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COMPUTATIONALLY EASY, SPECTRALLY GOOD

MULTIPLIERS FOR CONGRUENTIAL PSEUDORANDOM

NUMBER GENERATORS

GUY STEELE AND SEBASTIANO VIGNA

Abstract. Congruential pseudorandom number generators rely on good mul-
tipliers, that is, integers that have good performance with respect to the spec-

tral test. We provide lists of multipliers with a good lattice structure up to

dimension eight for generators with typical power-of-two moduli, analyzing in
detail multipliers close to the square root of the modulus, whose product can

be computed quickly.

1. Introduction

A multiplicative congruential pseudorandom number generator (MCG) is a com-
putational process defined by a recurrence of the form

xn =
(
axn−1

)
mod m,

where m ∈ Z is the modulus, a ∈ Z/mZ is the multiplier, and xn ∈ (Z/mZ)r{0}
is the state of the generator after step n. Such pseudorandom number generators
(PRNGs) were introduced by Lehmer [11], and have been extensively studied. By
adding a constant c ∈ Z/mZ, c 6= 0, we obtain a linear congruential pseudorandom
number generator (LCG), with state xn ∈ Z/mZ:1

xn =
(
axn−1 + c

)
mod m.

Under suitable conditions on m, a and c, sequences of this kind are periodic and
their period is full, that is, m− 1 for MCGs (c = 0) and m for LCGs (c 6= 0). For
MCGs, m must be prime and a must be a primitive element of the multiplicative
group of residue classes (Z/mZ)× (i.e., its powers must span the whole group). For
LCGs, there are simple conditions that must be satisfied [9, §3.2.1.2, Theorem A].

For MCGs, when m is not prime one can look for sequences that have maximum
period, that is, the longest possible period, given m. We will be interested in moduli
that are powers of two, in which case, if m ≥ 8, the maximum period is m/4, and
the state must be odd [9, §3.2.1.2, Theorem B].

1We remark that these denominations, by now used for half a century, are completely wrong

from a mathematical viewpoint. The map x 7→ ax is indeed a linear map, but the map x 7→ ax+c

is an affine map [2]: what we call an “MCG” or “MLCG” should called an “LCG” and what we
call an “LCG” should be called an “ACG”. The mistake originated probably in the interest of

Lehmer in (truly) linear maps with prime moduli [11]. Constants were added later to obtain long-
period generators with non-prime moduli, but the “linear” name stuck (albeit some authors are
using the term “mixed” instead of “linear”). At this point it is unlikely that the now-traditional

names will be corrected.
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2 GUY STEELE AND SEBASTIANO VIGNA

While MCGs and LCGs have some known defects, they can be used in combi-
nation with other pseudorandom number generators (PRNGs), or passed through
some bijective function that might lessen such defects. Due to their speed and sim-
plicity, as well as a substantial accrued body of mathematical analysis, they have
been for a long time the PRNGs of choice in programming languages.

In this paper, we provide lists of multipliers for both MCGs and LCGs, continuing
the line of work by L’Ecuyer in his classic paper [10]. The quality of such multipliers
is usually assessed by their score in the spectral test, described below.

The search for good multipliers is a sampling process from a large space: due
to the enormous increase in computational power in the last twenty years, we can
now provide multipliers with significantly improved scores. In fact, for multipliers
of up to 35 bits we have now explored the sample space exhaustively.

We consider only generators with power-of-two moduli; this choice avoids the
expensive modulo operation, because nearly all contemporary hardware supports
binary arithmetic that is naturally carried modulo 2w for some word size w. Such
generators do have additional known, specific defects (e.g., the periods of the lowest
bits are very short, and the flip of a state bit will never propagate to lower bits),
but there is a substantial body of literature on how to ameliorate or avoid these
defects.

Furthermore, in this paper we pay special attention to small multipliers, that is,
multipliers close to the square root of the modulus m. For m = 22w, this means
multipliers whose size in bits is w±k for small k. As is well known, many CPUs with
natural word size w can produce with a single instruction, or two instructions, the
full 2w-bit product of two w-bit operands, which makes such multipliers attractive
from a computational viewpoint.

Unfortunately, such small multipliers have known additional defects, which have
been analyzed by Hörmann and Derflinger [7], who provided experimental evidence
of their undesirable behavior using a statistical test based on rejection.

One of the goals of this paper is to deepen their analysis: we first prove theoreti-
cally that w-bit multipliers for LCGs with power-of-two modulus 22w have inherent
theoretical defects. Then we show that these defects are ameliorated as we add
bits to the multiplier, and we quantify this improvement by defining a new figure
of merit based on the magnitude on the multiplier. In the end, we provide tables
of multipliers of w + k bits, where k is relatively small, with quality closer to that
of full 2w-bit multipliers.

During the search of good multipliers, the authors have accumulated a large
database of candidates, which is publicly available for download, in case the reader
is interested in looking for multipliers with specific properties. The software used
to search for multipliers is available under the [choose license].

