et >
| queue < et >

(5) et = vertex ( id ) | edge ( id )

(6) b = . . . | { vd∗ am∗ s∗ fm∗ r }
(7) am = allocate lr ;
(8) fm = free lr ;
(9) s = . . . | pr = e ; | lr = ge ; | gi
(10) pr = [ a param t ] id .id | [ local t ] id .id | id .id
(11) ge = pr
(12) | [ t ] op ce { le } | op ce { le }

op = sum | product | max | min | average | any | all
(13) ce = [ te ] ( ee ) ( le ) | ( ee ) ( le )

(14) te = id : VT ( id ) | id id−−→ id : ET ( id )

| _
id−−→ id : ET ( id , id )

| id
id−−→ _ : ET ( id , id )

(15) ee = id : V ( id ) ] | id id−−→ id : E ( id )

| _
id−−→ id : E ( id , id ) | id id−−→ _ : E ( id , id )

(16) le = let ld∗ in e
(17) ld = t id = e ; | t id = tr ( e∗ ); | t id = ge ;
(18) gi = foreach ce { ld∗ is∗ }

| inBFS ce { ld∗ is∗ } inReverse ( le ) { ld∗ is∗ }
(19) is = pr = e ; | pr aop e ; | lr aop e ; | gi

| if ( le ) { ld∗ is∗ } else { ld∗ is∗ }
aop = + = | ∗ = | min = | max = | ∧ = | ∨ =

(20) td = . . .

| iteration id ( pd∗ ) { gi }
| aggregation rt id ( pd∗ ) { return ge;}

(21) tr = . . . | [ iteration ft ] id | [ aggregation ft ] id

Figure 4. Syntax of the graph constructs of the IR.

In addition to core expressions, our IR offers two kinds
of expressions (11) to access properties (10) and to aggre-
gate values from a graph (12). We intentionally separate
graph-related expressions from core expressions. For that,
we provide dedicated statements for assigning the value of a
graph expression to a variable (17). We also use let expres-
sions (16) to separate core and graph expressions in filter
expressions and output expressions (e.g. inside an aggrega-
tion). Local declarations in a let expression assign graph
expressions (aggregations and property references) to local
variables, which can then be used in the body of the let ex-
pression, thus ensuring the body is a core expression. Local
variable declarations can also assign core expressions or calls
to procedures of non-void return types.

let expressions can refer to all variables declared in their
syntactic parents such as surrounding aggregations or sur-
rounding block statements. The visibility of variable dec-
larations in let expressions is the same as in so-called let∗
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expressions in Lisp dialects. A variable is visible in subse-
quent declarations of the let expression and in the body of
the expression. Thus, a variable can be used in the right-hand
sides of subsequent declarations and in the body of the let
expression. Variables must not shadow any other variables.
The IR supports parallel iterations over graphs through

foreach loops and inBFS traversals (18). These iterations
can either be inlined within the procedure as statements,
or extracted outside of the procedure’s scope as top-level
declarations as we will elaborate on later.
In addition to element iterators (15), which iterate over

a set of vertices, edges, or neighbors of a vertex, the IR syn-
tax allows for optional table iterators (14) for iterating over
multiple vertex and edge tables. This is to match the tabular
representation of graphs in the shared-memory and data-
base runtimes. When present, the table iterator te follows
the syntax of the element iterator ee. In a parallel iteration,
variables bound in iterators (13) are visible throughout the
whole loop and must not shadow any other variables.

The filter expression is mandatory. Complex filter expres-
sions typically need to be expressed as a let expression.
A loop block (block of a foreach loop or inBFS traversal)

consists of a list of local variable declarations (17), followed
by a list of iterator statements (ref. (19). As with let expres-
sions, local variable declarations assign graph expressions
(aggregations and property references) to local variables,
such that only core expressions appear in the right-hand
side of iterator statements, namely property updates and
reduction assignments.
Loop blocks can refer to all variables declared in their

syntactic parents such as surrounding iterator statements
or surrounding block statements. A local variable declared
in a loop block is visible in subsequent declarations of the
loop block and in its iterator statements. Thus, a variable can
be used in the right-hand sides of subsequent declarations.
Variables must not shadow any other variables. Variable
declarations in loop blocks are final. The variables declared
in a loop block cannot be re-assigned in its iterator state-
ments. Iterator statements are property updates, reduction
assignments, and nested foreach loops.

