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ABSTRACT

Automatically extracting mentions of suspected drug or vaccine adverse events
(potential side effects) from unstructured text is critical in the current pandemic,
but small amounts of labeled training data remains silo-ed across organizations
due to privacy concerns. Federated Learning (FL) is quickly becoming a goto dis-
tributed training paradigm for such users to jointly train a more accurate global
model without physically sharing their data. However, literature on successful
application of FL in real-world problem settings is somewhat sparse. In this pa-
per, we describe our experience applying a FL based solution to the Named Entity
Recognition (NER) task for an adverse event detection application in the con-
text of mass scale vaccination programs. Furthermore, we show that Differential
Privacy (DP), which offers stronger privacy guarantees, but severely cripples the
global model’s prediction accuracy, thus dis-incentivizing users from participat-
ing in the federation. We demonstrate how recent innovation on personalization
methods can help significantly recover the lost accuracy.

1 INTRODUCTION

As our world grapples with safely rolling out massive scale treatment and vaccination programs
to end the COVID-19 pandemic, it is critical to understand adverse events (potential side effects)
related to these drugs and vaccines. These adverse events are often expressed in free text form, such
as social media posts and reports provided to health care agencies and pharmaceutical companies.
Here’s an example of such a report:

“Shortly after the patient was vaccinated, she started to feel an itching, tingling feeling in her throat.
Fearing that it was an allergic reaction, I called 911.”

Currently, mentions of specific adverse events are extracted and coded manually, which is a time
consuming, expensive and non-scalable process. The use of and necessity of Machine Learning
(ML) based automated methods for extracting such mentions from unstructured text is widely rec-
ognized in pharmacovigilance Harpaz et al.|(2014). Several different genres of text are tackled in
this line of research, including social media |Gurulingappa et al.|(2012)); Korkontzelos et al.|(2016),
biomedical literature |Leaman et al.| (2010); Winnenburg et al.| (2015), clinical narratives |[Haerian
et al| (2012); |[LePendu et al.| (2013) and drug labels [Roberts et al.| (2017). More recently, use of
state of the art deep learning technology for Named Entity Recognition (NER) have been proposed
Giorgi & Bader| (2018).

Training these ML models requires data. Greater the amount of training data, the better the model
performance. However, manually collecting and annotating this data is expensive, non-scalable, and
particularly challenging, given the need to maintain privacy of health records. Though the resulting
data scarcity problem can be addressed by sharing data amongst multiple institutions, privacy con-
cerns, government regulations, and data use agreements may prohibit such data sharing. Federated
Learning (FL) |Bonawitz et al.[|(2019); Konecny et al.| (2015), a distributed ML paradigm, may pro-
vide the perfect solution to this problem: Users can jointly train a ML model without sharing data
with each other, offering advantages in both scale and privacy. Furthermore, much tighter privacy
guarantees can be ensured via Differential Privacy (DP) enforcement mechanisms |Dwork| (20006);
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Dwork & Roth|(2014); Dwork et al.| (2000); |Abadi et al.|(2016)); |Geyer et al.| (2017); Konecny et al.
(2016); McMabhan et al.|(2017).

Informally, DP forces a bound on the variation in the trained model’s output based on the inclu-
sion/exclusion of a single data point used in the training set. While DP enforces formally provable
privacy guarantees, its employment, typically done by injecting noise in the training process, can
lead to significant degradation in prediction accuracy of the resulting model, even making it worse
than a user-resident model trained on just the user’s data, which we call the individual model. This
can dis-incentivize users from participating in the federation. However, recent work has shown that
personalization can actually alleviate model degradation due to DP induced noise [Peterson et al.
(2019); [Yu et al.|(2020).

In this paper, we case study application of FL to the problem of vaccine adverse event detection, the
first of its kind to the best of our knowledge. We use data from Vaccine Adverse Event Reporting
System (VAERS), which is the prominent surveillance system for vaccines in the U.S., managed by
the U.S. Centers for Disease Control and Prevention (CDC) and the Food and Drug Administration
(FDA). The VAERS data is de-identified, publicly available, and contains both textual narrative and
meta data around vaccines and patients. We annotated the narratives for adverse event mentions
and partitioned them by vaccine manufacturers. Each vaccine manufacturer acts as a federation user
whose dataset is siloed in its private sandbox; all these sandboxes participate in Federated Learning
over multiple training rounds.

