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Abstract

We study validation set construction via data
augmentation in true few-shot text classifica-
tion. Empirically, we show that task-agnostic
methods—known to be ineffective for improv-
ing test set accuracy for state-of-the-art models
when used to augment the training set—are ef-
fective for model selection when used to build
validation sets. However, test set accuracy on
validation sets synthesized via these techniques
does not provide a good estimate of test set ac-
curacy. To support better estimates, we propose
DAUGSS, a generative method for domain-
specific data augmentation that is trained once
on task-agnostic data and then employed for
augmentation on any data set, by using pro-
vided training examples and a set of guide
words as a prompt. In experiments with 6 data
sets, both 5 and 10 examples per class, training
the last layer weights and full fine-tuning, and
the choice of 4 continuous-valued hyperparam-
eters, DAUGSS is better than or competitive
with other methods of validation set construc-
tion, while also facilitating better estimates of
test set accuracy.

1 Introduction

Few-shot learning, i.e., learning with only a handful
of training examples, is growing area of machine
learning and the subject of significant study. Few-
shot learning problems manifest in many practical
scenarios, including model adaptation—especially
when a single model is being fine-tuned for a num-
ber of new domains. Given the typical reliance of
state-of-the-art models on large datasets and the
high cost of collecting new data, techniques that
enable effective few-shot learning are especially
valuable. Recent work in few-shot learning employ
a variety of techniques include: data augmentation
and meta-learning.

While reported few-shot learning results are pos-
itive, recent work argues that, by and large, these
results were achieved in unrealistic experimental

settings (Perez et al., 2021). In particular, most
evaluations of few-shot learning systems leverage a
validation set (i.e., held-out examples) for model se-
lection. But, in practice, validation data is unavail-
able in few-shot learning, and thus experiments
used to study few-shot learning methods should
assume no access to additional examples for vali-
dation (Bragg et al., 2021). Perez et al. go on to
explore the so-called frue few-shot setting, in which
there are no dedicated validation examples. Their
experiments reveal that model selection via either
cross-validation or minimum description length—
two classic model selection methods that require
no dedicated validation set—yield models that per-
form much worse than those selected using a vali-
dation set.

Given the importance of validation data for
model selection in few-shot learning, we propose
validation set creation via data augmentation. Data
augmentation describes a family of techniques for
constructing examples for a wide variety of learn-
ing problems. Typically, these methods are invoked
to synthesize specific types of examples that are
underrepresented in the training set or, to expand a
small training set with a wide variety of examples,
such as in few-shot learning. Unlike previous work,
we employ data augmentation to synthesize exam-
ples for model selection. We find that in true few-
shot classification (i.e., no dedicated validation set),
data augmentation methods are better used for cre-
ating validation examples than expanding training
sets; even for methods known to provide negligible
performance gains (when used for training set ex-
pansion) (Longpre et al., 2020). Our experiments
also reveal that model selection with synthetic data
yields better models than both selection with cross-
validation, or with data held out from the (small)
few-shot training set.

While synthesized examples can be used effec-
tively for model selection, we find that performance
on these examples is not indicative of test set per-



formance. To remedy this, we design DAUGSS, a
new generative method for data augmentation de-
signed for use in few-shot classification settings. In
DAUGSS, we train a sequence to sequence genera-
tion model using generic, publicly available data.
After training, the generation model is prompted
with available task-specific data in order to gener-
ate examples in-domain examples. Importantly, the
generation model also takes a set of guide words as
input, which provide some control over the model’s
output. Empirically, we show that DAUGSS is best
among the data augmentation methods tested in
terms of model selection. Moreover, we find that
the selected model’s performance on the synthetic
data provides the most accurate estimate of test set
performance, among all methods.

2 Intent Classification

In this work, we study few-shot intent classifica-
tion. Intent classification is the task of classifying
natural language utterances into intents. Typically,
utterances are short, ranging from a single word
to a few sentences. The number of intents varies
by domain: problem instances studied in this work
range from having 7 to 150 intents.

In practice, intent classification systems are a
basic building block of virtual assistants (Coucke
et al., 2018) where few-shot learning ability is crit-
ical. Virtual assistants are deployed in a wide va-
riety of domains (e.g., medicine, travel, etc.), and
as such, they are often pre-trained by a developer
using a large amount of data, and then fine-tuned
for each specialized usage. Since each usage re-
quires its own fine-tuning data (and data collection
is typically not scalable), virtual assistants must
perform well when the number of fine-tuning ex-
amples is small. Furthermore, ed virtual assistant
must adapt to new domains over time, i.e., handle
an ever-growing number of intents, adaptation with
only a few additional examples is necessary (Ku-
mar et al., 2019).