Our compiler backends often need to extract parallel itera-
tions outside the scope of the procedure the iterator is used in
before translating it to the corresponding language construct.
To support this common feature, the IR supports top-level
declaration of iterations and aggregations (20). These decla-
rations can then be invoked through procedure calls at their
corresponding positions in the algorithm. Annotations for
calls to iterations and aggregations help to distinguish them
from ordinary procedure calls (21).

3 Transformations over the IR
Backends require certain transformations and optimizations
to be applied to the program before transforming it to a

Table 1. Normal forms required by each backend.

Single
Machine Distributed Relational

Database

In-
Memory
Database

Single-issue
iterations •

Top-level
iterations • • • •

Explicit semantic
information • • • •

Explicit table
iterators • •

Explicit memory
management • • •

Privatization • • •

lower intermediate representation, or generating target code.
Many of these transformations can be shared between two
or more backends, but the order in which they are called may
differ. We want to implement these transformations such
that they can be composed, and reused efficiently between
backends. For that, we rely on several normal forms.
We consider a normal form a subset of a language with

certain syntactic restrictions. For every program, there ex-
ists at least one semantically equivalent program in normal
form. A program may conform to more than one normal
form simultaneously. Normal forms allow us to embrace
abstractions that align closely with the concepts of a par-
ticular target platform, and disallow abstractions that are
semantically more distant.

Table 1 shows the normal forms used in our compiler and
indicates which backends require them.We now discuss each
of these normal forms in detail.

Single-Issue Iterations. In this normal form, iterations are
limited to either update a single property or to compute an
aggregation. Iterations can only combine property updates
and aggregations, if the aggregation is nested within the
property update, and its result is used to update the property.
This normal form is mainly required by the PL/SQL backend,
whose target platform can only perform one property update
per parallel iteration.
Figure 5 shows the same PageRank algorithm from Fig-

ure 2, but with the main foreach loop split into an iteration
updating the new rank property (lines 13- 23), and an aggre-
gation computing the difference between the old and new
rank values (lines 24- 30), in accordance with the single-
update normal form.

The transformation to establish this normal form is a top-
down traversal which replaces iterations that contain multi-
ple statements with multiple iterations that contain a single
statement each.

Top-level Iterations. In this normal form, iterations can
only occur as top-level declarations, and cannot occur inside
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1procedure void pagerank(in graph G,

2 out property<vertex(G), double> rank

3) {

4 long N;

5 double diff;

6 property<vertex(G), double> newRank;

7 double x;

8 N = numVertices(G);

9 x = 0.15d/(double) N;

10 setProperty(G, rank, 1d/(double) N);

11 do {

12 diff = 0.0d;

13 foreach(v: V(G)) (true) {

14 double inSum =

15 sum(w -[e]-> _: E(G, v)) (true) {

16 let
17 double rankVal = w.rank;

18 long degree = outDegree(G, w);

19 in
20 rankVal/(double)degree
21 };

22 v.newRank = x + 0.85d*inSum;

23 }

24 diff = sum [V_t: VT(G)] (v: V(V_t)) (true) {

25 let
26 double newRankVal = v.newRank;

27 double rankVal = v.rank;

28 in
29 |newRankVal-rankVal|

30 };

31 copyProperty(G, rank, newRank);

32 } while (diff > 0.001d);

33}

Figure 5. PageRank algorithm with single-issue iterations.

procedure bodies. Instead, top-level iterations and can be
called at the corresponding positions in the procedure. This
normal form aims to decrease overhead and simplify back-
end implementations, as most backends require iterations
to be extracted in order to generate corresponding top-level
structures. The single machine backend, for example, gener-
ates a Java class for each iteration, whereas the in-memory
backend generates a number of C structures and callbacks.
The PageRank variant in Figure 6 adheres to this normal

form by moving the main foreach loop outside of the main
procedure’s scope and wrapping it in a top-level iterator
declaration (lines 18, 38), and then calling this iteration at
its previous position in the algorithm (line 13).

The transformation to establish this normal form traverses
the program in a top-down traversal, collects parallel itera-
tions, creates top-level declarations for each one, and replaces
the statement with a call to the corresponding declaration.