Our experiments on the (VAERS) dataset reveal several interesting insights including general effec-
tiveness of FL on model performance, effects of local DP enforcement on model performance, and
the value of personalization techniques to incentivize users to participate in FL. In particular, we
show that FL. improves average F1 value by 37.43% over the individual model, while enforcement
of local DP (DP-FL) degrades the FL. model’s average F1 by 25.17%. For one of the users, this
degradation is so severe that the private FL. model F1 is worse by 45.55% when compared with the
individual model F1. This clearly makes DP-FL a non-starter for some users to join the federation.
We study FL with Fine-Tuning (FT-FL)Yu et al.| (2020), a personalization approach that fine-tunes
the global model at each user after the entire FL training process completes. Interestingly, contrary
to prior work [Yu et al.| (2020), simply augmenting fine-tuning to FL. does not result in prediction
accuracy improvement for the federation users. However, somewhat surprisingly, fine-tuning in the
presence of DP (FT-DP-FL) boosts user accuracy by 24.88%, compared to the individual model, to
strongly incentivize users to join and stay with the federation.

2 FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY

In FL, a federation server initializes a global model and ships it to all participating users thereby
initiating distributed training. Training happens over multiple rounds. In each round, each user, on
receiving the the global model re-trains the model on its private data and sends back the resulting
parameter updates to the federation server. The federation server aggregates updates from all users
applying them to the global model, and then ships the revised model back to the users. The most
widely used method of aggregation is FedAvg|Konecny et al.|(2015); McMahan et al.[(2016), where
user parameters updates are averaged at the federation server and applied to the global model.

Noting privacy concerns, more recent work has proposed addition of differential privacy to FL|Geyer,
et al.[(2017);|Konecny et al.{(2016); McMahan et al.|(2016). Differential privacyDwork et al.|(2006)
is a mathematically quantifiable privacy guarantee for a data set used by a computation that analyzes
it. While it originally emerged in the database and data mining communities, triggered by privacy
concerns in Machine Learning (ML) Fredrikson et al.| (2015; 2014); [Hitaj et al.| (2017); |Korolova,
(2010); |Shokri et al.| (2017); [Tramer et al.| (2016), DP has garnered enormous traction in the ML
community over the last decade |Abadi et al.| (2016); |Carlini et al.[(2019); |Chaudhuri et al.| (201 1);
Differential Privacy Team| (2017); |Dimitrakakis et al.| (2017); [Fredrikson et al.| (2014} 2015); |Park:
et al.| (2016bta); Sarwate & Chaudhuri| (2013)).

In the FL context, one can enforce DP using two distinct approaches: (i) Global DP, also called
Central DP in the literature McMahan et al| (2017); [Zhu et al.| (2020), where users fully trust the
federation server to enforce DP. The server in turn enforces DP to obfuscate the participation of
each user. (ii) Local DP |Differential Privacy Team| (2017); Duchi et al.| (2013)); [Kasiviswanathan
et al.| (2008)); [Truex et al.|(2020), where users do not trust the federation server, and enforce DP on
the updates shipped back to the server. This method of DP enforcement typically guarantees privacy
to a finer granularity of individual training data points|Liu et al. (2020).
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Vaccine Merck Sanofi Pfizer- Glaxo Novartis CSL Medimmune Segirus Emergent Berna
Manu- Co. Pasteur Wyeth Smithkline Vaccines Ltd. Vaccines Inc Bio- Biotech
facturer Inc. Biologicals &Diagnostics Inc. solutions Ltd.
Num Reports 7638 3352 2428 2289 1183 465 265 111 58 52

Table 1: VAERS Dataset.‘Vaccine Manufacturer’ is a field in the public VAERS database that identifies the
manufacturer of the vaccine reported in the VAERS form. There is no relationship between this field and the
reporter. ‘Num Reports’ does not represent the rate of adverse events associated with the manufacturer or its
products and cannot be used to estimate such rates. The statistics are based on a sample of reports submitted
to VAERS between 2015-2017 whose MedDra coded adverse events appeared in the narrative. Because the
statistics are based on a carefully selected sample, the distribution of reports shown may not represent the true
distribution of reports associated with different vaccine manufacturers.