3 DAUGSS

Training a state of the art model typically requires
a large number of examples for training and vali-
dation. In the few-shot setting, i.e., when only a
handful of examples are available, one approach
is to generate more data. However, generating ad-
ditional data can be challenging, especially when
the task at hand lies in a highly specialized domain,
and for which no existing data generators exist.
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Figure 1: DAUGSS Training Set Construction. 1)

FAQ pages are extrated from Common Crawl. 2) pairs

of questions that appear within the same FAQ are sam-

pled; each pair contains a prompt and a target. 3) guide

words are subsampled from the target in three steps: a.

all stopwords are removed, b. a small fraction of the

remaining tokens are removed, and c. the remaining

tokens are shuffled. The guide words are prepended

with the prompt followed by a pipe character ("I") and

map to the target, thereby constituting a sequence to

sequence training example for the generator.

Such cases require a domain specific generator, but
training such a model is complicated by the scant
in-domain data. It is possible to use a task-agnostic
method, like EDA (Wei and Zou, 2019), to con-
struct new examples by perturb existing data, but
these methods have been shown to be ineffective
when used alongside state-of-the-art transformer
models (Longpre et al., 2020).

In this section, we describe DAUGSS, an al-
gorithm for training a generative model for text,
intended for us in few-shot, domain-specific set-
tings. Since we assume a very limited amount of
available in-domain data, we train the generator
on unlabeled, out-of-domain data from Common
Crawl. After the generator is trained (on out-of-
domain), we use the available in-domain data to
prompt the model to generate in-domain data. We
begin with a discussion of the generator, its inputs
and its outputs. Then, we describe how the genera-
tor is trained.



3.1 The Generator

At a high-level, a DAUGS S-trained generator is a
model that takes 2 strings and generates a string.
The first input—which we call the prompt—p, and
is a clause that embodies the style and semantic
content that the model should generate. The sec-
ond input is a variable length sequence of guide
words, w (Pascual et al., 2021). The guide words
are tokens that the model is trained to include in
the output, and thus provide additional control over
the generation. While the guide words appear in
the input and output of all of the generator’s train-
ing examples, unlike previous work, the model’s
output need not include all guide words provided
as input.

In more detail, consider a few-shot, k-way, text
classification data set X = {(z,y;)}Y, where
y € {co,c1,...,cx}. Let X[c] = {z; : (xj,y;) €
X, y; = c} be the subset of utterances in X of class
c. Finally, let g be a DAUGSS-trained generator,
g :p x w — z. To generate a new example of a
class, ¢, we must we must choose a prompt, p, and
guide words, w. We choose a prompt uniformly
at random among utterances of class ¢, i.e., p ~
U(X[c]). Next, we select guide words. To do so,
we begin by building a per-class token distribution.
That is, for each utterance in X [¢], we filter all stop
words with spaCy (Honnibal et al., 2020), and
compute the empirical distribution of the remaining
tokens. To sample guide words for a class ¢, we first
sample a length L from the empirical distribution
of lengths of examples in X|c|, and then sample
L guide words independently from the per-class
token distribution for c.

Our use of an utterance to prompt the genera-
tor is inspired by work on Example Extrapolation
(EX2) (Lee et al., 2021). Whereas their work fo-
cuses on problems with uneven amounts of data
per class, we focus on few-shot learning—where
EX2 is inappropriate. Unlike their work, we only
provide the generator with a single utterance, but
we also provide a sequence of guide words. The
guide words yield some control over the generation
process, including control in making the outputs
diverse. This is especially important when data is
scarce for all classes.

3.2 Training

In the DAUGSS algorithm, the generator, g, is
trained from a set of triples @ = {(p;, wi, z;) } 4,
where g must generate z; from inputs p; and wj.

Given the assumption of operating in a few-shot
setting, DAUGSS is self-supervised and does not
require any in-domain data. In other words, the
generator’s training data, Q, does not include
any examples in X'. Instead, examples in Q are
constructed from a public data source, such as
Wikipedia or Common Crawl. A primary bene-
fit of such a generator is that it can be trained once,
and then employed to generate data for any number
of tasks.