Explicit Semantic Information. In this normal form, all
variable references, calls, and aggregations need to provide

1procedure void pagerank(in graph G,

2 out property<vertex(G), double> rank

3) {

4 long N;

5 double diff;

6 property<vertex(G), double> newRank;

7 double x;

8 N = numVertices(G);

9 x = 0.15d/(double) N;

10 setProperty(G, rank, 1d/(double) N);

11 do {

12 diff = 0.0d;

13 computeRank(G, rank, x, newRank, diff);

14 copyProperty(G, rank, newRank);

15 } while (diff > 0.001d);

16}

17

18iterator computeRank(

19 in graph G, in property<vertex(G), double>
rank,

20 in double x,

21 out property<vertex(G), double> newRank,

22 in-out double diff

23) {

24 foreach(v: V(G)) (true) {

25 double inSum =

26 sum(w -[e]-> _: E(G, v)) (true) {

27 let
28 double rankVal = w.rank;

29 long degree = outDegree(G, w);

30 in
31 rank/(double)degree
32 };

33 double newRankVal = x + 0.85d*inSum;

34 double rankVal = v.rank;

35 diff += |newRankVal-rankVal|;

36 v.newRank = newRankVal;

37 }

38}

Figure 6. PageRank algorithm with top-level iterations.

explicit semantic information. This is to ensure direct access
to this information throughout the different transformations
the program undergoes.
The PageRank variant in Figure 7 illustrates this normal

form. All variable references are precededwith an annotation
indicating whether they refer to a parameter or a local vari-
able, and providing their type. Calls to built-in procedures
are annotated with their signatures.

The transformation to establish this normal form rewrites
implicitly typed expressions and references to explicitly
typed counterparts, using information provided by semantic
analysis.



A Multi-target, Multi-paradigm DSL Compiler for Algorithmic Graph Processing SLE ’22, Dec 05–10, 2022, Auckland, New Zealand

1procedure void pagerank(in graph G,

2 out property<vertex(G), double> rank

3) {

4 long N;

5 double diff;

6 property<vertex(G), double> newRank;

7 double x;

8 N = [builtin (in graph)->void]numVertices(G);
9 x = 0.15d/(double)[local long]N;
10 [builtin(

11 in graph, out property<vertex(G), double>,
12 in param double)->void]
13 setProperty(G, rank, 1d/(double) N);

14 do {

15 diff = 0.0d;

16 foreach(v: V(G)) (true) {

17 double inSum =

18 sum(w -[e]-> _: E(G, v)) (true) {

19 let
20 double rankVal =

21 [out
22 param property<vertex(G), double>]
23 w.rank;

24 long deg =

25 [builtin (

26 in graph, in vertex(G))->void]
27 outDegree(G, w);

28 in
29 [local double]rank
30 /(double)[local long]deg
31 };

32 double newRankVal =

33 [local double]x+ 0.85d*[local double]
inSum;

34 double rankVal =

35 [out param property<vertex(G), double>]v.
rank;

36 [local double]diff +=|

37 [local double]newRankVal-[local double]
rankVal

38 |;

39 [out param property<vertex(G), double>]
40 v.newRank =

41 [local double]newRankVal;
42 }

43 [builtin(

44 in graph, out property<vertex(G), double>,
45 in property<vertex(G), double>)->void]
46 copyProperty(G, rank, newRank);

47 } while ([local double]diff > 0.001d);

48}

Figure 7. PageRank algorithm with explicit semantic infor-
mation.

1procedure void pagerank(in graph G,

2 out property<vertex(G), double> rank

3) {

4 long N;

5 double diff;

6 property<vertex(G), double> newRank;

7 double x;

8 N = numVertices(G);

9 x = 0.15d/(double) N;

10 setProperty(G, rank, 1d/(double) N);

11 do {

12 diff = 0.0d;

13 foreach[Vt: VT(G)](v: V(Vt)) (true) {

14 double inSum =

15 sum[S_w -[Ew]-> _: ET(G, Vt)]

16 (w -[e]-> _: E(Ew, v)) (true) {

17 let
18 double rankVal = w.rank;

19 long degree = outDegree(G, w);

20 in
21 rank/(double)degree
22 };

23 double newRankVal = x + 0.85d*inSum;

24 double rankVal = v.rank;

25 diff += |newRankVal-rankVal|;

26 v.newRank = newRankVal;

27 }

28 copyProperty(G, rank, newRank);

29 } while (diff > 0.001d);

30}

Figure 8. PageRank algorithm with table iterators.

Explicit Table Iterators. This normal form requires explicit
iterations over vertex and edge tables. This is helpful for
target platforms where the runtime requires explicit iteration
over tables, namely the shared-memory runtime and the
database runtime.