2. Spectral figures of merit

For every integer d ≥ 2, the dimension, we can consider the set of d-dimensional
points in the unit cube

Λd =

{(
x

m
,
f(x)

m
,
f2(x)

m
, . . . ,

fd−1(x)

m

) ∣∣∣∣∣ x ∈ Z/mZ

}
,

where

f(x) = (ax+ c) mod m
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is the next-state map of a full-period generator. This set is the intersection of a
d-dimensional lattice with the unit cube [9, §3.3.4.A]. Thus, all points in Λd lie on
a family of equidistant, parallel hyperplanes; in fact, there are many such families.

The spectral test examines the family with the largest distance between adjacent
hyperplanes: the smaller this largest interplane distance is, the more evenly the
generator fills the unit d-dimensional cube. Using this idea, the figure of merit for
dimension d of an MCG or LCG is defined as

fd(m, a) =
νd

γ
1/2
d

d
√
m
,

where 1/νd is the largest distance between adjacent hyperplanes found by consid-
ering all possible families of hyperplanes covering Λd. We will usually imply the
dependency on the choice of m and a.

The definition of fd also relies on the Hermite constant γd for dimension d. For
2 ≤ d ≤ 8, the Hermite constant has these values:

γ2 = (4/3)1/2, γ3 = 21/3, γ4 = 21/2, γ5 = 23/5, γ6 = (64/3)1/6, γ7 = 43/7, γ8 = 2.

For all higher dimensions except d = 24 only upper and lower bounds are known.

Note that 1/
(
γ
1/2
d

d
√
m
)

is the smallest possible such largest interplane distance
[9, §3.3.4.E, equation (40)]; it follows that 0 < fd ≤ 1.

The reason for expressing the largest interplane distance in the form of a recip-
rocal 1/νd is that νd is the length of the shortest vector in the dual lattice Λ∗d. The
dual lattice consists of all vectors whose scalar product with every vector of the
original lattice is an integer. In particular, it has the following basis [9, §3.3.4.C]:

(m, 0, 0, 0, . . . , 0, 0)

(−a, 1, 0, 0, . . . , 0, 0)

(−a2, 0, 1, 0, . . . , 0, 0)

...
...

(−ad−2, 0, 0, 0, . . . , 1, 0)

(−ad−1, 0, 0, 0, . . . , 0, 1)

That is, Λ∗d is formed by taking all possible linear combinations of the vectors above
with integer coefficients. Note that the constant c of an LCG has no role in the
structure of Λd and Λ∗d, and that we are under a full-period assumption.

The dual lattice is somewhat easier to work with, as its points have all integer
coordinates; moreover, as we mentioned, if we call νd the length of its shortest
vector, the maximum distance between parallel hyperplanes covering Λd is 1/νd
(and, indeed, this is how the figure of merit fd is computed).

3. Computationally easy multipliers

Multipliers smaller than
√
m have been advocated, in particular when the mod-

ulus is a power of two, say m = 22w, because they do not require a full 2w-bit
multiplication: writing x and x for the w lowest and highest bits, respectively, of
a 2w-bit value x (that is, x = x mod 2w and x = bx/2wc), we have

(ax) mod 22w =
(
ax + a · 2wx

)
mod22w =

(
ax + 2w · ax

)
mod22w.
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The first multiplication, ax , has a 2w-bit operand a and a w-bit operand x , and
in general the result may be 2w bits wide; but the second multiplication, ax ,
can be performed by an instruction that takes two w-bit operands and produces
only a w-bit result that is only the low w bits of the full product, because the
modulo operation effectively discards the high w bits of that product. Moreover,
if the multiplier a = 2wa + ax has a high part that is small (say, a < 256)
or of a special form (for example, a = j2n where j is 1, 3, 5, or 9), then the
first multiplication may also be computed using a faster method. Contemporary
optimizing compilers know how to exploit such special cases, perhaps by using a
small immediate operand rather than loading the entire multiplier into a register, or
perhaps by using shift instructions and/or such instructions as lea (Load Effective
Address), which in the Intel 64-bit architecture may be used to compute x + jy
on two 64-bit operands x and y for j = 2, 4, or 8 [8, p. 3-554]. And even if the
compiler produces the same code for, say, a multiplier that is (3/2)w bits wide as
for a multiplier that is 2w bits wide, some hardware architectures may notice the
smaller multiplier on the fly and handle it in a faster way.

Multiplication by a constant a of size w, that is, of the form a (in other words,
a = 0), is especially simple:

a x mod 22w =
(
a x + 2wa x

)
mod 22w

and notice that the addition can be performed as a w-bit addition of the low w bits
of a x into the high half of a x .

In comparison, multiplication by a constant a of size w + 1, that is, of the form
2w + a (in other words, a = 1), requires only one extra addition:((

2w + a
)
x
)

mod 22w =
((

2w + a
)
x +

(
2w + a

)(
x · 2w

))
mod 22w =(

2wx + a x + 2w · a x
)

mod 22w =
(
a x + 2w · (x + a x )

)
mod 22w.

Modern compilers know the reduction above and will reduce the strength of oper-
ations involved as necessary.