For any training example, (p, w, z), the prompt,
p, and output, z, should be stylistically and semanti-
cally related. This is so that the generator, g, learns
to generate in-domain data when the prompt, p, is
an in-domain example. Moreover, the guide words,
w, should appear in z, since the guide words are
intended to be used to control the generated out.
In order to accomplish this, we assume access to
a (rudimentary) similarity function. Formally, let
J be a collection of utterances (e.g., sentences in
Wikipedia) and let s : J x J — [0, 1] be a binary
function that returns 1 if its inputs are similar. An
example of s is a function that returns 1 when two
utterances appear on the same webpage. To con-
struct an example (p, w, z), we select two similar
utterances (with respect to s). The first we set to be
p; the second, z. The guide words, w, are (a subset
of) the non-stopword in z.

In our work, examples in Q are constructed from
a subset of Common Crawl that includes frequently
asked questions (FAQ) pages. We set s to be the
function that returns 1 if two utterances appear
on the same web page (i.e.,in the same FAQ). To
construct training examples, we randomly select
two questions from the same page to serve as the
prompt, p, and output, z, respectively. We only
utilize questions (and not answers) because the
questions share some stylistic characteristics with
typical utterances in intent classification (e.g., both
are typically short questions or instructions). The
guide words, w, are a randomly selected 95% of the
non-stop word tokens in z'. We use 95% of the non-
stopwords (instead of all non-stopwords) so that
the model does not learn that all the guide words
represent all non-stopwords in the desired output.
In our work, g is parameterized by TS (Raffel et al.,
2020), a large-scale, sequence to sequence model,
and as such, the inputs p; and w; and concatenated,
but delimited by a " | ". See Figure 1 for an example
training instance in Q.

'w is ordered arbitrarily.



FAQ Extraction from Common Crawl: we ex-
tract FAQs from Common Crawl—a large-scale
archive of crawled webpages. We use a single
dump from January 2021, which includes 3.4 bil-
lion webpages. To detect QA contents nested in
raw webpages, we leverage structured markup for
QA? and FAQ? pages. This markup is widely used,
and facilitates the display of Q & A result previews
along with search results (e.g., google search).

Naive search in billions of webpages in costly.
Therefore, to extract FAQs, we first perform a fast
regex-based search that yields approximately 2.3
million matching pages. After parsing the result-
ing (HTML) pages, we are able to extract approx-
imately 10 million QA/FAQ data snippets. After
post-processing the snippets, (e.g., removing badly
formatted snippets where question/answer cannot
be automatically recovered; removing empty ques-
tion/answer bodies), and perform language detec-
tion to identify English QA pairs. We group the En-
glish questions by page and randomly select 200k
question pairs for training such that both questions
appeared on the same page.

4 [Experiments

In this section, we present an experimental study
of model selection methods in few-shot text clas-
sification. We report test set accuracy achieved
by models selected using various methods. For
methods that utilize validation examples, we also
measure the error incurred by employing validation
accuracy as an estimate of test accuracy. Finally,
for data created via augmentation methods, we eval-
uate whether that data is best used when added to
the training set, the validation set, or both.

Datasets: experiments are performed with the
following datasets: clinc, bank, snips, curekart,
powerplay, and mattress (Larson et al., 2019;
Casanueva et al., 2020; Coucke et al., 2018; Arora
et al., 2020). To resemble the few-shot setting, we
subsample each dataset to a specific number of
examples per class. When referring to a dataset,
we use the suffix -k (e.g., clinc-k) to indicate that
the dataset has been subsampled to k& examples
per class*. Following previous work, we omit out-

https://developers.google.com/search/
docs/advanced/structured-data/gapage

*https://developers.google.com/search/
docs/advanced/structured-data/fagpage

*For any class that has fewer than k examples, we select
all examples of c.

of-scope utterances (included in clinc, curekart,
powerplay, and mattress).

4.1 Model Selection

We study true few-shot text classification, i.e., few-
shot learning in which no validation data is pro-
vided. Given the importance of selecting suitable
hyperparameters for state-of-the-art models, we
experiment with the following approaches for con-
structing a validation set:

* HOLDOUT - 20% of the training data (per
class) is held out and used for validation. This
resembles a typical workflow for non-few-
shot settings.

* TRAIN - use the training set as the validation
set; overfitting is expected.

* DAUGSS - generate the validation set, with
20 examples per class, using a generator
trained by DAUGSS?.

