MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000-000
S 0025-5718(XX)0000-0

COMPUTATIONALLY EASY, SPECTRALLY GOOD
MULTIPLIERS FOR CONGRUENTIAL PSEUDORANDOM
NUMBER GENERATORS

GUY STEELE AND SEBASTIANO VIGNA

ABSTRACT. Congruential pseudorandom number generators rely on good mul-
tipliers, that is, integers that have good performance with respect to the spec-
tral test. We provide lists of multipliers with a good lattice structure up to
dimension eight for generators with typical power-of-two moduli, analyzing in
detail multipliers close to the square root of the modulus, whose product can
be computed quickly.

1. INTRODUCTION

A maltiplicative congruential pseudorandom number generator (MCG) is a com-
putational process defined by a recurrence of the form

Ty = (axn_l) mod m,

where m € Z is the modulus, a € Z/mZ is the multiplier, and x,, € (Z/mZ)~{0}
is the state of the generator after step n. Such pseudorandom number generators
(PRNGs) were introduced by Lehmer [11], and have been extensively studied. By
adding a constant ¢ € Z/mZ, ¢ # 0, we obtain a linear congruential pseudorandom
number generator (LCG), with state x,, € Z/mZ:!

T, = (aacn_l + c) mod m.

Under suitable conditions on m, a and ¢, sequences of this kind are periodic and
their period is full, that is, m — 1 for MCGs (¢ = 0) and m for LCGs (¢ # 0). For
MCGs, m must be prime and a must be a primitive element of the multiplicative
group of residue classes (Z/mZ)* (i.e., its powers must span the whole group). For
LCGs, there are simple conditions that must be satisfied [9, §3.2.1.2, Theorem A].

For MCGs, when m is not prime one can look for sequences that have mazimum
period, that is, the longest possible period, given m. We will be interested in moduli
that are powers of two, in which case, if m > 8, the maximum period is m/4, and
the state must be odd [9, §3.2.1.2, Theorem BJ.

1We remark that these denominations, by now used for half a century, are completely wrong
from a mathematical viewpoint. The map x — ax is indeed a linear map, but the map z — ax+c
is an affine map [2]: what we call an “MCG” or “MLCG” should called an “LCG” and what we
call an “LCG” should be called an “ACG”. The mistake originated probably in the interest of
Lehmer in (truly) linear maps with prime moduli [11]. Constants were added later to obtain long-
period generators with non-prime moduli, but the “linear” name stuck (albeit some authors are
using the term “mixed” instead of “linear”). At this point it is unlikely that the now-traditional
names will be corrected.

O©XXXX American Mathematical Society

2 GUY STEELE AND SEBASTIANO VIGNA

While MCGs and LCGs have some known defects, they can be used in combi-
nation with other pseudorandom number generators (PRNGs), or passed through
some bijective function that might lessen such defects. Due to their speed and sim-
plicity, as well as a substantial accrued body of mathematical analysis, they have
been for a long time the PRNGs of choice in programming languages.

In this paper, we provide lists of multipliers for both MCGs and LCGs, continuing
the line of work by L’Ecuyer in his classic paper [10]. The quality of such multipliers
is usually assessed by their score in the spectral test, described below.

The search for good multipliers is a sampling process from a large space: due
to the enormous increase in computational power in the last twenty years, we can
now provide multipliers with significantly improved scores. In fact, for multipliers
of up to 35 bits we have now explored the sample space exhaustively.

We consider only generators with power-of-two moduli; this choice avoids the
expensive modulo operation, because nearly all contemporary hardware supports
binary arithmetic that is naturally carried modulo 2% for some word size w. Such
generators do have additional known, specific defects (e.g., the periods of the lowest
bits are very short, and the flip of a state bit will never propagate to lower bits),
but there is a substantial body of literature on how to ameliorate or avoid these
defects.

Furthermore, in this paper we pay special attention to small multipliers, that is,
multipliers close to the square root of the modulus m. For m = 22¥, this means
multipliers whose size in bits is w+k for small k. As is well known, many CPUs with
natural word size w can produce with a single instruction, or two instructions, the
full 2w-bit product of two w-bit operands, which makes such multipliers attractive
from a computational viewpoint.

Unfortunately, such small multipliers have known additional defects, which have
been analyzed by Héormann and Derflinger [7], who provided experimental evidence
of their undesirable behavior using a statistical test based on rejection.

One of the goals of this paper is to deepen their analysis: we first prove theoreti-
cally that w-bit multipliers for LCGs with power-of-two modulus 22* have inherent
theoretical defects. Then we show that these defects are ameliorated as we add
bits to the multiplier, and we quantify this improvement by defining a new figure
of merit based on the magnitude on the multiplier. In the end, we provide tables
of multipliers of w + k bits, where k is relatively small, with quality closer to that
of full 2w-bit multipliers.

During the search of good multipliers, the authors have accumulated a large
database of candidates, which is publicly available for download, in case the reader
is interested in looking for multipliers with specific properties. The software used
to search for multipliers is available under the [choose license].

2. SPECTRAL FIGURES OF MERIT

For every integer d > 2, the dimension, we can consider the set of d-dimensional
points in the unit cube

Ad = {(':L’ f,r(;f)a fjglx),v de:L(m)>

f(z) = (az + ¢) mod m

x € Z/mZ},

where

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS 3

is the next-state map of a full-period generator. This set is the intersection of a
d-dimensional lattice with the unit cube [9, §3.3.4.A]. Thus, all points in A4 lie on
a family of equidistant, parallel hyperplanes; in fact, there are many such families.
The spectral test examines the family with the largest distance between adjacent
hyperplanes: the smaller this largest interplane distance is, the more evenly the
generator fills the unit d-dimensional cube. Using this idea, the figure of merit for
dimension d of an MCG or LCG is defined as
fd m,a) = Lv
) vy 2 m
where 1/v, is the largest distance between adjacent hyperplanes found by consid-
ering all possible families of hyperplanes covering A;. We will usually imply the
dependency on the choice of m and a.
The definition of f; also relies on the Hermite constant ~4 for dimension d. For
2 < d < 8, the Hermite constant has these values:

Yo = (4/3)/2, 3 = 213, qy = 212 g = 23/5 5 = (64/3)1/6 vy = 43/ g = 2.

For all higher dimensions except d = 24 only upper and lower bounds are known.
Note that 1 /(’y;/ 2 W) is the smallest possible such largest interplane distance
[9, §3.3.4.E, equation (40)]; it follows that 0 < fy < 1.

The reason for expressing the largest interplane distance in the form of a recip-
rocal 1/vq is that vy is the length of the shortest vector in the dual lattice A%. The
dual lattice consists of all vectors whose scalar product with every vector of the
original lattice is an integer. In particular, it has the following basis [9, §3.3.4.C]:

(m,0,0,0,...,0,0)
(—a,1,0,0,...,0,0)
(—a?,0,1,0,...,0,0)

(-a%2,0,0,0,...,1,0)
(-a%71,0,0,0,...,0,1)

That is, A} is formed by taking all possible linear combinations of the vectors above
with integer coefficients. Note that the constant ¢ of an LCG has no role in the
structure of A4y and A, and that we are under a full-period assumption.

The dual lattice is somewhat easier to work with, as its points have all integer
coordinates; moreover, as we mentioned, if we call v; the length of its shortest
vector, the maximum distance between parallel hyperplanes covering Ay is 1/v4
(and, indeed, this is how the figure of merit fy is computed).

3. COMPUTATIONALLY EASY MULTIPLIERS

Multipliers smaller than y/m have been advocated, in particular when the mod-
ulus is a power of two, say m = 22%, because they do not require a full 2w-bit
multiplication: writing x_ and z- for the w lowest and highest bits, respectively, of
a 2w-bit value z (that is, z. = x mod 2% and z- = |2/2"]), we have

(az) mod 2** = (az_+ a-2“z")mod2®” = (az_+2“ - az-)mod2®".