Even without the help of the compiler, we can push this idea further to multipliers
of the form 2w+k + a, where k is a small positive integer constant:((

2w+k + a
)
x
)

mod 22w =
((

2w+k + a
)
x +

(
2w+k + a

)(
x · 2w

))
mod 22w =(

2w+kx + ax + 2w · ax
)

mod 22w =
(
ax + 2w ·

(
2kx + ax

))
mod 22w.

In comparison to the (w + 1)-bit case, we just need an additional shift to compute
2kx . In the interest of efficiency, it thus seems interesting to study in more detail
the quality of small multipliers.

In Figure 1 we show code generated by the clang compiler that uses 64-bit
instructions to multiply a 128-bit value (in registers rsi and rdi) by (whimsically
chosen) constants of various sizes. The first example shows that if the constant is
of size 64, indeed only two 64-bit by 64-bit multiply instructions (one producing
a 128-bit result and the other just a 64-bit result) and one 64-bit add instruction
are needed. The second example shows that if the constant is of size 65, indeed
only one extra 64-bit add instruction is needed. For constants of size 66 and above,
more sophisticated strategies emerge that use leaq (the quadword, that is, 64-bit
form of lea) and shift instructions and even subtraction. In Figure 2 we show
three examples of code generated by clang for the ARM processor: since its RISC
architecture [1] can only load constant values 16 bits at a time, the length of the
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sequence of instructions grows as the multiplier size grows. On the other hand,
note that the ARM architecture has a multiply-add instruction madd.

4. Bounds

Our first result says that if the multiplier is smaller than the root of order d of
the modulus, there is an upper bound to the value that the figure of merit fd can
attain:

Theorem 4.1. Consider a full-period generator with modulus m and multiplier a.
Then, for every d ≥ 2, if a < d

√
m we have νd =

√
a2 + 1, and it follows that

fd =

√
a2 + 1

γ
1/2
d

d
√
m

Proof. The length νd of the shortest vector of the dual lattice Λ∗d can be easily
written as

(4.1) νd = min
(x0,...,xd−1) 6=(0,...,0)

{√
x20 + x21 + · · ·+ x2d−1∣∣∣ x0 + ax1 + a2x2 + · · ·+ at−1xt−1 ≡ 0 mod m

}
,

where (x0, . . . , xd−1) ∈ Zd, due to the simple structure of the basis of Λ∗d [9, §3.3.4].

Clearly, in general νd ≤
√
a2 + 1, as (−a, 1, 0, 0, . . . , 0) ∈ Λ∗d. However, when

a < d
√
m we have νd =

√
a2 + 1, as no vector shorter than

√
a2 + 1 can fulfill the

modular condition.
To prove this statement, note that a vector (x0, . . . , xd−1) ∈ Λ∗d shorter than√
a2 + 1 must have all coordinates smaller than a in absolute value (if one coordinate

has absolute value a, all other coordinates must be zero, and the vector cannot
belong to Λ∗d). Then, for every 0 ≤ j < d∣∣∣∣∣

j∑
i=0

xia
i

∣∣∣∣∣ ≤
j∑

i=0

∣∣xi∣∣aj < aj+1 < m,

so the modular condition in (4.1) must be fulfilled by equality with zero. However,
let t be the index of the last nonzero component of (x0, . . . , xd−1) (i.e., xi = 0

for i > t): then,
∣∣∑t−1

i=0 xia
i
∣∣ < at, whereas |xtat| ≥ at, so their sum cannot be

zero. �

Note that if m = ad, then the vector that is a in position d−1 and zero elsewhere
is in Λ∗d, but by the proof above shorter vectors cannot be, so

fd =
a

γ
1/2
d

d
√
m

=
1

γ
1/2
d

.

Using the approximation
√
a2 + 1 ≈ a, this means that if a ≤ d

√
m then for

2 ≤ d ≤ 8, fd cannot be greater than approximately

(4/3)−1/4 ≈ 0.9306, 2−1/6 ≈ 0.8909, 2−1/4 ≈ 0.8409, 2−6/10 ≈ 0.8122,

(64/3)−1/12 ≈ 0.7749, 4−3/14 ≈ 0.7430, 2−1/2 ≈ 0.7071
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Bits Multiplier Code