* EDA - similar to the previous approach but
use task-agnostic data augmentation for gen-
eration (Wei and Zou, 2019). This style of
augmentation is known to yield little improve-
ments when used for training set augmenta-
tion for state-of-the-art models (Longpre et al.,
2020).

* TEST - use the test set as the validation set;
a highly competitive yet unrealistic baseline
included for completeness.

Setup: in our experiments, we begin by training
a model on the training data using a variety of hy-
perparameter configurations. After each training
epoch (and for every hyperparamter configuration),
we evaluate the model’s loss on the validation set
(constructed via one of the methods above). For all
construction methods except for TEST, we select
the model (i.e., training epoch and hyperparame-
ter configuration) with the lowest validation loss;
for TEST we make the selection based on highest
validation accuracy.

Each experiment is repeated 10 times (this in-
cludes subsampling new examples). For each val-
idation set construction method, we report mean
and standard deviation of test set accuracy. Since
training sets differ in each experimental repetition—
and we expect high variance—we also compute

5This value was chosen arbitrarily.
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k=5 bank clinc curekart powerplayll snips sofmatress
HoLpOuUT 0.70¢01 0.850.01 0.580.06 0.510.04 0.870.02 0.599 .05
TRAIN 0.740.01* 0.86¢.01* 0-540.06 0.530.06 0.86¢.03 0.60¢.05
DAUGSS 0.740.01%* 0.88p01% 0.62¢0¢ 0.54¢ g3* 0.89g01% 0.64005%
EDA 0.750.01* 0.870.01* 0.580.06 0.550,03* 0.880,03 0'650.06*
TEST 0.750.01* 0.880.01* 0.670.04* 0.500,17 0.910.01* 0.690.04*
k=10

HoLpOUT 0.81¢p01 0.91¢.00 0.650.06 0.56¢.03 0.920.01 0.69¢ 03
TRAIN 0.810.03 0.900.01 0.640.04 0.570.03 0.899.02 0.670.04
DAUGSS 0.830.01 0.91¢ g1 % 0.700.04% 0.59¢.03% 0.89¢.03 0.72¢ 02%
EDA 0.840.01* 0.920.01* 0.690.04 0.600.02* 0.930.01 0.720.03*
TEST 0.850.01% 0.92¢.00* 0.730.03% 0.63¢.02% 0.940.01* 0.770.01*

Table 1: Test Set Accuracy, FINETUNE, k = {5,10}. Mean and standard deviation test set accuracy of models
selected in the FINETUNE setting. Bolded text indicates the highest mean per dataset (other than TEST); asterisk (*)
indicates improvement over HOLDOUT is statistically significant (1-sided Wilcoxon signed rank test, p = 0.05).

whether each method is significantly better than
HoLDOUT using a one-sided Wilcoxon signed-
rank test with significance level of p = 0.05 (Schu-
urmans, 2006; Wilcoxon, 1947). For each exper-
imental setting, we either train all model param-
eters (FINETUNE) or only the parameters in the
final layer (FROZEN). We include results for the
FROZEN case (also known as the "linear prob-
ing" setting) since it is common when latency
and/or computing cost are constrained. More-
over, FROZEN training has been shown to gener-
alize better to out-of-distribution data than FINE-
TUNE training when pre-trained representations
are "good" (Kumar et al., 2021). This is relevant to
the few-shot domain where most data may be con-
sidered out-of-distribution because of the scarcity
of training data. In the main text, we report re-
sults for the HuggingFace roberta-base model op-
timized with the AdamW optimizer (Wolf et al.,
2019; Loshchilov and Hutter, 2018).

Hyperparameters: we tune 4 hyperparameters:
learning rate, weight decay, dropout among hid-
den units, and dropout among classifier units. We
employ Optuna—a hyperparameter optimization
library (Akiba et al., 2019). For each experimental
setting, we give Optuna an operating budget of 100
trials (i.e., unique hyperparameter configurations)
with trial pruning turned on. All models are trained
for up to 30 epochs®. Hyperparameter ranges used
during hyperparameter optimization are included
in Appendix A.1.

Swhy?