To enforce local DP, we use the algorithm proposed by Abadi et al. |/Abadi et al.| (2016) that injects
gaussian noise (calculated using their moments accountant algorithm) in parameter gradients during
local training at each user. Noisy gradients lead to noisy parameter updates, which are eventually
shipped from the user to the federation server. Since users can possess datasets with different sizes,
the computed noise, which is a function of the dataset size, varies considerably from user to user.

Personalization through Fine Tuning The main allure of FL for a user is the promise of signif-
icant prediction accuracy improvements over a locally trained individual model. While parameter
aggregation through FL can significantly improve accuracy of the global model, introduction of
noise to enforce DP can severely compromise that improvement. The degradation can be severe
enough to make users reconsider their decision to join the federation, and deter new users from
joining the federation.

Researchers have recently proposed different forms of personalization approaches to remedy the
problem of model degradation due to DP enforcement Peterson et al.| (2019); [Yu et al.| (2020).
Among the proposed personalization approaches, we focus on FL with Fine Tuning |Yu et al.[(2020):
FT-FL for fine tuning on top of plain FL, and FT-DP-FL for fine tuning on top of FL with local
DP enforcement. In this approach each user continues training, without noise, the local copy of the
global differentially private model after the FL training process has completed.

The fine tuning based parameter updates are private to each user and are not shared with the federa-
tion. As aresult, the fine tuned local models may diverge from the global model at varying degrees in
order to better fit the users’ private data. While endlessly fine tuning the global model can lead to the
model converging to a locally trained individual model, standard hyperparameter tuning techniques
can help ensure that the fine-tuned model does not deteriorate.

3 EXPERIMENTS

3.1 DATASET

The VAERS data (de-identified) is publicly available in structured format. Each VAERS report in-
cludes textual narrative, along with the name of (and additional information about) the administrated
vaccine, a list of adverse events related to the vaccine, dates, and limited demographic information
about the patient receiving the vaccine (e.g., age, gender).

We used a total of 17,841 narratives submitted to VAERS through the years 2015-2017 to form the
NER data set used for this study. The narratives were automatically annotated for adverse event
named entities using the list of adverse events supplied with each report. In total the NER data
set used for this study comprised of 87,730 sentences and 39,139 annotated adverse event named
entities. Table |1| describes the dataset. In our experiments, we split the data randomly into train,
validation, tune and test sets in the proportion 60%, 10%, 10%, and 20% respectively. We used the
validation set to decide early stopping in the fine tuning algorithm and tuned the rest of parameters
on the tune set. We refer to “large manufacturers” as those with more than 1000 VAERS reports in
this data and “small manufacturers” as those with fewer reports to reflect the availability of training
data in each user’s silo.

3.2 NER BASED ON RECURRENT NEURAL NETWORKS
The recurrent neural network (RNN) architecture we used to perform NER is based on a commonly

applied BiLSTM architecture. The architecture consists of three major components: (1) a word rep-
resentation layer made of word embeddings, (2) two stacked layers of bidirectional long short-term
memory (LSTM) cells, and (3) a feedforward layer that performs the final BIO sequence labeling.
We use pre-trained word embeddings to seed the network’s word embedding layer. These were gen-
erated using Word2Vec applied to the sentences comprising the VAERS NER dataset. The network
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Figure 1: F1 per manufacturer for different methods for € = 2.0

was implemented on PyTorch6 and trained using stochastic mini-batch gradient descent with the
Adam optimizer for a pre-defined number of iterations. Each iteration processed a batch of 256
randomly selected sentences. The network was trained for a total of 20 epochs, each epoch con-
sisting of number of sentences in the training set / batch size iterations. Dropout regularization was
implemented between each of the three major network components, with the drop rate of 0.4.

3.3 EXPERIMENTAL SETUP
We have implemented our own FL simulation framework, on PyTorch6, that hosts the federation
server and users on the same computer.

As the first baseline for our experiments, we train Individual models (Ind), i.e. assume that each
manufacturer only uses their own training set, and test on their respective test set. This baseline
represents the case in which the manufacturer chooses not to participate in the federation at all. FL
is the federated learning model trained in a collaborative fashion across users using the FedAvg al-
gorithm. This model is then fine tuned for each user using the protocol described in[section 2} which
yield a set of models, one per manufacturer, that we call F7. Next, we introduce local differential
privacy to the FL model, as described in[section 2] We use ¢ = 2.0 for this first set of experiments as
it is considered a fairly conservative privacy setting in the literature|[Abadi et al| (2016)) and calculate
the sigma values suitable per user. We call this private federated learning variant DP-FL. Finally,
we fine tune this private FL. model and call it FT-DP-FL.