64 0xCAFEF00DDEADF00D

movabsq $0xCAFEF00DDEADF00D, %rax

imulq %rax, %rsi

mulq %rdi

addq %rsi, %rdx

65 0x1CAFEF00DDEADF00D

movabsq $0xCAFEF00DDEADF00D, %rcx

imulq %rcx, %rsi

mulq %rcx

addq %rdi, %rdx

addq %rsi, %rdx

66 0x2CAFEF00DDEADF00D

movabsq $xCAFEF00DDEADF00D, %rcx

imulq %rcx, %rsi

mulq %rcx

leaq (%rdx,%rdi,2), %rdx

addq %rsi, %rdx

67 0x4CAFEF00DDEADF00D

movabsq $0xCAFEF00DDEADF00D, %rcx

imulq %rcx, %rsi

mulq %rcx

leaq (%rdx,%rdi,4), %rdx

addq %rsi, %rdx

67 0x5CAFEF00DDEADF00D

movabsq $0xCAFEF00DDEADF00D, %rcx

mulq %rcx

imulq %rcx, %rsi

leaq (%rdi,%rdi,4), %rcx

addq %rcx, %rdx

addq %rsi, %rdx

67 0x7CAFEF00DDEADF00D

movabsq $0xCAFEF00DDEADF00D, %r8

mulq %r8

leaq (,%rdi,8), %rcx

subq %rdi, %rcx

addq %rcx, %rdx

imulq %r8, %rsi

addq %rsi, %rdx

96 0xFADC0C0ACAFEF00DDEADF00D

movl $0xFADC0C0A, %ecx

movabsq $0xCAFEF00DDEADF00D, %r8

mulq %r8

imulq %rdi, %rcx

addq %rcx, %rdx

imulq %r8, %rsi

addq %rsi, %rdx

128 0xAB0DE0FBADC0FFEECAFEF00DDEADF00D

movabsq $0xAB0DE0FBADC0FFEE, %rcx

movabsq $0xCAFEF00DDEADF00D, %r8

mulq %r8

imulq %rdi, %rcx

addq %rcx, %rdx

imulq %r8, %rsi

addq %rsi, %rdx

Figure 1. clang-generated Intel code for the multiplication part
of a 128-bit LCG using multipliers of increasing size. The code
generated for more than 96 bits (not shown here) is identical to
the 128-bit case.
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Bits Multiplier Code

64 0xCAFEF00DDEADF00D

mov x8, #0xF00D

movk x8, #0xDEAD, lsl #16

movk x8, #0xF00D, lsl #32

movk x8, #0xCAFE, lsl #48

umulh x9, x0, x8

madd x1, x1, x8, x9

mul x0, x0, x8

65 0x1CAFEF00DDEADF00D

mov x8, #0xF00D

movk x8, #0xDEAD, lsl #16

movk x8, #0xF00D, lsl #32

movk x8, #0xCAFE, lsl #48

umulh x9, x0, x8

add x9, x9, x0

madd x1, x1, x8, x9

mul x0, x0, x8

67 0x7CAFEF00DDEADF00D

mov x8, #0xF00D

movk x8, #0xDEAD, lsl #16

movk x8, #0xF00D, lsl #32

movk x8, #0xCAFE, lsl #48

lsl x9, x0, #3

umulh x10, x0, x8

sub x9, x9, x0

add x9, x10, x9

madd x1, x1, x8, x9

mul x0, x0, x8

96 0xFADC0C0ACAFEF00DDEADF00D

mov x8, #0xF00D

movk x8, #0xDEAD, lsl #16

movk x8, #0xF00D, lsl #32

movk x8, #0xCAFE, lsl #48

mov w9, #0x0C0A

movk w9, #0xFADC, lsl #16

umulh x10, x0, x8

madd x9, x0, x9, x10

madd x1, x1, x8, x9

mul x0, x0, x8

128 0xAB0DE0FBADC0FFEECAFEF00DDEADF00D

mov x9, #0xF00D

mov x8, #0xFFEE

movk x9, #0xDEAD, lsl #16

movk x8, #0xADC0, lsl #16

movk x9, #0xF00D, lsl #32

movk x8, #0xE0FB, lsl #32

movk x9, #0xCAFE, lsl #48

movk x8, #0xAB0D, lsl #48

umulh x10, x0, x9

madd x8, x0, x8, x10

madd x1, x1, x9, x8

mul x0, x0, x9

Figure 2. clang-generated ARM code for the multiplication part
of a 128-bit LCG using multipliers of increasing size. Note how the
number of mov and movk instructions depends on the size of the
multiplier.
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for d = 2, . . . , 8. For d > 2 this is not a problem, as such very small multipliers are
not commonly used. However, choosing a multiplier that is smaller than or equal
to
√
m has the effect of making it impossible to obtain a figure of merit close to 1

in dimension 2. Note that, for any d, as a drops well below d
√
m the figure of merit

fd degenerates quickly; for example, if a <
√
m/2 then f2 cannot be greater than

(4/3)−1/4/2 ≈ 0.4653.
Nonetheless, as soon as we allow a to be even a tiny bit larger than

√
m, ν2 (and

thus f2) is no longer constrained: indeed, if m = 22w, a (w + 1)-bit multiplier is
sufficient to get a figure of merit in dimension 2 very close to 1 (see Table 1).

MCGs with power-of-two moduli cannot achieve full period: the maximum pe-
riod is m/4. It turns out that the lattice structure, however, is very similar to the
full-period case, once we replace m with m/4 in the definition of the dual lattice.

Correspondingly, we have to replace d
√
m with d

√
m/4 (see [9, §3.3.4, Exercise 20]):

Theorem 4.2. Consider an MCG with power-of-two modulus m, multiplier a, and
period m/4. Then for every d ≥ 2 and every a < d

√
m/4 we have νd =

√
a2 + 1,

and it follows that

fd =

√
a2 + 1

γ
1/2
d

d
√
m/4

.