Result: Table 1 contains the mean and standard
deviation for each model selection method on all
6 datasets for both k = 5 and kK = 10 (i.e., 5 or 10
examples per class), when training via FINETUNE.
The results show that the generative methods (i.e.,
either DAUGSS or EDA) achieve the highest mean
accuracy in all experimental conditions. We note
that in some cases, when considering the standard
deviation of mean accuracy over the 10 trials, error
bars overlap. However, high standard deviations
are anticipated (due to the use of unique subsets of
data in each data set used in each experimental con-
dition). When considering significantly significant
improvements over the HOLDOUT method, we find
that, for both k¥ = 5 and kK = 10, DAUGSS sees im-
provement in the largest fraction of data sets (i.e., 5
out of 6); more than EDA (4 out of 6) and TRAIN
(2 out of 6 for k = 5 and never for k = 10). The
results support the notion that both DAUGSS and
EDA are consistently high-performing methods of
model selection for few-shot text classification. For
brevity, we include the presentation and discussion
of results in the FROZEN training setting in the
Appendix.

4.2 [Estimating Test Set Accuracy

While selecting the best performing model is a cru-
cial stage of a typical machine learning workflow,
an accurate estimate of the best model’s perfor-
mance is also required for decision making with
respect to model deployment. In other words, iden-
tifying the best performing model among a set
of models is insufficient; developers must have



k=5 bank clinc curekart powerplayll snips sofmatress
HoLDOUT 0.04¢¢92 0.04g92 0.18p07 0.360.04 0.12¢.04 0.25¢.09
TRAIN 0.260.01 0.140.01 0.460.06 0-470.06 0.140.03 0.400.05
DAUGSS 0.18p.02 0.210.01 0.14007 0.19¢g03 0.03pg02 0.07905
EDA 0.23001 0.09902 0.390.06  0.400.03 0.12p03  0.300.06
k=10

HoLDOUT 0.03g92 0.03g01 0.190.07 0.320.02 0.070.02 0.24¢ 06
TRAIN 0.199.03 0.100.01 0.360.04 0.430.03 0.11p.02 0.330.04
DAUGSS 0.340.01 0.280.01 0.03g03 0.14903 0.06g905 0.06¢03
EDA 0.14001  0.03001 029005  0.380.02 0.070.01  0.240.03

Table 2: FINETUNE Model Fidelity, £ = 5. The mean and standard deviation of the absolute difference between
validation accuracy and test set accuracy of the selected model. Bolded text indicates the lowest mean per dataset.

an accurate sense of the model’s performance in
practice—among many other statistics—in deter-
mining whether that model is appropriate for use.
We underscore that before deployment, many eval-
uations must be performed—among which test set
accuracy is only one (Ribeiro et al., 2020).

4.2.1 Validation Accuracy of Selected Model

To this end, we measure the extent to which vali-
dation accuracy is a faithful estimator of accuracy
on the test set for the methods discussed above.
In Table 2 we report the mean and standard devia-
tion of the absolute difference between validation
and test set accuracy for models selected via each
method in the FINETUNE setting for £ = 5 and
k = 10. For bank and clinc, HOLDOUT gives the
highest fidelity estimate of test set accuracy. This
is unsurprising since the validation set, while small,
is (in some sense) drawn from the testing distribu-
tion. DAUGSS achieves the lowest mean absolute
difference for the remaining four datasets, which
supports the notion that when using DAUGSS, it is
possible to generate examples of similar difficulty
as those in the training set.

Notably, the two datasets for which HOLDOUT
yields the highest fidelity estimates—bank and
clinc—are the largest datasets. On the 4 smaller
datasets, validation accuracy is an approximately
3x worse predictor of test set accuracy, with higher
variability. With a single validation example per
class, validation accuracy is a very coarse approxi-
mation of test set accuracy.

Validation sets comprised of EDA or TRAIN
examples provide poor estimates of test set accu-
racy. This is unsurprising. Using the train set as
the validation set leads to models with high valida-
tion performance that belies test set performance.

Since EDA generates new examples by perturbing
training instances, validation sets constructed via
EDA will lead to similarly high performance on
the validation set—and overestimates of test set
accuracy.

4.2.2 All Hyperparameter Configurations

For completeness, we examine the faithfulness of
validation accuracy to test accuracy for all hyper-
parameter configurations tested, all datasets, and
all epochs. We report the root mean square error
(RMSE) between validation accuracy and test set
accuracy in Table 3. This gives a sense of how
accurate test set accuracy can be predicted by vali-
dation accuracy for any model when the validation
set is built according to each of the methods tested.
This would be important if, for example, model se-
lection were done using one method, but estimating
test set accuracy were done by another.