4 GUY STEELE AND SEBASTIANO VIGNA

The first multiplication, az_, has a 2w-bit operand a and a w-bit operand x_, and
in general the result may be 2w bits wide; but the second multiplication, az-,
can be performed by an instruction that takes two w-bit operands and produces
only a w-bit result that is only the low w bits of the full product, because the
modulo operation effectively discards the high w bits of that product. Moreover,
if the multiplier @ = 2%a- + ax- has a high part that is small (say, a- < 256)
or of a special form (for example, a- = j2" where j is 1, 3, 5, or 9), then the
first multiplication may also be computed using a faster method. Contemporary
optimizing compilers know how to exploit such special cases, perhaps by using a
small immediate operand rather than loading the entire multiplier into a register, or
perhaps by using shift instructions and/or such instructions as lea (Load Effective
Address), which in the Intel 64-bit architecture may be used to compute = + jy
on two 64-bit operands x and y for j = 2, 4, or 8 [8, p. 3-554]. And even if the
compiler produces the same code for, say, a multiplier that is (3/2)w bits wide as
for a multiplier that is 2w bits wide, some hardware architectures may notice the
smaller multiplier on the fly and handle it in a faster way.

Multiplication by a constant a of size w, that is, of the form a_ (in other words,
a- = 0), is especially simple:

a_x mod 2%% = (a,x, + 2“’(1730’) mod 22%

and notice that the addition can be performed as a w-bit addition of the low w bits
of a_x- into the high half of a_z_.

In comparison, multiplication by a constant a of size w + 1, that is, of the form
2% + a_ (in other words, a- = 1), requires only one extra addition:

((2’” + af)x) mod 22% = ((2“’ + af)xf + (2’” + af) (x’ . 2”)) mod 2%% =
(2“’x7 +ax +2%. afx’) mod 2%¥ = (afxf +2% (x_+ afx’)) mod 2%¥,

Modern compilers know the reduction above and will reduce the strength of oper-
ations involved as necessary.

Even without the help of the compiler, we can push this idea further to multipliers
of the form 2¥** 4 a, where k is a small positive integer constant:

((2“’”“ + a)x) mod 22% = ((2w+k + a):ci + (2“’“c + a) (:v’ . 2“’)) mod 22% =
(2“"”“@ +azx +2%- ax’) mod 22% = (amf + 2% (Qkxf + ax’)) mod 22,

In comparison to the (w + 1)-bit case, we just need an additional shift to compute
2%z . In the interest of efficiency, it thus seems interesting to study in more detail
the quality of small multipliers.

In Figure 1 we show code generated by the clang compiler that uses 64-bit
instructions to multiply a 128-bit value (in registers rsi and rdi) by (whimsically
chosen) constants of various sizes. The first example shows that if the constant is
of size 64, indeed only two 64-bit by 64-bit multiply instructions (one producing
a 128-bit result and the other just a 64-bit result) and one 64-bit add instruction
are needed. The second example shows that if the constant is of size 65, indeed
only one extra 64-bit add instruction is needed. For constants of size 66 and above,
more sophisticated strategies emerge that use leaq (the quadword, that is, 64-bit
form of lea) and shift instructions and even subtraction. In Figure 2 we show
three examples of code generated by clang for the ARM processor: since its RISC
architecture [1] can only load constant values 16 bits at a time, the length of the

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS 5

sequence of instructions grows as the multiplier size grows. On the other hand,
note that the ARM architecture has a multiply-add instruction madd.

4. BOUNDS

Our first result says that if the multiplier is smaller than the root of order d of
the modulus, there is an upper bound to the value that the figure of merit f; can
attain:

Theorem 4.1. Consider a full-period generator with modulus m and multiplier a.
Then, for every d > 2, if a < Jm we have vg = Va? + 1, and it follows that

a?+1

1/2
’Yd/ Vm
Proof. The length v4 of the shortest vector of the dual lattice A’ can be easily
written as

fa=

(4.1) vy= {\/xg+x§+...+x3_1

’ To + axq + a’ro+--+a 'z, 1 =0 mod m},

min
(zo,..,xa—1)#(0,...,0)

where (7, ...,24-1) € Z%, due to the simple structure of the basis of A% [9, §3.3.4].
Clearly, in general vq < va?+1, as (—a,1,0,0,...,0) € A}. However, when
a < ¥m we have vy = va? + 1, as no vector shorter than va? + 1 can fulfill the
modular condition.

To prove this statement, note that a vector (zo,...,z4—1) € A} shorter than
va? + 1 must have all coordinates smaller than a in absolute value (if one coordinate
has absolute value a, all other coordinates must be zero, and the vector cannot
belong to A}). Then, for every 0 < j < d

J
E :via’

1=0

j
< ZM‘W <a’tt <m,
=0

so the modular condition in (4.1) must be fulfilled by equality with zero. However,

let ¢ be the index of the last nonzero component of (xg,...,x4—1) (i€, z; = 0
for ¢ > t): then, |Zt;é z;a'| < a', whereas |z,af| > a’, so their sum cannot be
ZEro. ([l

Note that if m = a?, then the vector that is a in position d—1 and zero elsewhere
is in A}, but by the proof above shorter vectors cannot be, so

f a 1
4= N2 — T T1/2°

'Yd/ % 'Yd/

Using the approximation va? + 1 &~ a, this means that if a < #m then for
2 < d <8, fq cannot be greater than approximately

(4/3)74 ~ 0.9306, 270~ 0.8909, 27Y*~0.8409, 2710 ~(.8122,

(64/3)7112 ~ 0.7749, 473/ ~0.7430, 2712~ 0.7071

GUY STEELE AND SEBASTIANO VIGNA

Bits Multiplier Code

movabsq $0xCAFEFOODDEADFOOD, %rax
imulq %rax, %rsi

64 0xCAFEFOODDEADFOOD s
mulq hrdi
addq Yrsi, %rdx
movabsq $0xCAFEFOODDEADFOOD, %rcx
imulq %rcx, Yrsi

65 Ox1CAFEFOODDEADFOOD mulq %rcx
addq %rdi, Yrdx
addq Yrsi, hrdx
movabsq $xCAFEFOODDEADFOOD, %rcx
imulq %rcx, Yrsi

66 0x2CAFEFOODDEADFOOD mulq %rcx
leaq (hrdx,%rdi,2), %rdx
addq Yrsi, %rdx
movabsq $0xCAFEFOODDEADFOOD, %rcx
imulq %rex, Yrsi

67 Ox4CAFEFOODDEADFOOD mulq %rcx
leaq (hrdx,%rdi,4), %rdx
addq Yrsi, %rdx
movabsq $0xCAFEFOODDEADFOOD, %rcx
mulq %hrex
imulq %rcx, %rsi

67 0x5CAFEFOODDEADFO0D leaq (i, Yrdi,4), %rex
addq Yrex, hrdx
addq %rsi, Yrdx
movabsq $0xCAFEFOODDEADFOOD, %r8
mulq %r8
leaq (,%rdi,8), Y%rcx

67 O0x7CAFEFOODDEADFOOD ~subq ’rdi, %rcx
addq %rex, hrdx
imulg %r8, %rsi
addq Yrsi, %hrdx
movl $O0xFADCOCOA, Yecx
movabsq $0xCAFEFOODDEADFOOD, %r8
mulq %r8

96 0xFADCOCOACAFEFOODDEADFOOD imulq %rdi, %rcx
addq Y%rex, Yrdx
imulq %r8, %rsi
addq Y%rsi, Yrdx
movabsq $0xABODEOFBADCOFFEE, %rcx
movabsq $0xCAFEFOODDEADFOOD, %r8
mulq %r8

128 0xABODEOFBADCOFFEECAFEFOODDEADFOOD —imulq — %rdi, %rcx

addq Yrex, Yhrdx
imulqg %r8, %rsi
addq Yrsi, %hrdx

FIGURE 1. clang-generated Intel code for the multiplication part
of a 128-bit LCG using multipliers of increasing size. The code
generated for more than 96 bits (not shown here) is identical to

the 128-bit case.