This is shown in the PageRank variant in Figure 8, where
iteration over graph tables is made explicit at lines 13 and 15.
The iterator at line 13, for example, iterates over vertex tables
Vt of the graph G, and over vertices v of every vertex table
Vt.

The transformation to establish this normal form intro-
duces for every element iterator its corresponding table itera-
tor, and replaces the graph parameter in the element iterator
with the table it’s meant to iterate over.

Explicit MemoryManagement. In this normal form, prop-
erties and collections are explicitly allocated and de-allocated.
This simplifies implementation, since the backends would
otherwise need to analyze the entirety of the program in
order to generate memory management code.

Figure 9 shows the PageRank algorithmwritten in this nor-
mal form. Memory is allocated for the new rank temporary
property at line 7, and then de-allocated at line 30.
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1procedure void pagerank(in graph G,

2 out property<vertex(G), double> rank

3) {

4 long N;

5 double diff;

6 property<vertex(G), double> newRank;

7 allocate rank;

8 allocate newRank;

9 double x;

10 N = numVertices(G);

11 x = 0.15d/(double) N;

12 setProperty(G, rank, 1d/(double) N);

13 do {

14 diff = 0.0d;

15 foreach(v: V(G)) (true) {

16 double inSum =

17 sum(w -[e]-> _: E(G, v)) (true) {

18 let
19 double rankVal = w.rank;

20 long degree = outDegree(G, w);

21 in
22 rank/(double)degree
23 };

24 double newRankVal = x + 0.85d*inSum;

25 double rankVal = v.rank;

26 diff += |newRankVal-rankVal|;

27 v.newRank = newRankVal;

28 }

29 copyProperty(G, rank, newRank);

30 } while (diff > 0.001d);

31 free rank;

32 free newRank;

33}

Figure 9. PageRank algorithm with explicit memory man-
agement.

The transformation to establish this normal form gener-
ates explicit memory allocation and de-allocation instruc-
tions for all declarations of properties and collections.

Privatization. In this normal form, iterations and aggre-
gations are surrounded with statements for initializing and
finalizing thread-private variables. This is required by back-
ends that distribute iteration workload over multiple threads
or, in the case of the distributed backend, multiple machines.

This is shown in the PageRank variant in Figure 10. Line 44
creates a thread-private variable, diffPrv, which is then
passed to the iteration to store the result of the aggrega-
tion. Line 46 reduces diffPrv to the original aggregation
variable.

The transformation to establish this normal form creates
a thread-private variable for each parallel iteration perform-
ing a reduction. Variable reductions inside the iteration are
replaced by reductions to this newly-created variable. The
thread-private variable is reduced to the original reduction

1procedure void pagerank(in graph G,

2 out property<vertex(G), double> rank

3) {

4 long N;

5 double diff;

6 property<vertex(G), double> newRank;

7 double x;

8 N = numVertices(G);

9 x = 0.15d/(double) N;

10 setProperty(G, rank, 1d/(double) N);

11 do {

12 diff = 0.0d;

13 execComputeRank(G, rank, x, diff, newRank);

14 copyProperty(G, rank, newRank);

15 } while (diff > 0.001d);

16}

17

18iterator computeRank(

19 in graph G,

20 in property<vertex(G), double> rank,

21 in double x, in-out double diff,

22 out property<vertex(G), double> newRank

23) {

24 foreach(v: V(G)) (true) {

25 double inSum =

26 sum(w -[e]-> _: E(G, v)) (true) {

27 let
28 double rankVal = w.rank;

29 long degree = outDegree(G, w);

30 in
31 rank/(double)degree
32 };

33 double newRankVal = x + 0.85d*inSum;

34 double rankVal = v.rank;

35 diff += |newRankVal-rankVal|;

36 v.newRank = newRankVal;

37 }

38 }

39}

40

41procedure void execComputeRank(

42 in graph G,

43 in property<vertex(G), double> rank,

44 in double x, in-out double diff,

45 out property<vertex(G), double> newRank

46) {

47 double diffPrv = 0.0d;

48 computeRank(G, rank, x, diffPrv, newRank);

49 diff += diffPrv;

50}

Figure 10. PageRank algorithm with privatization state-
ments.
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Table 2. Transformations implemented over the IR.