The Table shows that for all training settings ex-
cept for FROZEN training with £ = 10, DAUGSS
yields the highest fidelity estimates of test set accu-
racy. Moreover, for the case of FROZEN training
with £ = 10 it achieves the second lowest RMSE,
following HOLDOUT. This supports the notion that
a validation accuracy, when computed from a small
set of validation examples, may not be a good esti-
mator of test set accuracy. On the other hand, gener-
ation of the validation set with DAUGSS generally
leads to more accurate estimates of test set accuracy
than when the validation set is constructed using
one of the other methods test; especially when the
amount of data is small (k = 5).

For a more detailed view, we visualize the cor-
relation between validation accuracy and test set
accuracy in Figure 2. The Figure shows that the
fidelity of validation accuracy with HOLDOUT is



FROZEN-5

FROZEN-10 FINETUNE-5 FINETUNE-10

HoLDOUT 0.05568 0.04466
TRAIN 0.33245 0.27272
DAUGSS 0.00143  0.09386
EDA 0.22912 0.16706

0.13285 0.11662
0.30056 0.23826
0.00397 0.09185
0.24456 0.18061

Table 3: RMSE of Validation Accuracy. The root mean square error with respect to validation accuracy and test
set accuracy for all methods and training regimes. RMSE is computed from all hyperparameter configurations, all
epochs, and all datasets. Bolded text indicates the lowest RMSE per condition. Note that RMSE for TEST is 0 (by

definition).
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Figure 2: Fidelity of Validation Accuracy, FINETUNE,
k = 5. Validation set accuracy versus test set accuracy
for all hyperparamter configurations, all epochs, and for
all datasets.

highly variable, and tends to overestimate test set
accuracy (i.e., validation accuracy is greater than
test set accuracy). On the other hand, validation
sets constructed by DAUGSS lead to consistent un-
derestimates of test set accuracy with low RMSE.
Neither EDA nor TRAIN make for validation sets
from which test set accuracy can be accurately esti-
mated. Unsurprisingly, both lead to overestimates
(o test set accuracy). We include similar figures for
the other experimental conditions in Appendix A.3.

5 Related Work

Model selection is a critical component of machine
learning workflows, and especially of few-shot
learning (Bragg et al., 2021). Despite this, most
experimentation with few-shot learning methods
either ignores model selection or assumes valida-
tion data is available, which is unrealistic (Perez
et al., 2021). Our work is a first systematic study
of model selection in few-shot text classification,
with a focus on validation set construction via data
augmentation.

Prior to our work, two other pieces have lever-
aged generative models to construct validation data.
In Datasets from Instructions (DINO), a pre-trained
GPT2-XL is prompted to generate labeled sentence
pairs to support learning improved sentence em-
beddings (Schick and Schiitze, 2021). The set of
generated pairs is split into training and validation
sets. In this work, the validation set is used to deter-
mine when to (early) stop training, but it is unclear
whether it is also used to select among a range
of hyperparameter configurations. In our study,
we use constructed validation sets to select 4 im-
portant hyperparameters, in addition to early stop-
ping. That tasks we focus on are domain-specific,
where as DINO is aimed and learning better general-
purpose sentence embeddings—where it may be eas-
ier to generate relevant data for validation.

The second piece studies prompt order for "in-
context learning" (Brown et al., 2020), i.e., when
the model is given a handful of examples of a task
at inference time but no weights are updated. The
authors find that the order of the examples in the
prompt used for in-context learning can signifi-
cantly affect results (fluctuations between state-of-
the-art and random chance performance were ob-
served) (Lu et al., 2022). To alleviate this high
sensitivity in true few-shot settings, the authors
generate an unlabeled validation set with a large
pre-trained language model and use the set to se-
lect prompt orders via a proposed entropy-based
method. Unlike their study, we focus on the FINE-
TUNE and FROZEN cases rather than in-context
learning. Moreover, we select specific values of
continuous hyperparamters rather than the best
among 24 prompt-permutations. Finally, we point
out that the proposed approach for prompt-order
selection cannot be directly used to estimate test
set accuracy (as we study in Section 4.2).

A central component of our work is our proposed
DAUGSS algorithm. DAUGSS is inspired in part
by Example Extrapolation (EX2), which also uses



training examples as prompts; however their work
is designed for imbalanced classes rather than few-
shot settings (Lee et al., 2021). Like we do, pre-
vious work makes use of a sequence-to-sequence
model for generation, but unlike our work, their
approaches focuses on filling in delexicalized utter-
ances (Hou et al., 2018). Our use of guide words
is also similar in spirit to previous work on decod-
ing (Pascual et al., 2021). However, their approach
can guarantee that guide words appear in the output
by shifting token generation probabilities—which
we do not require from our generators.