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS

Bits Multiplier Code

mov x8, #0xFOOD

movk x8, #0xDEAD, 1sl #16

movk x8, #0xF00D, 1sl #32
64 0xCAFEFOODDEADFO0D movk x8, #0xCAFE, 1sl #48

umulh x9, x0, x8

madd x1, x1, x8, x9

mul x0, x0, x8

mov x8, #0xFOOD

movk x8, #0xDEAD, 1sl #16
movk x8, #0xFOOD, 1sl #32
movk x8, #0xCAFE, 1lsl #48

65 Ox1CAFEFOODDEADFOOD vy 1o’ 10 4
add x9, x9, x0
madd x1, x1, x8, x9
mul x0, x0, x8
mov x8, #0xFOOD
movk x8, #0xDEAD, 1sl #16
movk x8, #0xFOOD, 1lsl #32
movk x8, #0xCAFE, 1sl1 #48
1s1 x9, x0, #3

67 0x7CAFEFOODDEADFOOD umulh x10, x0, x8
sub x9, x9, x0
add x9, x10, x9
madd x1, x1, x8, x9
mul x0, x0, x8
mov x8, #0xFOOD
movk x8, #0xDEAD, 1sl #16
movk x8, #0xFOOD, 1sl #32
movk x8, #0xCAFE, 1sl #48
mov w9, #0x0COA

96 0xFADCOCOACAFEFOODDEADFOOD

movk w9, #O0xFADC, 1sl #16
umulh x10, x0, x8

madd x9, x0, x9, x10
madd x1, x1, x8, x9

mul x0, x0, x8
mov x9, #0xFOOD
mov x8, #O0xFFEE

movk x9, #O0xDEAD, 1sl #16
movk x8, #0xADCO, 1sl #16
movk x9, #0xFOOD, 1sl #32
movk x8, #O0xEOFB, 1sl #32
movk x9, #O0xCAFE, 1sl #48
movk x8, #0xABOD, 1sl #48
umulh x10, x0, x9

madd x8, x0, x8, x10
madd x1, x1, x9, x8

mul x0, x0, x9

128 0xABODEOFBADCOFFEECAFEFOODDEADFOOD

FIGURE 2. clang-generated ARM code for the multiplication part
of a 128-bit LCG using multipliers of increasing size. Note how the
number of mov and movk instructions depends on the size of the
multiplier.

8 GUY STEELE AND SEBASTIANO VIGNA

ford =2,...,8. For d > 2 this is not a problem, as such very small multipliers are
not commonly used. However, choosing a multiplier that is smaller than or equal
to y/m has the effect of making it impossible to obtain a figure of merit close to 1
in dimension 2. Note that, for any d, as a drops well below /m the figure of merit
fa degenerates quickly; for example, if a < 4/m/2 then fo cannot be greater than
(4/3)71/4 /2 ~ 0.4653.

Nonetheless, as soon as we allow a to be even a tiny bit larger than \/m, v (and
thus f2) is no longer constrained: indeed, if m = 22%, a (w + 1)-bit multiplier is
sufficient to get a figure of merit in dimension 2 very close to 1 (see Table 1).

MCGs with power-of-two moduli cannot achieve full period: the maximum pe-
riod is m/4. It turns out that the lattice structure, however, is very similar to the
full-period case, once we replace m with m/4 in the definition of the dual lattice.
Correspondingly, we have to replace &/m with {/m/4 (see [9, §3.3.4, Exercise 20]):

Theorem 4.2. Consider an MCG with power-of-two modulus m, multiplier a, and
period m/4. Then for every d > 2 and every a < {/m/4 we have vy = Va2 + 1,
and it follows that

a?+1

742 /m/A

Note that Theorem 4.2 imposes limits on the figures of merit for (w — 1)-bit
multipliers for 2w-bit MCGs, but does not impose any limits on w-bit multipliers
for 2w-bit MCGs. In Table 2, observe that the 31-bit multipliers necessarily have
figures of merit f, smaller than (4/3)~'/* ~ 0.9306 (though one value for f, namely
0.930577, is quite close), but for multipliers of size 32 and greater we have been
able to choose examples for which f; is well above 0.99.

fa=

5. BEYOND SPECTRAL SCORES

In view of Theorem 4.1, it would seem that using a (w + 1)-bit multiplier gives
us the full power of a 2w-bit multiplier: or, at least, this is what the spectral scores
suggest empirically. We now show that, however, on closer inspection, the spectral
scores are not telling the whole story.

Hoérmann and Derflinger [7] studied multipliers close to the square root to the
modulus for LCGs with 32 bits of state, and devised a statistical test that makes
generators using such multipliers fail: the intuition behind the test is that with
such multipliers there is a relatively short lattice vector s = (1/m,a/m) € Ag that
is almost parallel to the y axis. The existence of this vector creates bias in pairs of
consecutive outputs, a bias that can be detected by generating a distribution using
the rejection method: if at some point the density of the distribution increases
sharply, the rejection method will underrepresent certain parts of the distribution
and overrepresent others.

We applied an instance of the Hérmann—Derflinger test to congruential genera-
tors (both LCG and MCG) with 64 bits of state using a Cauchy distribution on the
interval [—2..2). We divide the interval into 10® slots that contain the same prob-
ability mass, repeatedly generate by rejection 10° samples from the distribution,
and compute a p-value using a x? test on the slots. We consider the number of
repetitions after which the p-value is very close to zero? a measure of the resilience

2More precisely, when the p-value returned by the Boost library implementation of the x2 test
becomes zero, which in this case happens when the p-value goes below ~ 1016,

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS 9

of the multiplier to the Hérmann—Derflinger test, and thus a positive feature (that
is, a larger number is better).

The results are reported in Tables 1 and 2. As we move from small to large
multipliers, the number of iterations necessary to detect bias grows, but within
multipliers with the same number of bits there is a very large variability.?

The marked differences have a simple explanation: incrementing the number of
bits does not translate immediately into a significantly longer vector s. To isolate
generators in which s is less pathological, we have to consider larger multipliers,
as ||s|| = va® + 1/m. In particular, we define the simple figure of merit A for a
full-period LCG as
N R VN Gy
S 1ymo 1ym o m
In other words, we measure the length of s with respect to the threshold 1/y/m of
Theorem 4.1. In general, for a set of multipliers bounded by B, A < B/y/m.

Note that because of Theorem 4.1, if a < /m

VERT VT
wtvm' v

that is, for multipliers smaller than /m the two figures of merit f> and A are linearly
correlated. Just one additional bit, however, makes the two figures independent
(see the entries for 33-bit multipliers in Table 1, as well as the entries for 32-bit
multipliers in Table 2).

For MCGs with power-of-two modulus m, s = (4/m,4a/m), and, in view of
Theorem 4.2, we define

sl V@A m/e) Ve i1

1/4/m/4 1/4/m/4 vm/4

In Tables 1 and 2 we report a few small-sized multipliers together with the figures

of merit fo and A, as well as the number of iterations required by our use of the

Hoérmann—Derflinger test: larger values of A (i.e., larger multipliers) correspond to
more resilience to the test.

fa/A = vy %~ 0.9306,

~ 2a/\/m

6. POTENCY

Potency is a property of multipliers of LCGs: it is defined as the minimum s
such that (a — 1)® is a multiple of the modulus m. Such an s always exists for
full-period multipliers, because one of the conditions for full period is that a — 1
be divisible by every prime that divides m (when m is a power of two, this simply
means that a must be odd).