Single-issue
iterations

Top-level
iterations

Explicit
semantic

information

Explicit table
iterators

Explicit
memory

management
Privatization

Split iterations • ◦ ◦ ◦ ◦ ◦
Merge iterations × ◦ ◦ ◦ ◦ ◦
Extract iterations to top-level ◦ • ◦ ◦ ◦ ◦
Inline iterations × ◦ ◦ ◦ ◦ ◦
Add heterogeneous iterations ◦ ◦ ◦ • ◦ ◦
Explicate types ◦ ◦ • ◦ ◦ ◦
Explicate memory management ◦ ◦ ◦ ◦ • ◦
Privatise iterations ◦ ◦ ◦ ◦ ◦ •
Lower to query IR ◦ ◦ × ◦ ◦ ◦
Eliminate dead code ◦ ◦ ◦ ◦ ◦ ◦
Add initializers ◦ ◦ ◦ ◦ ◦ ◦
Precompute degree property ◦ ◦ ◦ ◦ ◦ ◦
Common neighbor iterations ◦ ◦ ◦ ◦ ◦ ◦
Multi-source BFS ◦ ◦ ◦ ◦ ◦ ◦

variable after the iteration completes. This way, each thread
performing a chunk of the iteration will initialize the thread-
private variable, and use it to store its computation. These
computations will then be reduced across threads to give the
total reduction value.

Transformations and Normal Forms. Normal forms act
as prerequisites for transformations. These transformations
are then composed into a multi-stage transformation. This
way, we break down the semantic gap towards the target
platforms into several smaller gaps bridged by these transfor-
mations [40]. We distinguish three kinds of transformations
with respect to normal forms. A transformation 𝑡 over lan-
guage 𝐿 establishes a normal form 𝑁 , iff it is applicable to
all programs of 𝐿 and always yields programs in 𝑁 . That is,
the transformation is a total function 𝑡 : 𝐿 → 𝑁 . A transfor-
mation 𝑡 preserves a normal form 𝑁 , iff it is applicable to all
programs of 𝑁 (and potentially more) and yields programs
in 𝑁 for inputs in 𝑁 . That is, the transformation restricted to
programs in 𝑁 is a total function 𝑡 |𝑁 : 𝑁 → 𝑁 . Otherwise,
𝑡 breaks the normal form 𝑁 .

Table 2 indicates for each transformation we implement,
whether it establishes (•), breaks (×), or preserves (◦) our nor-
mal forms. Some of these transformations are generic, and
can be applied regardless of the targeted backend, such as the
transformations to eliminate dead code, or to add variable
initializers. Others are more particular, but still common be-
tween all four of our backends, such as the transformations to
extract iterations at top level, or explicate type information.
This leaves transformations which are specific to particular
backends, such as adding table iterators, or splitting itera-
tions, both of which are required by the relational database
backend. We also implement domain-specific optimizations,

such as the common neighbor iterator (CNI) optimization
which identifies common neighbors for pairs of vertices in
a graph [30], the optimization to precompute the degree of
each vertex and store it in a property depending on a heuris-
tic, or the multi-source BFS (MS-BFS) optimization which
performs several BFS traversals at the same time, starting
from different roots [29, 33].

4 Implementation
We implement the PGX Algorithm Compiler in Spoofax, a
language workbench for developing textual DSLs [15, 44].
In this section, we report on our experience using Spoofax
and highlight some of the challenges and requirements that
modern language workbenches [8] need to meet in order to
be suitable for industrial use.

Compiler Components. Figure 1 gives an overview of the
components of the PGX Algorithm compiler. The IR compo-
nent is at the center of our implementation. This component
provides static analyses, normal forms, and transformations
on the intermediate representation. Frontend components
provide parsers for different DSLs and map programs to the
intermediate representation. We currently provide two dif-
ferent frontends for Green-Marl and PGX Algorithm. Green-
Marl [11] is a DSL for algorithmic graph processing. The
frontend maps its syntax to the intermediate representation.
PGXAlgorithm is an internal DSLwith Java syntax, providing
similar language concepts asGreen-Marl. The PGX Algorithm
frontend integrates with the javac compiler and maps Java
constructs to the intermediate representation. Backend com-
ponents generate code for the various target platforms. We
currently support backends for a single-machine runtime, a
distributed runtime, an in-memory database and a relational
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Figure 11.Module organization of the IR.

database. The generated code is represented as abstract syn-
tax trees of the target language. Pretty-printing components
turn these abstract syntax trees into program code.

