
GraalVM Native Image
Large-scale static analysis for Java

Christian Wimmer

Architect, GraalVM Native Image

christian.wimmer@oracle.com

Christian Wimmer

5+ years working on Java HotSpot VM

• SSA form and register allocation for the client compiler

• Research of object layout optimizations

3 years “detour” into language based security

10+ years working on GraalVM

• Native Image architect, from first commit to production

Copyright © 2021, Oracle and/or its affiliates2

High-performance optimizing
Just-in-Time (JIT) compiler

Ahead-of-Time (AOT) “Native
Image” generator

Multi-language support

What is GraalVM?

3 Copyright © 2021, Oracle and/or its affiliates

One compiler, many configurations

Copyright © 2021, Oracle and/or its affiliates4

Java HotSpot VM

Executes

Your Application

JIT Compilation

1

1 Compiler configured for just-in-time compilation inside the Java HotSpot VM

GraalVM
Compiler

App.jar

One compiler, many configurations

Copyright © 2021, Oracle and/or its affiliates5

Java HotSpot VM

Executes

Your Application

JIT Compilation

1

1 Compiler configured for just-in-time compilation inside the Java HotSpot VM
2 Compiler also used for just-in-time compilation of JavaScript code

GraalVM
Compiler

GraalJSApp.jar

2

One compiler, many configurations

Copyright © 2021, Oracle and/or its affiliates6

Java HotSpot VM

Executes

Native Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native Image

Builds

1

1 Compiler configured for just-in-time compilation inside the Java HotSpot VM
2 Compiler configured for static points-to analysis
3 Compiler configured for ahead-of-time compilation

GraalVM
Compiler 2

GraalVM
Compiler 3

GraalVM
Compiler

Your
Application

One compiler, many configurations

Copyright © 2021, Oracle and/or its affiliates7

Java HotSpot VM

Executes

Native Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native Image

JIT Compilation

GraalJSBuilds

1

1 Compiler configured for just-in-time compilation inside the Java HotSpot VM
2 Compiler configured for static points-to analysis
3 Compiler configured for ahead-of-time compilation
4 Compiler configured for just-in-time compilation inside a Native Image

GraalVM
Compiler 2

GraalVM
Compiler 3

GraalVM
Compiler

4

GraalVM
Compiler

One compiler, many configurations

8

https://doi.org/10.1145/2764907

https://doi.org/10.1145/2764907

GraalVM Native Image

Copyright © 2021, Oracle and/or its affiliates9

Native image generation

Copyright © 2021, Oracle and/or its affiliates10

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

• The points-to analysis needs to see all bytecode

• Otherwise aggressive AOT optimizations are not possible

• Otherwise unused classes, methods, and fields cannot be removed

• Otherwise a class loader / bytecode interpreter is necessary at run time

• Dynamic parts of Java require configuration at build time

• Reflection, JNI, Proxy, resources, ...

• No loading of new classes at run time

Closed world assumption

Copyright © 2021, Oracle and/or its affiliates11

• Execution at run time starts with an initial heap: the “image heap”

• Objects are allocated in the Java VM that runs the image generator

• Heap snapshotting gathers all objects that are reachable at run time

• Do things once at build time instead at every application startup

• Class initializers, initializers for static and static final fields

• Explicit code that is part of a so-called “Feature”

• Examples for objects in the image heap

• java.lang.Class objects

• Enum constants

Image heap

Copyright © 2021, Oracle and/or its affiliates12

Benefits of the image heap

Copyright © 2021, Oracle and/or its affiliates13

Without GraalVM
Native Image

Build time

Run time

GraalVM Native Image
(default)

Build time

Run time

GraalVM Native Image:
Load configuration file

at build time

Build time

Run time

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Paper with details, examples, benchmarks

14

https://doi.org/10.1145/3360610

https://doi.org/10.1145/3360610

Nice theory, but does it work in practice?

Copyright © 2021, Oracle and/or its affiliates15

Several AOT compilers for Java exist or existed

• jaotc (part of OpenJDK, using the GraalVM compiler)

• gcj

• Excelsior JET

But Java code is hard to optimize without data

• Java code is very object oriented

• AOT compilation only covers the “code” aspect of objects and ignores the “data” aspect

• Simple example: You cannot optimize Java enum usages without having the actual enum instances

• To get to data (Java objects), you need to run parts of your application

Why not “just AOT compilation”?