Multipliers of low potency generate sequences that do not look very random: in
the case m is a power of two, this is very immediate, as a multiplier a with low
potency is such that a — 1 is divisible by a large power of two, say, 2¥. In this case,
the k lowest bits of ax are the same as the k lowest bits of x, which means that
changes to the k lowest bits of the state depend only on the fact that we add c.

3We also tested a generator with 128 bits of state and a 64-bit multiplier, but at that size the
bias is undetectable even with a hundred times as many (10'°) slots.

10

GUY STEELE AND SEBASTIANO VIGNA

Bits a fa A H-D
9 Oxfffeb28d 0.930586 1.00 6
Oxcffef595 (.756102 0.81 4

33 0x1dd23bbab 0.998598 1.86 19
0x112ab63ed 0.998387 1.07 7

34 0x3de4£f039d 0.998150 3.87 72
0x2cfe81d9d 0.992874 2.81 46

35 0x78ad72365 0.995400 7.54 313
0x49££d40d25 0.991167 4.62 109

TABLE 1. A comparison of small LCG multipliers for m =
In the 32-bit case, fo and A are linearly correlated, and fs is nec-
essarily smaller than approximately 0.9306. For sizes above 32
we show multipliers with almost perfect fo but different A\. The
last column shows the corresponding number of iterations of the

Hormann—Derflinger test.

Bits a fo A H-D
a1 0x7ffc9ef5 0.930509 0.50 2
0x672a3fbb5 0.750046 0.40 1

39 0xef912f85 (0.994558 0.94 4
0x89£353b5 0.997577 0.54 2

33 0x1£0b2b035 0.996853 1.94 22
O0x16aa7d615 0.994427 1.42 11

34 0x3c4b7abab 0.992314 3.77 81
0x2778c3815 0.998339 2.47 37

45 0x7d3£85c05 0.998470 7.83 354
0x40dde345d 0.996172 4.05 87

TABLE 2. A comparison of small MCG multipliers for m = 264,
In the 31-bit case, fo and A are linearly correlated, and fs is nec-
essarily smaller than approximately 0.9306. For each size above 31
we show multipliers with almost perfect fo but different A\. The
last column shows the corresponding number of iterations of the

Hormann—Derflinger test.

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS 11

For this reason, one ordinarily chooses multipliers of maximum possible potency,*
and since for full period if m is a multiple of four, then a — 1 must be a multiple of
four, we have to choose a so that (a —1)/4 is odd, that is, a mod 8 = 5.

Potency has an interesting interaction with the constant ¢, described for the first
time by Durst [3] in response to proposals from Percus and Kalos [13] and Halton [6]
to use different constants to generate different streams for multiple processors. If
we take a multiplier a and a constant ¢, then for every r € Z/mZ the generator with
multiplier @ and constant (a — 1)r + ¢ has the same sequence of the first one, up to
addition with r. Indeed, if we consider sequences starting from x¢ and yo = zg —r,
we have®

Yn=Yn—1+ (a—Dr+c=alxp_1—7r)+(a—)r+c=xz, —r

That is, for a fixed multiplier a, the constants ¢ are divided into classes by the
equivalence relation of generating the same sequence up to an additive constant.

How many classes do exist? The answer depends on the potency of a, as it comes
down to solving the modular equation

d—c=(a—1)r

If a has low potency, this equation will be rarely solvable because there will be
many equivalence classes: but for the specific case where m is a power of two and
amod 8 = 5, it turns out that there are just two classes: the class of constants
that are congruent to 1 modulo 4, and the class of constants that are congruent
to 3 modulo 4. All constants in the first class yield the sequence x,, = ax,—1 + 1,
up to an additive constant, and all constants in the second class yield the sequence
Ty = aT,_1 — 1, up to an additive constant. It follows that if one tries to use three
(or more) different streams, even if one chooses different constants for the streams,
at least two of the streams will be correlated.

If we are willing to weaken slightly our notion of equivalence, in this case we
can extend Durst’s considerations: if we consider sequences starting from zy and
Yo = —xo + 7, then

Yn = Yn—1 — ((a=)r+c)=a(—xp_1+7r)—(a—1)r—c=—z, +r.

Thus, if we consider the equivalence relation of generating sequences that are the
same up to an additive constant and possibly a sign change, then all sequences
generated by a multiplier a of maximum potency for a power-of-two modulus m are
the same, because to prove equivalence we now need to solve just one of the two
modular equations

d—c=(a—1)r and +c=(a—1)r

and while the first equation is solvable when the residues of ¢ and ¢’ modulo 4 are
the same, the second equation is solvable when the residues are different.

4Note that “maximum possible potency” is a quite rough statement, because potency is a very
rough measure when applied to multipliers that are powers of primes: for example, when m = 22%
a generator with a — 1 divisible by 2% (but not by 2%*+1) and a generator with a — 1 divisible by
22w—1 have both potency 2, but in view of the discussion above their randomness is very different.
More precisely, here we choose to consider only multipliers which leave unchanged that smallest
possible number of lower bits.

5A1 remaining computations in this section are performed in Z/mZ.

12 GUY STEELE AND SEBASTIANO VIGNA

7. USING SPECTRAL DATA FROM MCGS

The case of MCGs with power-of-two modulus is different from that of LCGs
because the maximum possible period is of length m/4 [9, §3.2.1.2, Theorem C].
Thus, there are two distinct orbits (remember that the state must be odd). The
nature of these orbits is, however, very different depending on whether the multiplier
is congruent to 5 modulo 8 or to 3 modulo 8: let us say such multipliers are of type
5 and type 3, respectively.

For multipliers of type 5, each orbit is defined by the residue modulo 4 of the
state (i.e., 1 or 3), whose value depends on the second-lowest bit.® Thus, the
remaining upper bits (above the second) go through all possible m /4 values. More
importantly, the lattice of points described by the upper bits is simply a translated
version of the lattice A4 associated with the whole state, so the figures or merit we
compute on A} describe properties of the generator obtained by discarding the two
lowest bits from the state. Indeed, for every MCG of type 5 there is an LCG with
modulus m/4 that generates “the same sequence” if the two low-order bits of every
value produced by the MCG are ignored [9, §3.2.1.2, Exercise 9].

For multipliers of type 3, instead, each orbit is defined by the residue modulo 8
of the state: one orbit alternates between residues 1 and 3, and one orbit alternates
between 5 and 7.7 In this case, there is no way to use the information we have
about the lattice generated by the whole state to obtain information about the
lattice generated by the part of state that is changing; indeed, there is again a
correspondence with an LCG, but the correspondence involves an alternating sign
(again, see [9, §3.2.1.2, Exercise 9]). For this reason, we (like L'Ecuyer [10]) will
consider only MCG multipliers of type 5.

Note that a and —a mod m = m — a have different residue modulo 8, but the
same figures of merit [9, §3.2.1.2, Exercise 9]. Moreover, in the MCG case the lattice
structure is invariant with respect to inversion modulo m, so for each multiplier its
inverse modulo m has again the same figures of merit. In the end, for each multiplier
a of maximum period m/4 there are three other related multipliers a~! mod m,
(—a) mod m and (—a~') mod m with the same figures of merit; of the four, two
are of type 3, and two of type 5.

8. TABLES

In this section we provide tables of good multipliers for 32, 64 and 128 bits of
state, updating some of the lists in the classic paper by L’Ecuyer [10, Tables 4
and 5].

For LCGs, only multipliers a such that a mod 8 is either 1 or 5 achieve full
period [9, §3.2.1.2, Theorem A], but we (like L’Ecuyer) consider only the case of
maximum potency, that is, the case when a mod 8 is 5. For MCGs, as we already
discussed in Section 7, we consider only multipliers of type 5. In the end, therefore,
we consider in both cases (though for different reasons) only multipliers whose
residue modulo 8 is 5.