The training parameters for all of these algorithms were tuned using a separate tuning dataset. We
use a learning rate of 0.01 and train all the federated models for 20 rounds of FedAvg, with addi-
tional 20 epochs for the fine tuning variants at each manufacturer. For evaluation, we compute the
precision, recall, and F1 of each token label on a 1-vs-all basis. The values reported are the mean F1
score (henceforth called F1) for the labels at the beginning or inside of an adverse event mention.

We ask the following questions as part of this study. Does FL perform better than Ind models across
users? What happens when differential privacy is introduced? Does personalization help improve
accuracy over FL and mitigate DP-FL’s accuracy loss enough to re-incentivize users to participate in
the federation? In the appendix, we also study robustness to varying parameters of DP and stability
against uncertainties of real world, such as users dropping out.

3.4 PRIVATE FEDERATED LEARNING WITH PERSONALIZATION

Figure [T| shows the F1 values for each of the described models on the individual users’ test sets.
Note that the manufacturers on the z-axis are sorted based on the size of their training sets. As we
can see, the FL. model consistently outperforms Ind models for each of the users, including large
manufacturers with a lot of training data. Contrary to findings by Yu et. al. (2020), in
our case, personalization based on fine tuning F7-FL performs worse than FL in most cases. As we
add noise related to differential privacy to the federated learning model, F1 values drop significantly
across the board. This makes participation for larger manufacturers in the federation unattractive,
since the DP-FL model ends up performing worse than their Ind models. However, applying fine
tuning in this case helps bring it back up to the point, where it is again advantageous for each party
to participate in the federation. This shows that personalization based approach can help mitigate
the loss of accuracy from introducing differential privacy.

It is interesting to note that for small manufacturers, with an exception of one with very small amount
of evaluation data, it is always beneficial to participate in the federation, even for DP-FL, with or
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without personalization. For large manufacturers however, the DP is only attractive in the presence
of the mitigation offered by fine-tuning based personalization (F7-DP-FL).

4 CONCLUSION

Extracting mentions of vaccine adverse events using machine learning methods is an extremely ur-
gent task right now. Federated Learning is a promising approach for breaking down organizational
and geographical barriers to collaboration on building very effective models to solve this problem.
Our work demonstrates that manufacturers with dataset of all different sizes can benefit from partic-
ipating in such a federation, and that the loss of accuracy incurred through adding additional layers
of privacy can be mitigated by introducing personalization.
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A APPENDIX

A.1 ROBUSTNESS TO DIFFERENTIAL PRIVACY NOISE

Next, we study the effectiveness of personalization in recovering from the accuracy loss resulting
from differential privacy noise. We vary the parameter ¢ and measure F1 averaged across users
for two of the algorithm variants: differentially private federated learning (DP-FL) and the fine
tuned differentially private federated learning (FT-DP-FL). As we can see from average
F1 for DP-FL deteriorates significantly for values of € less than 2. However, even in these cases, the
personalized version, FT-DP-FL manages to retain its performance. We believe this is an important
finding that provides significant latitude to differentially private FL frameworks to further tighten
the privacy budget of € without compromising utility.

A.2 STABILITY OF FEDERATION AGAINST USERS LEAVING

Building a federation across organizations can be challenging in the real world due to a variety of
factors. For instance, users may discontinue their participation in the federation. We simulate this
scenario and study the effect of one of the manufacturers leaving the federation. As we can see from
Tables 2] and [3] both federated learning and private federated learning with fine tuning are fairly
stable against such a change, with the exception of a few manufacturers with very small amount of


http://arxiv.org/abs/1912.06733
https://arxiv.org/abs/2002.04758

Published as a conference paper at ICLR 2021

80

7

Average F1
5
3

&

55

8.0 4.0 20 10 0.5
Epsilon

Figure 2: Average F1 across users for the two differentially private FL variants.