Note that Theorem 4.2 imposes limits on the figures of merit for (w − 1)-bit
multipliers for 2w-bit MCGs, but does not impose any limits on w-bit multipliers
for 2w-bit MCGs. In Table 2, observe that the 31-bit multipliers necessarily have
figures of merit f2 smaller than (4/3)−1/4 ≈ 0.9306 (though one value for f2, namely
0.930577, is quite close), but for multipliers of size 32 and greater we have been
able to choose examples for which f2 is well above 0.99.

5. Beyond spectral scores

In view of Theorem 4.1, it would seem that using a (w + 1)-bit multiplier gives
us the full power of a 2w-bit multiplier: or, at least, this is what the spectral scores
suggest empirically. We now show that, however, on closer inspection, the spectral
scores are not telling the whole story.

Hörmann and Derflinger [7] studied multipliers close to the square root to the
modulus for LCGs with 32 bits of state, and devised a statistical test that makes
generators using such multipliers fail: the intuition behind the test is that with
such multipliers there is a relatively short lattice vector s = (1/m, a/m) ∈ Λ2 that
is almost parallel to the y axis. The existence of this vector creates bias in pairs of
consecutive outputs, a bias that can be detected by generating a distribution using
the rejection method: if at some point the density of the distribution increases
sharply, the rejection method will underrepresent certain parts of the distribution
and overrepresent others.

We applied an instance of the Hörmann–Derflinger test to congruential genera-
tors (both LCG and MCG) with 64 bits of state using a Cauchy distribution on the
interval [−2 . . 2). We divide the interval into 108 slots that contain the same prob-
ability mass, repeatedly generate by rejection 109 samples from the distribution,
and compute a p-value using a χ2 test on the slots. We consider the number of
repetitions after which the p-value is very close to zero2 a measure of the resilience

2More precisely, when the p-value returned by the Boost library implementation of the χ2 test
becomes zero, which in this case happens when the p-value goes below ≈ 10−16.
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of the multiplier to the Hörmann–Derflinger test, and thus a positive feature (that
is, a larger number is better).

The results are reported in Tables 1 and 2. As we move from small to large
multipliers, the number of iterations necessary to detect bias grows, but within
multipliers with the same number of bits there is a very large variability.3

The marked differences have a simple explanation: incrementing the number of
bits does not translate immediately into a significantly longer vector s. To isolate
generators in which s is less pathological, we have to consider larger multipliers,
as ‖s‖ =

√
a2 + 1/m. In particular, we define the simple figure of merit λ for a

full-period LCG as

λ =
‖s‖

1/
√
m

=

√
a2 + 1/m

1/
√
m

=

√
a2 + 1√
m

≈ a/
√
m

In other words, we measure the length of s with respect to the threshold 1/
√
m of

Theorem 4.1. In general, for a set of multipliers bounded by B, λ ≤ B/
√
m.

Note that because of Theorem 4.1, if a <
√
m

f2/λ =

√
a2 + 1

γ
1/2
2

√
m

/√a2 + 1√
m

= γ
−1/2
2 ≈ 0.9306,

that is, for multipliers smaller than
√
m the two figures of merit f2 and λ are linearly

correlated. Just one additional bit, however, makes the two figures independent
(see the entries for 33-bit multipliers in Table 1, as well as the entries for 32-bit
multipliers in Table 2).

For MCGs with power-of-two modulus m, s = (4/m, 4a/m), and, in view of
Theorem 4.2, we define

λ =
‖s‖

1/
√
m/4

=

√
a2 + 1/(m/4)

1/
√
m/4

=

√
a2 + 1√
m/4

≈ 2a/
√
m

In Tables 1 and 2 we report a few small-sized multipliers together with the figures
of merit f2 and λ, as well as the number of iterations required by our use of the
Hörmann–Derflinger test: larger values of λ (i.e., larger multipliers) correspond to
more resilience to the test.

6. Potency

Potency is a property of multipliers of LCGs: it is defined as the minimum s
such that (a − 1)s is a multiple of the modulus m. Such an s always exists for
full-period multipliers, because one of the conditions for full period is that a − 1
be divisible by every prime that divides m (when m is a power of two, this simply
means that a must be odd).

Multipliers of low potency generate sequences that do not look very random: in
the case m is a power of two, this is very immediate, as a multiplier a with low
potency is such that a− 1 is divisible by a large power of two, say, 2k. In this case,
the k lowest bits of ax are the same as the k lowest bits of x, which means that
changes to the k lowest bits of the state depend only on the fact that we add c.