For each multiplier, we considered figures of merit up to dimension 8, that is, we
computed fa, f3, f4, f5, f6, f7, and fs. For reasons of space, we present only fs
through fs in the tables. We also present two different scores that summarize these

6This is a consequence of the fact that multipliers of type 5 do not change the two lowest bits.
7Multipliers of type 3 always leave the lowest bit and the third-lowest bit of the state unchanged.

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS 13

figures of merit: the customary minimum spectral score (over all seven dimensions
2 through 8) and a novel harmonic spectral score (also over all seven dimensions
2 through 8). The tables present not only the multipliers with the best minimum
spectral scores that we found and the multipliers with the best harmonic spectral
scores that we found, but also multipliers that exhibit a good balance between the
two scores, as described below.

Traditionally, when examining the figures of merit of the spectral test up to
dimension d, the minimum spectral score (up to dimension d) is given by the min-
imum figure of merit over dimensions 2 through d. L’Ecuyer’s paper [10] uses the
notation My(m,a) for this aggregate score for a generator with modulus m and
multiplier a. We prefer to distinguish the minimum spectral scores of LCGs and
MCGs, because the figures of merit f; are computed differently for the two kinds
of generator when the modulus is a power of two: we use the notation

///j(m,a) = 212121(1 fi(m,a)

to denote the minimum spectral score up to dimension d for an LCG, and we use
the notation .#(m, a) to denote the analogous score for an MCG.

The use of the minimum spectral score seems to have originated in the work of
Fishman and Moore [5], where, however, no motivation for this choice is provided.
The definition has been referred to and copied several times, but even Knuth argues
that the importance of figures of merit decreases with dimension, and that “the
values of v; for ¢ > 10 seem to be of no practical significance whatsoever” [9, §3.3.4].
Therefore, while L’Ecuyer’s paper reports three different minimum figures of merit
Mg(m,a), Mig(m,a), and Mza(m,a) for each multiplier, here we will report only
Mg (m,a) or ME(m,a).

The disadvantage of the minimum spectral score is that it tends to flatten the
spectral landscape—it is easy, even using small multipliers, to get figures of merit
up to dimension 8 greater than 0.77. But smaller dimensions should be given more
importance, as a lower figure of merit in a lower dimension is more likely to have an
impact on applications, and a multiplier with a very high minimum spectral score
over 2 < d < 8 may have an unremarkable value for, say, f.

We therefore suggest considering also a second aggregate figure of merit:

Definition 8.1. Let f;(m,a), 2 < i < d, be the figures of merit of an LCG
multiplier a with modulus m. Then, the harmonic spectral score (up to dimension
d) of a with modulus M is given by
1 [’
%+(m’a) _ f (m a)’
Hy 1 & i—1
2<i<d

where H,, = 22:1% is the n-th harmonic number.® Analogously, the notation
;) (m,a) denotes the harmonic spectral score (up to dimension d) for an MCG
multiplier @ with modulus m.

The effect of the harmonic spectral score is to weight each dimension progres-
sively less, using weights 1,1/2,1/3,...,1/(d — 1), and the sum is normalized so
that the score is always between 0 and 1.

8We have used script letters .# and .7 to denote spectral scores so that the harmonic spectral
score function % will not be confused with the harmonic number Hg.

14 GUY STEELE AND SEBASTIANO VIGNA

An example of the difference in sensitivity between the minimum spectral score
and the harmonic spectral score is that the minimum spectral score is in practice not
limited by Theorem 4.1; for example, the largest minimum spectral score of a 32-bit
multiplier for a 64-bit LCG is 0.774103, and the largest minimum spectral score
for a 33-bit multiplier is almost the same: 0.776120 (an increase of about 0.002).
But the largest spectral harmonic score goes from 0.867371 for 32-bit multipliers
to 0.890221 for 33-bit multipliers (an increase of almost 0.03), reflecting the fact
that fo can get arbitrarily close to 1 (indeed, there are 33-bit multipliers for which
f2 = 0.998598).

Another empirical observation in favor of the harmonic spectral score is that
as soon as we look into multipliers with a high harmonic score, we see that their
minimum score can be chosen to be just a few percentage points below the best
possible, but at the same time the low-dimensional figures of merit, which are
more relevant, have an increase an order of magnitude larger. These empirical
observations are based on multipliers of at most 35 bits, which we have enumerated
and scored exhaustively, but the same phenomenon appears to happen in larger
cases, which we have sampled randomly.

Following a suggestion by Entacher, Schell, and Uhl [4], we compute figures of
merit using the implementation of the ubiquitous Lenstra—Lenstra—Lovész basis-
reduction algorithm [12] provided by Shoup’s NTL library [14]. For m = 264
and m =28 we recorded in an output file all tested multipliers whose minimum
spectral score is at least 0.70 (we used a lower threshold for m = 232). Overall we
sampled approximately 6.5 x 10! multipliers, enough to ensure that for each pair of
modulus and multiplier size reported, we recorded at least one million multipliers.
(In several cases we recorded as many as 1.5 million or even two million multipliers.)
As a sanity check, we also used the same software to test multipliers of size 63 for
LCGs with m = 2!?8; as expected, in view of Theorem 4.1 and its consequences, a
random sample of well over 100 63-bit candidates revealed none whose minimum
spectral score is at least 0.70.

In theory, the basis returned by the algorithm is only approximate, but using
a precision parameter 6 = 1 — 10™? we found only very rarely a basis that was
not made of shortest vectors: we checked all multipliers we selected using the
LatticeTester tool,” which performs an exhaustive search after basis-reduction pre-
processing, and almost all approximated data we computed turned out to be exact;
just a few cases (usually in high dimension) were slightly off, which simply means
that we spuriously stored a few candidates with minimum below 0.70.

Besides half-width and full-width multipliers, we provide multipliers with up to
three bits more than half-width for m = 232 and m = 254, and up to seven bits
more than half-width for m = 2'?®, as well as multipliers of three-fourths width
(24 bits for m = 232, 48 bits for m = 264, 96 bits for m = 2128), because these
are experimentally often as fast as smaller multipliers. Additionally, we provide
80-bit multipliers for m = 228 because such multipliers can be loaded by the
ARM processor with just five instructions, and on an Intel processor one can use a
multiply instruction with an immediate 16-bit value.

For small multipliers, we try to find candidates with a good X: in particular,
we require that the second-most-significant bit be set. For larger multipliers, we
consider only spectral scores, as the effect of a good A becomes undetectable. Since

9https ://github.com/umontreal-simul/latticetester

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS 15

when we consider (w + ¢)-bit multipliers we select candidates larger than 2v+¢=1,
in our tables 2671 < X < 2¢ for LCGs and 2° < \ < 2¢t! for MCGs.

More precisely, for each type (LCG or MCG), every m € {232,264,2128} and
for every multiplier size (in bits) tested, we report (in Tables 3 through 10) four
multipliers:

e the best multiplier by harmonic spectral score;
e the best multiplier by harmonic spectral score within the top millile of
minimum spectral scores.
e the best multiplier by minimum spectral score;
e the best multiplier by minimum spectral score within the top millile of
harmonic spectral scores.
In case the first-millile criterion provides a duplicate multiplier for a given score,
we try the same strategy with the first decimillile, and mark the multiplier with an
asterisk, or with the first centimillile, marking with two asterisks, and so on.

The rationale for these reporting criteria is that the best score gives an idea of
how far we went in our sampling procedure, but in principle the best score within
the first millile of the alternative score gives a more balanced multiplier: indeed,
within every list of four, the second multiplier (best multiplier by harmonic spectral
score within the top millile of minimum spectral scores) is our favorite candidate.