While we experiment with a handful of ap-
proaches, there is a large and growing literature
on data augmentation for NLP. We briefly touch
on some recently proposed methods, but refer in-
terested readers to surveys on the subject (Feng
et al., 2021). Most data augmentation algorithms
can be roughly categorized as either retrieval (Du
et al., 2021), perturbation (Wei and Zou, 2019),
feature (Kumar et al., 2019; Sun et al., 2020; Wei,
2021), or generation-based (Wang et al., 2021; Ku-
mar et al., 2020; He et al., 2021; Yang et al., 2020).
Some work focuses on counterfactual augmenta-
tion (Kaushik et al., 2020; Joshi and He, 2021); like-
wise, generating minimally perturbed training ex-
amples with different labels (Zhou et al., 2021). In
the literature, augmentation is generally employed
as a tool for improving test set accuracy. But a
recent study explores augmentation for mitigating
gender stereotypes (Zmigrod et al., 2019). Unlike
our work, virtually all previous studies focused on
training set augmentation rather than validation set
construction.

6 Conclusion

In this work we study true-few shot classification,
i.e., few-shot classification when no dedicated val-
idation set is provided for model selection. We
experiment with constructing validation sets via
known data augmentation techniques, as well as
our proposed technique, DAUGSS, which is de-
signed for true few-shot generative data augmen-
tation. When a RoBERTa model is trained in the
FINETUNE setting, models selected using valida-
tion sets constructed by DAUGSS most consis-
tently achieve the highest test set accuracy as well
as the highest fidelity estimates of test set accu-
racy among all competing methods tested. In the
FROZEN case, DAUGSS also yields high perform-
ing models, but so does model selection via the

training loss. Overall, DAUGSS provides the high-
est fidelity estimates of test set accuracy across
all data sets, training epochs, and hyperparameter
configurations.

7 Limitations

In this work, we study various methods of valida-
tion set construction for the true few-shot setting.
While we show positive results for model selection
via a number of methods, our experiments only
deal with few-shot text classification. Moreover,
the datasets we use do not cover natural language
inference, which may require more complex rea-
soning about semantics than validation sets con-
structed with DAUGSS can provide. All of our
experiments are conducted on English language
data sets. Additionally, our experiments include
subsampled data sets with either 5 or 10 examples
per class (when enough examples per class exists),
but we do not explicitly experiment with (intention-
ally) unbalanced data sets. We only experiment
with the RoBERTa model. We choose RoBERTa
because it is high-performing and ubiquitous (and
therefore admits comparison to other work), but we
acknowledge that better models exist and may pro-
vide different results. Despite these limitations, we
believe that our results are sound and likely to gen-
eralize to models aside from RoBERTa. Finally, we
do not experiment with in-context learning meth-
ods (i.e., prompting with GPT-3); but we argue
that FROZEN and FINETUNE are still prominent
training paradigms.
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A Experiments

A.1 Hyperparameters

For hyperparameter optimization, we use Op-
tuna (Akiba et al., 2019). Optuna allows a practi-
tioner to identify the hyperparameters over which
to conduct the search, as well as the allowable
ranges. In our experiments, Optuna tunes the fol-
lowing 4 parameters with the following ranges:

1. learning rate, [0.00001, 0.1];

2. weight decay, [0.0,0.1];

3. dropout among hidden units, i.e.,
hidden_dropout_prob, [0.0,0.5];
and

4. dropout among classification head units, i.e.,

classifier_dropout, [0.0,1.0].

Optuna performs 100 trials (each trial may be
pruned if the corresponding hyperparameters are
deemed unlikely to yield a high performing
model. New configurations are sampled using
the TPESampler (the random seed is set to 37).
Training in a full trial lasts for 30 epochs.

A.2 Model Selection with FROZEN Training

In this section we present the results of model se-
lection when training is carried out in the FROZEN
setting. Like in the FINETUNE setting, both gener-
ative methods (i.e., DAUGSS and EDA) achieve
many statistically significant improvements over
HoLDOUT: DAUGSS offers improvement in all
experimental setting (for both £ = 5 and k = 10)
while EDA offers improvements in 5 out of 6 ex-
perimental conditions for both £ = 5 and k = 10.
However, in this case TRAIN achieves the highest
mean accuracy in most experimental conditions
(and also offers statistically significant improve-
ment over the baseline in all but 1 experimental
condition (for snips when k = 5).