Copyright © 2021, Oracle and/or its affiliates16

JVMCI and the hosting Java VM provide

• Class loading (parse the class file)

• Access the bytecodes of a method

• Access to the Java type hierarchy, type checks

• Resolve virtual method calls

Bytecode parsing for points-to analysis and compilation use same intermediate representation

• Simplifies using the analysis results for optimizations

Goals of points-to analysis

• Identify all methods reachable from a root method

• Identify the types assigned to each field

• Identify all instantiated types

Fixed point iteration of type flows: Types propagated from sources (allocation) to usage

Static analysis using the JVM compiler interface (JVMCI)

Copyright © 2021, Oracle and/or its affiliates17

bar

Points-to analysis

Copyright © 2021, Oracle and/or its affiliates18

Object f;

void foo() {
allocate();
bar();

}

Object allocate() {
f = new Point()

}

int bar() {
return f.hashCode();

}

putField f

new Point

getField f

obj vcall hashCode

this

allocate

Point.hashCode

[Point]

[Point]

[Point]

f

[Point]

[Point]

Analysis is context insensitive:
One type state per field

bar

Points-to analysis

Copyright © 2021, Oracle and/or its affiliates19

putField f

new Point

getField f

obj vcall hashCode

this

allocate

Point.hashCode

[Point]

[Point]

[Point, String]

f

[String]

[Point, String]

[Point, String]

this

String.hashCode

f = "abc";

Object f;

void foo() {
allocate();
bar();

}

Object allocate() {
f = new Point()

}

int bar() {
return f.hashCode();

}

void someMethod() {
f = "abc";

}

Analysis is context insensitive:
One type state per field

Theory: to improve analysis precision, we “just” have to make the analysis context sensitive. And there
is no shortage of papers (and entire conferences) about that.

But what nobody really tells you: Any useful improvement of precision requires a very deep context

• Java has deep call chains

• Java has deep object structures. For example, just look at java.util.HashMap

• Java arrays have no type information: every array can be cast to Object[]

• Reflection is pervasively used, and reflection passes arguments in Object[] array

• About every JDK method can call String.format which has huge reachability

We believe that a context sensitive analysis is infeasible in production. At least we tried and failed.

Context sensitive analysis

Copyright © 2021, Oracle and/or its affiliates20

Problems of context sensitive analysis: HashMap

Copyright © 2021, Oracle and/or its affiliates21

keys values

<foo>

void bar() {
Map map = new HashMap<>();
...

}

keys values

<bar>

void foo() {
Map map = new HashMap<>();
...

}

At least a 3-level heap context
is required for any useful
optimization

Region-based memory management

Copyright © 2021, Oracle and/or its affiliates22

Static Analysis

Runtime
Data Structures

Region analysis is built as a
context-sensitive static analysis

Stancu et al, Safe and Efficient Hybrid
Memory Management for Java
https://doi.org/10.1145/2754169.2754185

https://doi.org/10.1145/2754169.2754185

Model for HashMap:

Quite intuitive

• “Anything that gets put in can come out”

V HashMap_Model.put(K key, V value) {
this.allKeys = key;
this.allValues = value;
return this.allValues;

}

• Model API behavior

• Are simple to analyze

• But do not model all behavior

The static analysis links method calls to both the
original and the model implementation

• Original implementation without context

• Semantic model with context

• 1-level deep heap context is sufficient

Only the more precise return values from model
are propagated

Semantic models

Copyright © 2021, Oracle and/or its affiliates23

V HashMap_Model.get(Object key) {
return this.allValues;

}

Fegade et al, Scalable Pointer Analysis
of Data Structures using Semantic Models
https://doi.org/10.1145/3377555.3377885

https://doi.org/10.1145/3377555.3377885

Lower is better  faster analysis

Semantic models: analysis time

Copyright © 2021, Oracle and/or its affiliates24

Context insensitive

Context sensitive

Semantic Models
N

o
rm

a
liz

e
d

 a
n

a
ly

si
s

ti
m

e

• Improving analysis precision is really great

• But in reality, no user has complained about the precision of our current context-insensitive analysis

• And we only just started using all the computed information

• In contrast, many users have complained about long analysis time and high memory footprint

• Currently minutes of analysis time, 10 GByte memory footprint

• GitHub issue #3043: “Image building fails on my Raspberry Pi”

Points-to results are moderately useful for optimizing peak performance

• Useful to know if a certain value has an exact type, or a few types, or is never null