All multipliers we provide are Pareto optimal for our dataset: that is, for each
type, modulus, and size there is no other multiplier we examined that is at least
as good on both scores, and strictly improves one. In particular, for each type,
modulus, and size, the multipliers with distinct scores are pairwise incomparable
(i.e., for each pair, the harmonic spectral score increases and the minimum spectral
score decreases, or vice versa).

GUY STEELE AND SEBASTIANO VIGNA

oG = W YIM ST 10§ s1odinur pooy) ¢ AIAV],

LOT X €C FLVL0 LTPL'0 LEO6'0 89880 TIS6'0 S8PETOIOX0 C6eL0 02L8°0
LT XFE 6F9L°0 G¥6L°0 6LL°0 LS6LO 966L°0 SOTIFIISXO 679L0 GT6L°0
LOIXTH 686L°0 €SP0 FP0S0 69780 69680 S962FETRX0 eGL 0 98780 ¢t
0T XTF €16L°0 9L.8°0 8GGL'0 TIE6'0 6SL6'0 PTERRAPEXO 682L°0 GI8]0
666 TIVL'0 T90L'0 OFES0 86880 TIE6'0 SHPISOXQ 190270 6878°0
87'20C ¥E6L°0 SY0S0 LFRL0 68FL°0 0068°0 GEALBOXQ STHL0 PLIS0
TCT6T 9L6L°0 89TL0 FTTL0 GB6ES'0 LGE6'D GOEBOOXO VeeL 0 TLES0 ve
CT¥eC 6GVL°0 €8LL°0 CPIR0 T006'0 9086'0 SBLZOSXO 61290 Z898°0
06, GL99°0 €1gL0 TIF9'0 6IE6'0 SSF6'0 PLGOLXO 29790 G628°0
P89 GCLL'0 ©SOL0 LPELD €908°0 00LL'0 SGILP9XO 2G0L0 2T9L°0
QL. FG9L°0 L6VLO €T080 66FL0 SOPS0 GE82LX0 0969°0 01810 61
€69 TY0L°0 €180 LEIR0D TS8R0 T096°0 GPASYXO €18G°0 Z678°0
8G'E 6EVL0 19690 60VL'0 L0OSS'0 LLF60 P9ISEEX0 196970 16€8°0
9z°¢ 8LVL°0 92TL0 C9TL0 09EL°0 T69L'0 PPTHEXO 9%6L 0 RLTL0
9z'¢ 8LFL'0 92TL0 C9TL'0 09EL°0 T69L'0 PPTHEXO 9220 QIFL0 81
8G'E 6EVL0 T969°0 60FL'0 L0OSS'0 LLF6'0 P9ISEEX0 1969°0 16680
PRT 6EFL0 0L6L°0 €L28°0 TFPSL'0 8LL60 PO9PTX0 €180 zEVR'0
19T 69€L°0 90€L°0 6ITL0 LS00 €806°0 S026TX0 €290 G908°0
19T 69€L°0 90€L°0 6ITL0 LS08°0 €806'0 SO26TX0 1€29°0 G908°0 4l
PRT 6EPL°0 0L6L0 €LG8°0 TPRL'0 SLL6'0 PO9PTX0 €18S°0 ZETR0
86°0 FCEL0 TLISO ¥8PY'0 08980 E€FI60 S8AFX0 7190 6128°0
180 €68L°0 TOTR0 8280 09LL°0 €8GL°0 PBOPX0 200270 969.°0
180 €68L°0 TOTR0 82280 09LL°0 €8SL°0 PBOPX0 200L°0 96920 ot
86'0 ¥CEL0 GTLIOD TS8P0 08980 EPI60 G8AFXO 72€9°0 6TCR0
¢ of sf vy ef ef D (v'w) By (v'w) B sng

oG = W IM SHDIN 10§ sIordinur pooy) “§ ATAV],

17

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS

JOLX L0 TPLLO TESL'0 0S80 FS06°0 68L6°0 PedITOZ8X0 S65L0 66,80
JOL X 68 9,280 L88L°0 €0LL'0 T6L80 GOPR'0 GAFAIESEXO 91920 66280
JOL X T8 G9GL'0 68GL°0 6680 PRGSO 98’0 G88TLOIEX0 £25L°0 TIE80 et
WL X 68 TPLLO TESL'O0 0EE80 ¥S06'0 68LE'0 GTLOOESEXO S6£L0 66,80
ITP8E 0608'0 PITL0 F6LL'0 99L8°0 9686'0 GES009%0, 0299°0 1980
96°'66€ 69T8'0 FI6L0 T9SL0 TSER0 8TFG'0 P9ATLOXO €EFL0 6780
96°'66¢ 69180 FI6L'0 T9SL0 TSER0D 8TFG'0 P9ATLOXO €E7L°0 6780 re
TTP8E 0608'0 PITL0 F6LL0 99L8°0 96860 SE€2009%0 0299°0 1980
ORFL 08L9°0 GLGL'D G8T8'0 L998°0 FLGG'0 PELYLXO €950 82¥8°0
6Pl 696L°0 OLSL'0 LG9L'0 8E8Y'D 8L8Y0 SGEPAYXO 8E89°0 9010
2EPT OTIL'0 TLPL'0 80890 186L°0 GOG8'0 PO8TLXO 8089°0 Z86L0 01
G8'CT 60FL0 90950 OFSL0 0£E6'0 TY86'0 GP99LX0 9055°0 197870
G090 TOPL0 FI690 990L°0 0£98°0 FEG6'0 GPSOEXO 71600 18€8°0
P9 PEIL0 0960 0EI80 GIFL0 9II80 PTRIEXO FEIL0 88LL0
LG°L 9TEL0 €969°0 PE0L'0 TEGROD 98FS0 S969EX0 £969°0 886L0 8l
00 TOPL'0 FI69°0 990L°0 0£98°0 FES6'0 SPSOEXO F169°0 T8€8°0
FO'E P6TS0 LL08°0 T9E80 €0S8'0 99960 SOTPTXO 76250 9€£8°0
99°¢ TGEL0 STOLD 0€T8°0 989L°0 €680 PLLOTXO gLL90 926L0
96°¢ TGEL0 STOL0 0€T8°0 989L°0 €680 PLLOTXO 2LLY0 9260 o
FO'E P6CS0 LL08°0 T9E8°0 €0SR'0 9996°0 SOTPIXO 762S°0 9£€8°0
P6T 9ZGL0 8G6L0 98FL0 STFLO THIG0 SALIXO 2950 1128°0
06T LLOLO S999°0 L6T80 9.Z80 L6880 SLOOXO 999°0 I718°0
06T LLOLO G999°0 L6TS0 9280 L6880 SLOOXO 5999°0 7180 o
P6T 93GL0 8G6L0 98FL0 STPLO TPIG0 SALIXO 52950 11280
86'0 €PF9'0 L88L'0 86LL0 OFELD FPI60 SOPLXO E7F90 1018°0
060 60690 €I2L0 8L690 FIBY0D 9GE80 POTLXO 71890 205L0
260 OTIL'0 00FL'0 €TTL0 GPOL'0 LESR'O PYSLXO L8Y9°0 629L0 a
86'0 €PFO0 L88L'0 86LL°0 OFELD FPIG0 SOPLXO £779°0 T018°0