Support for component-based compiler implementations
is crucial for industrial use cases. It allows various parties to
extend the compiler with additional components. New fron-
tend components can map other graph processing DSLs to
the intermediate representation. New backend components
can be added to support additional target platforms. In this
context, the ability to combine open-source and proprietary
components is important. In the current implementation,
we rely on an existing open-source component from the
Spoofax ecosystem to pretty-print Java code, but maintain
our own pretty-printing components for C/C++ and PL/SQL
code. The component-based approach allows us to switch
to open-source components when they become available.
We also have the option to release the IR component as an
open-source project, without exposing the entirety of the
compiler, including proprietary optimizations or backend
components. This would allow academic and industrial part-
ners to target the IR from other DSLs, to experiment with
new optimizations, or to provide new backends targeting
additional execution platforms. Finally, a component-based
implementation helps to compose different variants of the
compiler. This is important if the compiler is bundled in
multiple products with different execution platforms. For ex-
ample, several of our products ship with the single-machine
and distributed runtimes, and a variant of the PGX Algorithm
compiler which only supports code generation for these run-
times.

We implemented each compiler component as a separate
Spoofax project. Spoofax supports both source code and
runtime dependencies between components. We found the
handling of source code dependencies to be problematic,
since the same code will end up in multiple components
at runtime, increasing the memory footprint of the com-
piler at runtime. However, this will be solved in future re-
leases of Spoofaxwhich rely on flexible, composable compiler
pipelines [17, 18].

Modular Language Design. We organize the implemen-
tation of each compiler component in hierarchical modules.
Spoofax provides support for such amodular implementation
in all of its meta-languages [16]. Figure 11 shows themodules

of the IR component. Syntax modules define concrete and ab-
stract syntax for the intermediate representation in SDF3 [7].
Spoofax’ support for language composition allows us to use
concrete syntax in transformations [38] and tests [13]. Static
semantic modules define name binding and typing rules
in Statix [37]. Finally, transformation modules implement
various transformations over the intermediate representa-
tion [3, 39]. At the syntax level, we distinguish between a
core of imperative language constructs, and domain-specific
constructs for graph processing, which are defined in sep-
arate submodules. This distinction is mirrored in the static
semantic modules and in the backend components, which
separate transformations to generate code for imperative
and domain-specific constructs into different modules.
We found the hierarchical modularization of our imple-

mentation extremely helpful when developing, extending,
and maintaining the compiler. In the initial development, it
allowed us to first focus on the simpler core constructs, be-
fore we added domain-specific constructs step-by-step. We
follow the same approach when extending the implementa-
tion with either new language constructs or new backend
components. In maintenance, the module system helps us to
quickly locate the relevant pieces of the implementation for
a specific language construct, and to adapt it with a number
of typically local changes. It also helped new team members
to easily navigate the code base and explore it systematically
from the more easy core constructs to the more complicated
domain-specific constructs. A modular implementation can
also reduce build times of a compiler project significantly,
when the language workbench supports incremental lan-
guage builds [31].

Product Integration. The PGX Algorithm compiler is in-
tegrated into several industrial products, which allows cus-
tomers to compile and run graph processing algorithms as
part of their graph analytics workflows. These products pro-
vide an API to compile and run algorithms. Implementing
such an API requires the ability to programmatically com-
pose and invoke compilation pipelines.Whilemany language
workbenches pride themselves on providing DSL editors
which are integrated into modern IDEs [8], it is important
to also support use cases where compilers can be used with-
out editors and outside IDEs. Spoofax currently provides
an API for these use cases. Future versions of Spoofax will
allow to specify flexible, composable compiler pipelines in a
DSL [17, 18].
The deep integration of a compiler into the code of an

industrial product puts extra requirements on the code of
the compiler and, by extension, the language workbench run-
times, which are required to run the compiler. For example,
the product might become vulnerable to security exploits in
such a runtime or in its dependencies. To mitigate such risks,
language workbench development teams need to establish
processes to monitor and fix vulnerabilities in dependencies.
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This typically leads to frequent version updates for depen-
dencies and frequent releases of the language workbench
itself, to address vulnerabilities. Software licenses for depen-
dencies affect not only the language workbench runtime, but
also the compiler relying on that runtime and the product
integrating the compiler. This might inhibit the use of a lan-
guage workbench for some industrial use cases, if a software
license for one of its runtime dependencies is not acceptable.