3We also tested a generator with 128 bits of state and a 64-bit multiplier, but at that size the
bias is undetectable even with a hundred times as many (1010) slots.
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Bits a f2 λ H–D

32
0xfffeb28d 0.930586 1.00 6

0xcffef595 0.756102 0.81 4

33
0x1dd23bba5 0.998598 1.86 19

0x112a563ed 0.998387 1.07 7

34
0x3de4f039d 0.998150 3.87 72

0x2cfe81d9d 0.992874 2.81 46

35
0x78ad72365 0.995400 7.54 313

0x49ffd0d25 0.991167 4.62 109

Table 1. A comparison of small LCG multipliers for m = 264.
In the 32-bit case, f2 and λ are linearly correlated, and f2 is nec-
essarily smaller than approximately 0.9306. For sizes above 32
we show multipliers with almost perfect f2 but different λ. The
last column shows the corresponding number of iterations of the
Hörmann–Derflinger test.

Bits a f2 λ H–D

31
0x7ffc9ef5 0.930509 0.50 2

0x672a3fb5 0.750046 0.40 1

32
0xef912f85 0.994558 0.94 4

0x89f353b5 0.997577 0.54 2

33
0x1f0b2b035 0.996853 1.94 22

0x16aa7d615 0.994427 1.42 11

34
0x3c4b7aba5 0.992314 3.77 81

0x2778c3815 0.998339 2.47 37

35
0x7d3f85c05 0.998470 7.83 354

0x40dde345d 0.996172 4.05 87

Table 2. A comparison of small MCG multipliers for m = 264.
In the 31-bit case, f2 and λ are linearly correlated, and f2 is nec-
essarily smaller than approximately 0.9306. For each size above 31
we show multipliers with almost perfect f2 but different λ. The
last column shows the corresponding number of iterations of the
Hörmann–Derflinger test.
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For this reason, one ordinarily chooses multipliers of maximum possible potency,4

and since for full period if m is a multiple of four, then a− 1 must be a multiple of
four, we have to choose a so that (a− 1)/4 is odd, that is, a mod 8 = 5.

Potency has an interesting interaction with the constant c, described for the first
time by Durst [3] in response to proposals from Percus and Kalos [13] and Halton [6]
to use different constants to generate different streams for multiple processors. If
we take a multiplier a and a constant c, then for every r ∈ Z/mZ the generator with
multiplier a and constant (a− 1)r+ c has the same sequence of the first one, up to
addition with r. Indeed, if we consider sequences starting from x0 and y0 = x0− r,
we have5

yn = ayn−1 + (a− 1)r + c = a(xn−1 − r) + (a− 1)r + c = xn − r.

That is, for a fixed multiplier a, the constants c are divided into classes by the
equivalence relation of generating the same sequence up to an additive constant.

How many classes do exist? The answer depends on the potency of a, as it comes
down to solving the modular equation

c′ − c = (a− 1)r

If a has low potency, this equation will be rarely solvable because there will be
many equivalence classes: but for the specific case where m is a power of two and
a mod 8 = 5, it turns out that there are just two classes: the class of constants
that are congruent to 1 modulo 4, and the class of constants that are congruent
to 3 modulo 4. All constants in the first class yield the sequence xn = axn−1 + 1,
up to an additive constant, and all constants in the second class yield the sequence
xn = axn−1− 1, up to an additive constant. It follows that if one tries to use three
(or more) different streams, even if one chooses different constants for the streams,
at least two of the streams will be correlated.

If we are willing to weaken slightly our notion of equivalence, in this case we
can extend Durst’s considerations: if we consider sequences starting from x0 and
y0 = −x0 + r, then

yn = ayn−1 − ((a− 1)r + c) = a(−xn−1 + r)− (a− 1)r − c = −xn + r.

Thus, if we consider the equivalence relation of generating sequences that are the
same up to an additive constant and possibly a sign change, then all sequences
generated by a multiplier a of maximum potency for a power-of-two modulus m are
the same, because to prove equivalence we now need to solve just one of the two
modular equations

c′ − c = (a− 1)r and c′ + c = (a− 1)r,

and while the first equation is solvable when the residues of c and c′ modulo 4 are
the same, the second equation is solvable when the residues are different.

4Note that “maximum possible potency” is a quite rough statement, because potency is a very
rough measure when applied to multipliers that are powers of primes: for example, when m = 22w

a generator with a− 1 divisible by 2w (but not by 2w+1) and a generator with a− 1 divisible by
22w−1 have both potency 2, but in view of the discussion above their randomness is very different.

More precisely, here we choose to consider only multipliers which leave unchanged that smallest

possible number of lower bits.
5All remaining computations in this section are performed in Z/mZ.
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7. Using spectral data from MCGs

The case of MCGs with power-of-two modulus is different from that of LCGs
because the maximum possible period is of length m/4 [9, §3.2.1.2, Theorem C].
Thus, there are two distinct orbits (remember that the state must be odd). The
nature of these orbits is, however, very different depending on whether the multiplier
is congruent to 5 modulo 8 or to 3 modulo 8: let us say such multipliers are of type
5 and type 3, respectively.

For multipliers of type 5, each orbit is defined by the residue modulo 4 of the
state (i.e., 1 or 3), whose value depends on the second-lowest bit.6 Thus, the
remaining upper bits (above the second) go through all possible m/4 values. More
importantly, the lattice of points described by the upper bits is simply a translated
version of the lattice Λd associated with the whole state, so the figures or merit we
compute on Λ∗d describe properties of the generator obtained by discarding the two
lowest bits from the state. Indeed, for every MCG of type 5 there is an LCG with
modulus m/4 that generates “the same sequence” if the two low-order bits of every
value produced by the MCG are ignored [9, §3.2.1.2, Exercise 9].