% of sf v ef ef D (vw) By (vw) Sy sng

GUY STEELE AND SEBASTIANO VIGNA

18

"poG = UL M s 10§ sidldnur pooy G ATV,

OTXTF GEIR0 0S8L°0 0LE80 €088°0 L£96'0 SATILOFGOOASTOLIX0 ZV_L0 66.8°0
OTX0°€ 66080 096L°0 ¥608°0 8GR0 66060 G999€L99ZZIOHFIGAX0 0S6L0 6158°0
0T X 6T TOLLO 09180 8GZ80 68680 T1.86'0 SASTOFOAEFCTSTICX0, 689L°0 73680 v9
OT XG€ F0T80 €280 80L0 GLEG0 98G6'0 S6IS9TSOPELSTHETPXO 209270 266380
LO0T X 8F T88L°0 TFRL'0 996L°0 T098'0 S¥R6'0 PIPR8EqFRTOqxQ 02820 06.8°0
0T X 7€ F808°0 9T08°0 €€6L°0 €FSR0 70880 PTOTE2FR9T98X0 T68L°0 ZLI0
LOTX LT 996L°0 G96L°0 969L°0 TGE6°0 TL86'0 PI9FSREHELIAX0 €690 968870 87
0T XG€ 9200 €80L0 98980 FIL60 91660 S6F9TITSEELX0 €80L°0 €368°0
Ge’L ¥CQLL0 TIGR0 6180 L8360 00S6°0 P8ORHPSSLXO, 9GG20 ce880
659 LI8L°0 LIZR0 TThR0 G6E%0 CI96°0 SB0PE08EIX0 C9LL0 9€28°0
¢el FCLL0 TISR0 T6IS0 L8T60 00S6'0 P8ORHPEGLX0 98¢0 GE]R0 ae
QL9 TeeL0 9T6L0 V6PL'0 08¢60 SI66'0 SSETA9IA9X0 ceeL’0 206380
€0°¢ ©9SL°0 FLTRO CTLLO TO06'0 9TC6'0 PEYOTILOEXO TGEL0 L698°0
6€°¢ 6208°0 0€6L0 0TZ80 T68L°0 8L98°0 PABIOTEIEX0 678L°0 6728°0
69°¢ €LGL°0 00LL'0 €F8L°0 GIIS0 66360 G8EO8LIREXD €18L0 G070 ve
98°¢ 66€L°0 LSIL'0 V€GO 68360 TI66'0 PTILEOPPEX0 VeIL0 GZ8]0
8T 99GL°0 6908°0 ¥6ER0 €6L80 00660 PEORELISTX0 QETL0 9688°0
06T 8G6L'0 CLLL'O 8GPR'0 TIES0 SF9IR0 GETeqegetx(19220 72e8°0
09T ¥gLL'0 0€9L0 9€6L°0 T80 SIF6'0 SOTIBTEETX0 LEGL0 08780 &t
98'T 0LEL'0 280 CLZR0 2880 GLYG'0 GOOTEROPTX0 veL°0 188870
00T F2SL°0 TISL'0 €S08°0 9LI60 FL36'0 SEOPOTIIXO0 gIGL0 2098°0
G6'0 0808°0 8608°0 €96L°0 TPLL0 €€88°0 S86GOITIXO WL 0 GGT8°0
960 SFLL'0 L88L0 8G9L0 60T6°0 €968°0 GLSATE9IX0 288L 0 Z]TR0 ¢t
00T 8S2L°0 ©998°0 L9S8°0 L8.80 GLG6'0 PeRIZ8TIIX0 8GZL 0 V2980
¢ of sf vl ef ef D (v'w) By (v'w) S sng

19

"poC = WL YIM SOOI\ 10§ smordiymur pooy) "9 A1dv],

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS

0T X ¥¥ T9LL°0 €06L0 ¢CIO80 T6L8°0 €€96°0 SGPERP9I98THTAGAESX0 T9LL°0 87.L8°0
0T X 78 FG6L0 CIT80 G86L°0 EIFPS'0 8EL8'0 STBO68SPFALITERIX0 I88L°0 ¢9€8°0
60T X 89 0€9L°0 6T6L0 ¥ce80 GEI60 GG86'0 PYPL8IEFEA6GO640X0 90920 0T68°0 &
60T X 69 L0TL0 €68L°0 90680 69960 9.66°0 PERIZOTEALDITIVOX0 LOTL0 91060
pOL X L6 L98L°0 99780 €L6L0 LE6S0 GY86'0 P8IELOAAPIPAXO, TolL0 7688°0
OT X 0T F8E80 LP6L0 TEFPS'0 €LLE0 €660 PPEA9PHTEQEIX0 LV6L70 0€28°0
OT X €T 628L°0 L6080 0£c80 9£96'0 €LL6°0 PSRALOFELYIIXO Gg9L0 8868°0 8
O XTT 8LFPL0 Tol80 9SI8°0 €8F6'0 8966'0 GESTISEPERRILX) S0TL0 ¢106°0
I8PT 8908°0 68¢8°0 €EFPS0 6798°0 €I86'0 SGESA9CBILXO L95L°0 0.88°0
S6FT F06L°0 ¥T8L0 608L°0 8¥08°0 TLEG'D POPBAOBLLXQ 70LL0 €L¥8°0
S6FT F06L°0 ¥T8L0 608L°0 8Y08'0 TLEG'OD POPBAOBLLXO, 70LL°0 €L¥8°0 &
ISFT 8908°0 68780 €EF8'0 67980 €I86'0 SE2A9T89LX0 L9620 0.88°0
669 G09L°0 0LSL°0 ¥88L0 99G6'0 F6S6'0 PSYO006LEX0 9TrL0 1€.8°0
789 01LL0 LLLLO 6SC8°0 69980 L6680 SFFOLEAIEXO 0TLL0 6.78°0
€LL 8€08°0 TISR0 G9P80 IEI80 CPF6'0 SRITO9PPEXQ L85L°0 ¢798°0 ve
€69 T098°0 L09L°0 C9L80 LTI6'0 GCL60 PBAOOHERTEXO 80040 €068°0
68 LE8L'0 GTPL0 ¥GEG8'0 96980 LGL6'0 SPSGPLLOSTXOD GerL0 ¢eL80
L9€ LTIE8'0 09LL0 LTI80 F¥G6L°0 LSG8'0 PPS6EOSPTX0 v0LL°0 L6180
66'¢ T0T80 G980 9€08'0 8PESD 8E06°0 GAELO®BFITX(LEILO 0980 &
L€ TISPL0 PLGL0 8LS8°0 9FG6'0 6E86'0 STEBEIPTXO L80L°0 €168°0
68T PEEL'0 LIIS0 88FL'0 ¥0G6'0 GOL6'0 PRY9IQ29XQ VEEL’0 .80
G9T G6LL0 868L°0 ¥T08'0 LTLLO L9080 STEEELEPXO LTLL0 126270
V6T 99I8°0 CESL0 TS06'0 €IL80 €LIS0 P6A98OBIXO 90920 6878°0 ¢t
€8T 6IF8'0 F6VL0 GLPS0 GEL8'0 90860 GBRRSGO69%0 621L0 7088°0