The integration of the PGX Algorithm compiler into prod-
ucts extends to testing. We need to test the compiler, its
target runtimes, and their integration in the product. As
compilers and runtimes tend to evolve in parallel, we must
continuously ensure that the code generated by an evolved
compiler behaves correctly on an evolved runtime. Language
workbenches need to support testing of the various compiler
components, of compilation pipelines composed of these
components, and of code integrating compilers into larger
products. We implement a separate testing component for
each compiler component. Each testing component com-
prises declarative tests written in Spoofax’ SPT language [14].
These tests can be run programmatically and are integrated
into our continuous integration pipelines. We have addi-
tional tests verifying that the compiler can generate code,
that the generated code can be compiled for the target plat-
form, and that the compiled algorithm yields the correct
results when executed on the target platform. These tests
are also integrated into our continuous integration pipelines.
Build times for compiler components as well as execution
times for compiler-related tests have a significant influence
on the execution times of continuous integration pipelines.
This can become more important than the performance of a
compiler as part of the product, when typically only a few
algorithms are compiled.

5 Related Work
DSLs for Graph Analytics. We can distinguish two kinds
of workloads when analyzing graph data. Graph queries aim
to match patterns as subgraphs of the analyzed graph. Graph
algorithms perform complex traversals over a graph to ex-
plore the paths between vertices, the importance of vertices,
or the clustering of vertices. There exists a variety of DSLs
to support these workloads.
Neo4j’s Cypher [23] and Oracle’s PGQL [24] are promi-

nent examples of query languages for property graphs. Both
DSLs allow for graph pattern matching through SQL-like
queries. Apache’s Gremlin query language takes a different
approach by providing means to express graph traversals
as a sequence of atomic operation on a data stream. This
allows to implement pattern-matching queries and simple
graph algorithms such as basic centrality algorithms. It is
not well-suited to express more complex algorithms such as
PageRank.

Falcon [5, 6] and GraphIt [45] are examples of languages
for implementing complex graph algorithms. Falcon extends
the C language with a set of high-level graph-specific con-
structs, abstracting over hardware-related implementation
details. It requires algorithms to be explicitly parallel, and
while most constructs are hardware-independent, some an-
notation constructs depend on the underlying platform. This
requires users to provide slightly different implementations
depending on the target platform. Falcon supports algorithms
which can change the structure of the input graph, which
is currently not supported in our IR. GraphIt provides a lan-
guage for expressing the logic of graph algorithms, and a
separate scheduling language for specifying performance
optimizations. This scheduling language adds support for a
number of functions through which the user can fine-tune
their algorithm’s performance, by composing optimizations
for edge traversal direction, vertex data layout, and program
structure. This way, users can navigate the tradeoff space
between locality, parallelism, and work-efficiency for faster
algorithm implementations manually. In contrast, our work
aims at compilers picking optimizations.

Intermediate Representations. There has been a large
amount of work conducted in the way of creating well-
developed common IRs for compiler architectures. LLVM [19]
provides a low-level, assembly-like IR for a unified code rep-
resentation of high-level languages. This makes it unsuitable
for our usecase, as our target platforms require higher-level
paradigms than what LLVM offers.

Many compilers utilize the LLVM toolchain such as not to
reinvent the wheel, but implement their own high-level IRs
on top of it in order to bridge the gap between the source
language and the low-level abstractions of LLVM IR. The
Swift compiler [1] and the Rust compiler [21] are two such
compilers. Swift and Rust are both multi-paradigm, general-
purpose compiled languages. The Swift compiler translates
source code to a high-level intermediate language – the Swift
Intermediate Language (SIL) [36] – before applying a series
of optimization passes and diagnostic passes, and lowering
code to LLVM IR. The Rust compiler also introduces a middle
IR (MIR) [22] that’s essentially a simplified version of the Rust
language: source code is translated into a high-level IR (HIR)
and then lowered into MIR at a later stage, thus simplifying
compilation and enabling high-level optimizations.

MLIR, another project under the LLVM umbrella, provides
a customizable IR that allows its users to define the right
level of abstraction for their programs [20]. Sujeeth et al. [32]
show how to compose DSLs of different domains embedded
together in a single program using Delite, a compiler frame-
work for building parallel DSLs, targeting a parallel runtime
with a heterogeneous architecture underneath [4]. Delite
DSLs are embedded in Scala, and then transformed into a
common IR.
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DSL compilers may still resort to developing their own IRs
in order to solve domain-specific problems. Pai et al. present
a compiler which generates CUDA code for programs writ-
ten in IrGL, an intermediate representation for graph algo-
rithms [27]. This architecture, however, does not share the
multi-target, multi-paradigm characteristic of our compiler.
The Falcon compiler targets single machine and distributed
systems with different architectures (multicore CPUs, single
GPUs, multi-GPUs, and heterogeneous backends), with a
platform independent IR at the center of its compiler [5, 6].
To our knowledge, it does not target a database environ-
ment. The Unified GraphIt Compiler (UGC) implements a
graph-specific IR targeting four backends (GraphVMs) with
different hardware architectures and, consequently, differ-
ent paradigms [2]. While UGC also targets platforms with
diverse architectures, this diversity is at a hardware-level,
thus a lower level than what we deal with in the scope of
our compiler.