For multipliers of type 3, instead, each orbit is defined by the residue modulo 8
of the state: one orbit alternates between residues 1 and 3, and one orbit alternates
between 5 and 7.7 In this case, there is no way to use the information we have
about the lattice generated by the whole state to obtain information about the
lattice generated by the part of state that is changing; indeed, there is again a
correspondence with an LCG, but the correspondence involves an alternating sign
(again, see [9, §3.2.1.2, Exercise 9]). For this reason, we (like L’Ecuyer [10]) will
consider only MCG multipliers of type 5.

Note that a and −a mod m = m − a have different residue modulo 8, but the
same figures of merit [9, §3.2.1.2, Exercise 9]. Moreover, in the MCG case the lattice
structure is invariant with respect to inversion modulo m, so for each multiplier its
inverse modulo m has again the same figures of merit. In the end, for each multiplier
a of maximum period m/4 there are three other related multipliers a−1 mod m,
(−a) mod m and (−a−1) mod m with the same figures of merit; of the four, two
are of type 3, and two of type 5.

8. Tables

In this section we provide tables of good multipliers for 32, 64 and 128 bits of
state, updating some of the lists in the classic paper by L’Ecuyer [10, Tables 4
and 5].

For LCGs, only multipliers a such that a mod 8 is either 1 or 5 achieve full
period [9, §3.2.1.2, Theorem A], but we (like L’Ecuyer) consider only the case of
maximum potency, that is, the case when a mod 8 is 5. For MCGs, as we already
discussed in Section 7, we consider only multipliers of type 5. In the end, therefore,
we consider in both cases (though for different reasons) only multipliers whose
residue modulo 8 is 5.

For each multiplier, we considered figures of merit up to dimension 8, that is, we
computed f2, f3, f4, f5, f6, f7, and f8. For reasons of space, we present only f2
through f6 in the tables. We also present two different scores that summarize these

6This is a consequence of the fact that multipliers of type 5 do not change the two lowest bits.
7Multipliers of type 3 always leave the lowest bit and the third-lowest bit of the state unchanged.
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figures of merit: the customary minimum spectral score (over all seven dimensions
2 through 8) and a novel harmonic spectral score (also over all seven dimensions
2 through 8). The tables present not only the multipliers with the best minimum
spectral scores that we found and the multipliers with the best harmonic spectral
scores that we found, but also multipliers that exhibit a good balance between the
two scores, as described below.

Traditionally, when examining the figures of merit of the spectral test up to
dimension d, the minimum spectral score (up to dimension d) is given by the min-
imum figure of merit over dimensions 2 through d. L’Ecuyer’s paper [10] uses the
notation Md(m, a) for this aggregate score for a generator with modulus m and
multiplier a. We prefer to distinguish the minimum spectral scores of LCGs and
MCGs, because the figures of merit fd are computed differently for the two kinds
of generator when the modulus is a power of two: we use the notation

M+
d (m, a) = min

2≤i≤d
fi(m, a)

to denote the minimum spectral score up to dimension d for an LCG, and we use
the notation M ∗

d (m, a) to denote the analogous score for an MCG.
The use of the minimum spectral score seems to have originated in the work of

Fishman and Moore [5], where, however, no motivation for this choice is provided.
The definition has been referred to and copied several times, but even Knuth argues
that the importance of figures of merit decreases with dimension, and that “the
values of νt for t ≥ 10 seem to be of no practical significance whatsoever” [9, §3.3.4].
Therefore, while L’Ecuyer’s paper reports three different minimum figures of merit
M8(m, a), M16(m, a), and M32(m, a) for each multiplier, here we will report only
M+

8 (m, a) or M ∗
8 (m, a).

The disadvantage of the minimum spectral score is that it tends to flatten the
spectral landscape—it is easy, even using small multipliers, to get figures of merit
up to dimension 8 greater than 0.77. But smaller dimensions should be given more
importance, as a lower figure of merit in a lower dimension is more likely to have an
impact on applications, and a multiplier with a very high minimum spectral score
over 2 ≤ d ≤ 8 may have an unremarkable value for, say, f2.

We therefore suggest considering also a second aggregate figure of merit:

Definition 8.1. Let fi(m, a), 2 ≤ i ≤ d, be the figures of merit of an LCG
multiplier a with modulus m. Then, the harmonic spectral score (up to dimension
d) of a with modulus M is given by

H +
d (m, a) =

1

Hd−1

∑
2≤i≤d

fi(m, a)

i− 1
,

where Hn =
∑n

k=1
1
k is the n-th harmonic number.8 Analogously, the notation

H ∗
d (m, a) denotes the harmonic spectral score (up to dimension d) for an MCG

multiplier a with modulus m.