• But 10 types vs. 1000 types makes no difference

Solution: “saturated type states”

• Only track small type states individually

Improving analysis time and memory footprint

Copyright © 2021, Oracle and/or its affiliates25

0

4

8

12

0 1000 2000 3000 4000 5000 6000 7000 8000

[GByte]

Number of classes

Total Heap Size

Without saturation

With saturation

0

20

40

60

80

0 1000 2000 3000 4000 5000 6000 7000 8000

[seconds]

Number of classes

Static Analysis Time

Without saturation

With saturation

Goal: reduce the memory footprint (and analysis
time) for large image builds

• Make the analysis “linear enough”

• Saturate type states: Do not track detailed
type information when number of types > n

• Link virtual method calls with saturated
receivers only once

• Enabled since GraalVM 20.2

Benchmark numbers: synthetic benchmark with
10 virtual methods per class, and increasing
number of classes

• Out of memory without saturation for 4000
and more classes

Saturated type states

Copyright © 2021, Oracle and/or its affiliates26

• Context-sensitivity with a method context is conceptually similar to method inlining

• Both expand the scope from one method to a group of methods

• Inlining only for small methods does not increase static analysis time

• Compiler: Inlining of small methods reduces compilation time and compiled code size

• Method inlining is even more powerful than a method context

• Context sensitive analysis only improves quality of values that have an object type

• Method inlining also improves the quality of primitive value

• Enables more constant folding and dead code elimination before static analysis:

• Enabled since GraalVM 21.3

Inline methods before static analysis

Copyright © 2021, Oracle and/or its affiliates27

static final boolean WINDOWS = ...

static boolean isWindows() {
return WINDOWS;

}

// Either foo or bar is reachable
if (WINDOWS) foo(); else bar();

// Without method inlining, both
// foo and bar are reachable
if (isWindows()) foo(); else bar();

Constant folding

• Propagate final field values from the image heap

Dead code elimination

• Removing unreachable code early makes less other code reachable

Method inlining

• Makes the static analysis context sensitive

Conditional elimination

• Remove redundant if-statements to make the analysis faster

Escape analysis

• Enable more constant folding and inlining by combining object/array allocation and initialization

Compiler optimizations to run before static analysis

Copyright © 2021, Oracle and/or its affiliates28

HelloWorld.class.getDeclaredMethod("foo", String.class, int.class);

HelloWorld.class.getDeclaredMethod("foo", new Class[] {String.class, int.class});

is really

and needs escape analysis of the array allocation and initialization before getDeclaredMethod can be constant folded

Static analysis API exposed to application

Copyright © 2021, Oracle and/or its affiliates29

Active API: register callbacks for analysis status changes

/* Invoke callback when one of the provided elements (can be Class, Field, or Executable) gets reachable. */
void registerReachabilityHandler(Consumer<DuringAnalysisAccess> callback, Object... elements);

/* Invoke callback when a new subtype of the provided type gets reachable. */
void registerSubtypeReachabilityHandler(BiConsumer<DuringAnalysisAccess, Class<?>> callback, Class<?> baseClass);

/* Invoke callback when a new override of the provided method gets reachable. */
void registerMethodOverrideReachabilityHandler(BiConsumer<DuringAnalysisAccess, Executable> callback, Executable baseMethod);

Passive API: query current analysis status

boolean isReachable(Class<?> clazz);
boolean isReachable(Field field);
boolean isReachable(Executable method);

Set<Class<?>> getReachableSubtypes(Class<?> baseClass);
Set<Executable> getReachableMethodOverrides(Executable baseMethod);

Participate in heap snapshotting: transform entire object or transform individual field value before it is added to image heap

void registerObjectTransformer(Function<Object, Object> transformer); // actually called registerObjectReplacer right now
void registerFieldValueTransformer(Field field, Function transformer); // actually done via @Alias and @RecomputeFieldValue

• Context-insensitive points-to analysis

• Image heap scanning during analysis

• Application code runs during static analysis and can react to reachability information

• Context-sensitive analysis worked for research projects, but too slow for production

• Recent focus on reducing analysis time and footprint, not improving precision

• Propagate only “useful” information through the type flow graph

• Some compiler optimizations run before the static analysis

• Constant folding, method inlining

Summary: GraalVM Native Image static analysis

Copyright © 2021, Oracle and/or its affiliates30

Thank you

https://www.graalvm.org

Copyright © 2021, Oracle and/or its affiliates31