DSL Modularization. Ratiu et al. show how layered modu-
larization of languages enables an easy, efficient, and reusable
implementation of domain-specific analyses [28]. This effi-
ciency motivates our design of a modular architecture for the
PGX Algorithm compiler and its IR. mbeddr is well-known
for its modular language implementation. mbeddr is a set
of modular and incremental language extensions for embed-
ded software development, based on C [41]. Programs in
mbeddr are heterogeneous in nature, since they can intro-
duce different languages (e.g. a C program with embedded
state machines). This makes mbeddr well-suited for multi-
paradigm programming. mbeddr’s language extensions are
desugared into plain C code. In our compiler, the domain-
specific extension is not desugared; instead, it is translated
by each backend into suitable code in the target language.
mbeddr is built using JetBrains MPS, a projectional lan-

guage workbench. MPS’ projectional nature enhances mod-
ularization of implementation, and allows it to support sim-
ple extension, embedding and composition of unrelated lan-
guages [42].We foundmodular implementations to be equally
well supported by Spoofax.

6 Conclusions and Future Work
We have presented a compiler architecture centered around a
syntactically rich IR for algorithmic graph processing as well
as transformations and optimizations over this IR, which
compiler backends can share and compose as needed. The
presented solution allows us to efficiently develop and main-
tain a compiler for PGX Algorithm, a DSL for algorithmic
graph processing, with multiple backends targeting different
execution runtimes and programming paradigms. To con-
clude this paper, we discuss several aspects of our solution,
with a particular focus on directions for future work.

General Applicability. Our approach is currently limited
to a concrete industrial use case. We plan to explore several
directions to generalize this approach in the future. First, our
IR should be a suitable target for other DSLs for algorith-
mic graph processing, but might not be as suitable for more
query-like data processing patterns. We plan to investigate
a more general IR for various data processing workloads,
including machine learning workloads. Second, we are work-
ing on extending the set of domain-specific‘ optimizations.
This involves studying the applicability of new optimizations,
their interactions, and their impact on normal forms.

Formal Semantics. We have introduced several normal
forms, transformations, and optimizations over our IR. So
far, these are of strictly practical use in the implementation
of the PGX Algorithm compiler. We test this implementa-
tion extensively using Spoofax’ testing capabilities [14]. In
a next step, formal specifications of the dynamic semantics
of the IR as well as transformations and optimizations are
needed to reason more formally about the correctness and
composability of transformations. This will also allow us to
reason about the relationships of normal forms and their
compatibility.

Performance of Graph Algorithms. Oracle ships graph
algorithms as part of several products with graph-processing
capabilities. These algorithms are implemented in PGX Al-
gorithm and compiled to the target platform of the product.
The performance of the algorithms is influenced by the ef-
fectiveness of the optimizations applied by the compiler, the
compilation pattern of the backend, and the performance of
the target platform itself.

We previously evaluated the impact of compiler optimiza-
tions on performance in the single-machine runtime [29]. We
showed that graph algorithms implemented in Green-Marl
outperform implementations in general-purpose languages
with API calls into the runtime. For example, the Green-Marl
implementation of PageRank takes less than a second to
compile and to calculate ranks for LiveJournal [9], a graph
just short of 5 million vertices and 69 million edges. An API-
based implementation is two orders of magnitude slower. In
the same study, we also evaluated the impact of compiler op-
timizations on several graph algorithms. For PageRank, the
optimized implementation was 1.5 times faster on LiveJour-
nal, and 2 times faster on a Twitter graph with over a billion
edges. In a separate study, we compared the performance of
the distributed runtime against state-of-the-art distributed
graph processing engines based on execution times of a set
of widely-used graph algorithms [12]. The study showed that
the compiled algorithms outperform algorithms running on
other engines by one to two orders of magnitude.

We see similar performance on these target platforms with
our new compiler. We currently cannot disclose performance
of algorithms in the database runtimes, since these runtimes
are still in an early experimental stage.
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