The effect of the harmonic spectral score is to weight each dimension progres-
sively less, using weights 1, 1/2, 1/3, . . . , 1/(d − 1), and the sum is normalized so
that the score is always between 0 and 1.

8We have used script letters M and H to denote spectral scores so that the harmonic spectral
score function H8 will not be confused with the harmonic number H8.
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An example of the difference in sensitivity between the minimum spectral score
and the harmonic spectral score is that the minimum spectral score is in practice not
limited by Theorem 4.1; for example, the largest minimum spectral score of a 32-bit
multiplier for a 64-bit LCG is 0.774103, and the largest minimum spectral score
for a 33-bit multiplier is almost the same: 0.776120 (an increase of about 0.002).
But the largest spectral harmonic score goes from 0.867371 for 32-bit multipliers
to 0.890221 for 33-bit multipliers (an increase of almost 0.03), reflecting the fact
that f2 can get arbitrarily close to 1 (indeed, there are 33-bit multipliers for which
f2 = 0.998598).

Another empirical observation in favor of the harmonic spectral score is that
as soon as we look into multipliers with a high harmonic score, we see that their
minimum score can be chosen to be just a few percentage points below the best
possible, but at the same time the low-dimensional figures of merit, which are
more relevant, have an increase an order of magnitude larger. These empirical
observations are based on multipliers of at most 35 bits, which we have enumerated
and scored exhaustively, but the same phenomenon appears to happen in larger
cases, which we have sampled randomly.

Following a suggestion by Entacher, Schell, and Uhl [4], we compute figures of
merit using the implementation of the ubiquitous Lenstra–Lenstra–Lovász basis-
reduction algorithm [12] provided by Shoup’s NTL library [14]. For m = 264

and m =128 we recorded in an output file all tested multipliers whose minimum
spectral score is at least 0.70 (we used a lower threshold for m = 232). Overall we
sampled approximately 6.5×1011 multipliers, enough to ensure that for each pair of
modulus and multiplier size reported, we recorded at least one million multipliers.
(In several cases we recorded as many as 1.5 million or even two million multipliers.)
As a sanity check, we also used the same software to test multipliers of size 63 for
LCGs with m = 2128; as expected, in view of Theorem 4.1 and its consequences, a
random sample of well over 1010 63-bit candidates revealed none whose minimum
spectral score is at least 0.70.

In theory, the basis returned by the algorithm is only approximate, but using
a precision parameter δ = 1 − 10−9 we found only very rarely a basis that was
not made of shortest vectors: we checked all multipliers we selected using the
LatticeTester tool,9 which performs an exhaustive search after basis-reduction pre-
processing, and almost all approximated data we computed turned out to be exact;
just a few cases (usually in high dimension) were slightly off, which simply means
that we spuriously stored a few candidates with minimum below 0.70.

Besides half-width and full-width multipliers, we provide multipliers with up to
three bits more than half-width for m = 232 and m = 264, and up to seven bits
more than half-width for m = 2128, as well as multipliers of three-fourths width
(24 bits for m = 232, 48 bits for m = 264, 96 bits for m = 2128), because these
are experimentally often as fast as smaller multipliers. Additionally, we provide
80-bit multipliers for m = 2128 because such multipliers can be loaded by the
ARM processor with just five instructions, and on an Intel processor one can use a
multiply instruction with an immediate 16-bit value.

For small multipliers, we try to find candidates with a good λ: in particular,
we require that the second-most-significant bit be set. For larger multipliers, we
consider only spectral scores, as the effect of a good λ becomes undetectable. Since

9https://github.com/umontreal-simul/latticetester
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when we consider (w + c)-bit multipliers we select candidates larger than 2w+c−1,
in our tables 2c−1 ≤ λ ≤ 2c for LCGs and 2c ≤ λ ≤ 2c+1 for MCGs.

More precisely, for each type (LCG or MCG), every m ∈
{

232, 264, 2128
}

and
for every multiplier size (in bits) tested, we report (in Tables 3 through 10) four
multipliers:

• the best multiplier by harmonic spectral score;
• the best multiplier by harmonic spectral score within the top millile of

minimum spectral scores.
• the best multiplier by minimum spectral score;
• the best multiplier by minimum spectral score within the top millile of

harmonic spectral scores.

In case the first-millile criterion provides a duplicate multiplier for a given score,
we try the same strategy with the first decimillile, and mark the multiplier with an
asterisk, or with the first centimillile, marking with two asterisks, and so on.

The rationale for these reporting criteria is that the best score gives an idea of
how far we went in our sampling procedure, but in principle the best score within
the first millile of the alternative score gives a more balanced multiplier: indeed,
within every list of four, the second multiplier (best multiplier by harmonic spectral
score within the top millile of minimum spectral scores) is our favorite candidate.

All multipliers we provide are Pareto optimal for our dataset: that is, for each
type, modulus, and size there is no other multiplier we examined that is at least
as good on both scores, and strictly improves one. In particular, for each type,
modulus, and size, the multipliers with distinct scores are pairwise incomparable
(i.e., for each pair, the harmonic spectral score increases and the minimum spectral
score decreases, or vice versa).
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