These results are surprising since using the train-
ing set as the validation set is (intuitively) likely
to cause overfitting. However, we note that in the
FROZEN setting (in which only the last layer of
parameters are trainable), overfitting is (perhaps)
less likely. Moreover, model selection using the
training set is equivalent to selecting the model
with the lowest training loss which: i) is a strategy
employed when a validation set is unavailable, and
ii) is also somewhat performant in the FINETUNE
case (Section 4.1). While DAUGSS and EDA offer
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Figure 3: Fidelity of Validation Accuracy, FINETUNE,
k = 10. Validation set accuracy versus test set accuracy
for all hyperparameter configurations, all epochs, and
for all datasets.
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Figure 4: Fidelity of Validation Accuracy, FROZEN,
k = 5. Validation set accuracy versus test set accuracy
for all hyperparamter configurations, all epochs, and for
all datasets.

consistent improvements as in the previous results
(Section 4.1), the primary lesson learned from these
results is that in few-shot cases, training with all
provided data yields better models than holding
out data for validation, and that model selection
can even be done by selecting the model with the
lowest training loss.

A.3 Fidelity of Validation Set Accuracy



k=5 bank clinc curekart powerplayll snips sofmatress
HoLpOUuT 0.339.01 0.52¢.01 0.280.04 0.299.04 0.769.10 0.309.02
TRAIN 0.39901% 0.60901*% 0.36g03% 0.33003% 0.790.10 0.370.03*
DAUGSS 0.39001% 0.60001% 0.35004% 0.32¢.03* 0.849 g2 0.40¢ 3%
EDA 0.390.01* 0.600_01* 0.350.03* 0.320_03* 0.750,12 0.380.02*
TEST 0.52¢.03% 0.69¢.01* 0.440.01* 0.35¢.02% 0.86¢.02% 0.380.092*
k=10

HoLDpOUT 0.54¢ 01 0.749.01 0.430.03 0.34¢.02 0.85¢.04 0.38¢.02
TRAIN 0.660903% 0.82¢p01*% 0.54¢04%x 0.370.02% 0.880p.01% 0.52g 2%
DAUGSS 0.59¢.02% 0.770.01* 0.500.03%* 0.37¢.03% 0.88¢p.01*% 0.46¢.03%
EDA 0.610.03* 0.81()‘01* 0.530.04* 0.370.02* 0.880_02 0.460.02*
TEST 0.670.02* 0.82¢.01* 0.56¢.05* 0.410.03* 0.89¢.01* 0.500.03*

Table 4: Test Set Accuracy, FROZEN, k = {5,10}. Mean and standard deviation test set accuracy of models
selected in the FROZEN setting. Bolded text indicates the highest mean per dataset (other than TEST); asterisk (*)
indicates improvement over HOLDOUT is statistically significant (1-sided Wilcoxon signed rank test, p = 0.05).

k=5 bank clinc curekart powerplayll snips sofmatress
HoLDOUT 0.05g994 0.04¢904 0.15006 0.18p.09 0.13p.11 0.15¢.11
TRAIN 0.45¢.02 0.370.01 0.590.04 0.550.03 0.20¢.09 0.52¢.07
DAUGSS 0.080.02 0.159091 0.08p04 0.07g03 0.049.03 0.09¢.04
EDA 0.20003 0.26p01 0.47p03  0.400.02 0.180.06 0.419.03
k=10

HoLDOUT 0.03g92 0.04p02 0.06004 0.09¢05 0.079.07 0.21p0s
TRAIN 0.320.01 0.18p.01 0.40¢.03 0.45¢.03 0.12¢.01 0.48p .02
DAUGSS 0.25001  0.28001  0.080.03 0.02¢ .02 0.12p03 0.04¢.02
EDA 0.10002  0.100.01  0.260.03  0.370.02 0.10002  0.340.02

Table 5: FROZEN Model Fidelity, k = {5,10}. The mean and standard deviation of the absolute difference
between validation accuracy and test set accuracy of the selected model. Bolded text indicates the lowest mean per
dataset.
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Figure 5: Fidelity of Validation Accuracy, FROZEN,
k = 10. Validation set accuracy versus test set accuracy
for all hyperparamter configurations, all epochs, and for
all datasets.
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