Ml | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | MI10
M1 | 00 | 09 | 1.8 | 04 | 1.0 | 2.1 1.8 | 04 | 1.0 | 0.0
M2 | -03 | 00 | 04 | 05 14 | 16 | 1.6 | -04 | 32 | -1.5
M3 |-01]05]|00 01|01 |09 ] 14|19 ]|10] -15
M4 | -06 | 08 | 02 | 00 | 26 | -02 | 35 1.3 | 1.0 | 00
M5 | -05]-01]-01|29 | 00|06 | 06 |-19| 10| 00
M6 | -08 | 00 | 02 | -05|-04| 00 | 1.6 | -1.1 | 2.1 | 00
M7 | -05 ] 05 |-03|-05| 01|07 1]00]| 04 |10] -15
M8 | -07 03|03 |-01]-05|001]-05]|001|08] 00
M9 | 04 ] 01| 02| 00| 04|01 1] 09|09 |00] 45
M10 | -1.0| 00 | -02 | -02 | -02 | 03 | -1.3 | -1.1 | 0.0 | 0.0

Table 2: Stability of FL performance when a single user leaves. M1-M10 are manufacturers sorted in descend-
ing order by size. Each row represents a manufacturer that is leaving the federation. Each Column represents
the difference between F1 values under full federation and this reduced federation for that manufacturer.

training and test data. In other words, no single manufacturer has disproportionally large impact on
the overall accuracy gains from participating in the federation.

A.3 FEDERATION OF SMALL MANUFACTURERS

Another scenario that we simulate is the one where only participants with small amount of training
data agree to collaborate. In this case, we do not have the advantage of the large amount of training
data from any of the larger manufacturers. To better understand if such a federation is still advanta-
geous, we compare the F1 values for small manufacturers in two different scenarios: one, in which
they are a part of a large federation with all manufacturers, and second, in which they are a part
of a federation with only the small manufacturers. Figures [3|and ff] show these comparisons for FL
and FT-DP-FL respectively. As is clear from the bar chart, even in the case of a federation with just
the small manufacturers, most of the manufacturers benefit significantly from participating. In fact,

Ml | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10
M1 00|01 |04 |19]-24| 14|29 |-83] 03 | 158
M2 | -01] 00| 06 |16 |-15]|-16| 05 ]|-25| 14 | 225
M3 | 0505|0021 ]-17]02]|-13]-12/|-12] 37
M4 | -03 03|02 |00]|-01]|-43| 07 |-13]|-04 ] 187
M5 |01 00 |-03|10] 00]-03|-03]-19|-08] 05
M6 | -02|-05] 03|16 |-19] 00 |-15|-03|-05]| 42
M7 | -05 1] 01 | 03 |22 |-12]|-28| 00 | -05]| 09 | 289
M8 | 05 |-05| 08 | 06| 00]|-40|-09] 00| 52| 158
M9 | -05]-05| 03 |10 |-25]|-33|-35]|-24]| 00| 41
M10 | -0.1 | -02 | 1.0 | 09 | -1.8 | -32 | -0.1 | -14 | 2.2 0.0

Table 3: Stability of Private FL with Fine Tuning performance when a single user leaves. M1-M10 are
manufacturers sorted in descending order by size. Each row represents a manufacturer that is leaving the
federation. Each Column represents the difference between F1 values under full federation and this reduced
federation for that manufacturer.
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Figure 3: Comparison of FL F1 for small manufacturers when they are a part of a larger federation vs. a
federation of only small manufacturers.
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Figure 4: Comparison of FT-DP-FL F1 for small manufacturers when they are a part of a larger federation vs.
a federation of only small manufacturers.

the performance of all manufacturers in the small federation closely tracks their performance in the
large federation, with one exception.

A.4 TRAINING TIME

All experiments were run on the Oracle Cloud Infrastructure cluster of Tesla V100 GPUs running
a job scheduling software. The GPUs were either 1, 2 or 8 core, with 90G, 180G, 768G memory
respectively. Here we report the actual wall clock time for training different variants of federated
learning. Training the FL model took 7.95 minutes, while training it and tuning it for each of the
users in a serial fashion took a total of 17.10 minutes. The DP-FL model took 505.84 minutes to train
by itself and 559.34 minutes with fine tuning. The DP models took over an order of magnitude of
training time because during training the DP noise injection code path computes and clips gradients
of individual data points in a training mini-batch before applying gaussian noise to the averaged
mini-batch gradients. This is necessary to ensure that the training algorithm respects the allotted
€ privacy budget over the training process. Parallelization of this component of our system using
Goodfellow’s technique [Goodfellow| (2015) is the subject of future work.
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