Y of sf £ &f ef D (0w) By (vw) B sug

GUY STEELE AND SEBASTIANO VIGNA

20

(89718 IO[[RWS) (o0 7 = W YA $D)T 10§ swordinut poor)), d1dv],

66'GC TPIS0 112850 02P80 O0LL8'0 GVS6'0 PS8OTLIPOOBLOEIFEIX0 G9LL0 €268°0
1092 66080 VZ6L0 0SS0 67080 19160 PESGLOGZLPOBASEORTXO 00620 a8¥8°0
66'GC TIPSO T128°0 0CFS'0 0LL8'0 6VS6'0 PS8OTLIPOORLOEOFETXO 9110 7630 69
28T GEGL0 GOES0 0ZSS0 T9E6'0 SE66'0 PTT8O0PGEOI89POGITXO POTL0 Z106°0
967l $99L0 €96L°0 €980 0T98°0 TFS6'0 PTFOPLEOTIFOTIAGOXO 79920 99.8°0
OU'El TL8L0 9080 12180 €28L0 LE06'0 P8OSTSSTIISEFOEZPXO 2820 196870
STl 10640 €9.8°0 729L0 L6SS'0 0S86'0 GrOB0667698AP8LIOXO 119470 71830 89
GOZI T08L°0 OIPS0 FPLS0 S693°0 S866'0 SESSEOVPECSTESLEI%X0 920L°0 126870
S0L 89G80 7ZIS0 FIIS0 11680 6ST6'0 G8LE9EP0TALAFISTLXO 6SLL0 122870
OT'L TIIS0 €F6L0 €2L80 998%°0 0798°0 STHOFLO®ITELIESTLYO T9SL0 0678°0
179 00180 LIS%0 €I6L0 08680 OIE6°0 SBEHTE9RASFI0ALLI%O, 2eLL0 TS0 49
L G66L0 GLIS0 78980 FEE60 TTL6'0 SEO9ETEOTSTPS08LLYO 265L°0 796870
LLE 080 16280 6E68°0 9260 GGLE'0 SGOTOOSFE6A6TEPHOLXO,.. eI 0 0868°0
S8'E £20%°0 0SPS0 FI6S0 GGPS'0 FFS6'0 PPOLIFSHIRLEEPOSEX0 E6L°0 0968°0
89'E £L080 OSPRS00 FI6S0 GGPS'0 FFS6'0 PPOLIFSHIRLEEPOSEX0 €e6.°0 096370 9
LLE L08L°0 16280 68680 9LZ6°0 66L6'0 SGOTOOSFEEAGTEPHOLXO 1120 086370
66T 0SIS0 L9640 GITS0 80060 €196°0 SOPOVESTHOEZS0ZFTX0 SGLL0 F188°0
PST €2€8°0 098L°0 9£08°0 G66L0 GGSL0 PEYATLEIBEPPSPLPIXO 088270 L9620
PST FOSL0 0S€8'0 0I€0 6060 G6I66°0 PFAIBEO854AAG09PTX0 a19.°0 18650 S
IS8T 6ESL0 F96L0 98080 9996°0 LE66'0 POOESHLER99RLLIPTXO 020L°0 6630
960 90080 L68L°0 €2LS0 €906°0 GG68°0 PTEGEO96FFIPISIFXO 20320 8€98°0
260 L6180 FE6L0 G608°0 LGI6'0 GPSS0 GA99TL6LBAPAAZASXO 76320 €880
00T €GLL0 GPES0 78280 OVI6'0 SLZ6'0 GTS0STSSLITFLEFFXO 19270 G0LS0 79
660 £€L8°0 ST8L0 £98%°0 GOE6'0 08260 STBEETHE96TIASPIXO Zev L0 6TSS0
% of af V[ef ef) ?;5%\\\ AsnSvM\wﬁ sy1gq

21

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS

(89218 108IR[) o7 = W YA D) 10§ swordinun pooy) ‘g WIdv],

sOT X 8T €FIR0 6GLL0 08980 €LIS0 6CL6'0 S99B0FLSTSYPO6T9T08I2T8GSHL028VIX0 GCLL D €928°0
q0T X 86 2ST80 8E6L0D LEGR'D F8L8'0 96180 SEPEYLOZOOPEIHLOLESTPPYETOPERSL8X0 GOBL 0 6628°0
sOT X 8T L2380 €098°0 S8L°0 T6I60 00860 SAEA96Z6%679eIAAPATHETBIETIFHIIX0 GLGL 0 GE6R0 8¢l
GOT X 9T 9TLL°0 2€e80 LSZ80 O0IF6'0 9886°0 PAISLO9LGIOEPOPISTI6ITO9T69RTE9PX0 £CFL 0 63680
OT X 8€E G0TR0 TF0R0 €6T180 L9E6'0 66S6°0 SPHEPALI98OELVESTISETOIPX0 TZIZ0 €068°0
OTX0F 8€6L°0 €208°0 9L68°0 FHER0 SIT6'0 PO96.PEO0SER0608FAPPIIIOX0 €GRL°0 0£G8°0
0T X8€ G0ZR0 TFOS'0 €6T180 LIE6'0 66S6°0 SPHEYALIS8OELVESTISE6TOIPX0 TLLL°0 €068°0 96
0T XGT TERL'0 09980 06880 GCF980 8G86'0 GBLOIEIROTPEIOPATEEZAYLEX0 L8TL°0 996870
L0T X L'G 808L°0 91080 6LLL°0 86060 6L96'0 S6¥224990TA2964084PPX0 SVLL0 19280
LT X 69 FG08'0 6228°0 CFIR0 T0T®0 T6V6'0 PAG9SIIRETLI0AFSPTOFX0 SERL0 6298°0
L0T X GG 8ELL°0 €9GL°0 0£98°0 19980 0T66'0 STP2OT260TETORESGPIIPXO €9¢L°0 6E8]°0 08
L0 X0C 69T8°0 8TS8O 8L6R0 GIT60 TE66'0 PRIS0ZIFTHE6E9PTITHOX0 ¢geL°0 G0T60
9¢°G6T L6LL'0 FPRL0 TRISD €868°0 GLS6'0 P9IILAPSAFO6ZPAGEDX) 97920 €618°0
€9°00c €88L°0 L08L'0 8I0S0 966L°0 9%08°0 G2TZS90ILEPADG0ROX) 108L°0 ¥86L°0
L0°90% FFE80 C6SL'0 6EI8°0 TIE6'0 8FC6'0 SPEYEYSEEPR0LAZTEOX(865270 06880 oL
LTT6T GCFL'0 8TLL'O €E8%°0 9€T6'0 CI66'0 PLOTERPHIERZTIPPEH02X0 6ETL0 Zv68°0
2e0gT TH0S'0 0ZIS0 LIER0 TI680 LVL6'0 SOEAP6ZTEPO6LLTS8LX0 95920 L988°0
1€°T0T GPIS0 006L°0 TE6L0 6908°0 06060 SAT9SATEHOTEIOOHGIX0 G810 GTFR'0
2e0gT THOS'0 0CI80 LIZ80 TI680 LVL6'0 GOEAP6ZZEPO6LLTSLX0 92920 1988°0 1
G6'LCT VTLL'0 T6LL'O TISL'D TEI6'0 9L66°0 SP90Z0208€PHISTIFLX0 18€L°0 TG68°0
€169 9608°0 TS9L°0 GL9L0 90680 6EL6'0 POEBIQSRTEEE9A0TIEXO0 gS9L0 G828°0
€8¢ 9¢8L°0 8T8L'0 €86L°0 8GR0 T8T6'0 PLPISGIOTOGIHESPREXO GISL0 8678°0
6709 189L°0 T2g®0 ¥SZ80 9V080 GLIG'0 PISO8POPZSPRIEEHOEXO, 18920 G998°0 04
€6'¢9 €3e8°0 TR0 TLERD 96680 69L6°0 GB6LEPGI0ELISEHPOIEX) 06SL°0 QI6]°0
¢ of af vl ef ef D (v'w) By (v'w) B sng

GUY STEELE AND SEBASTIANO VIGNA

22

"(sozIs Jd[[eWs) .07 = W Ypm SHOIN 10§ swordiymur pooy) 6 A4V,

8807 9608'0 FPSL0 G680 1980 9LG60 S9G09EA9AZSGITOLPXO TI9L0 9€18°0
ZITE PPSL0 SI6L0 16080 ZOVS0 ZECS0 SCPLEPOTS6P9FPOSIXQ 7TRL0 2918°0
QLT T6GL0 €€9L°0 TLLLO O0IE6'0 F9L6'0 PTHORTPIZHFOAPEAPXO 265.°0 2SS0 89
6GTE L08L0 LLYS0 FG98°0 SI96°0 €GO6°0 PIOBOGE9FERHOZADFXO 29240 086370
PIPT 0G0 G6SL'0 €928°0 FGO8°0 06GG6'0 S¥CE0B90SASOLITTLXO L0 02L8°0
CFel TPSL0 G908°0 LF6L0 TTLS0 OVES'D SISAVOTOHTFALLIAYXO Z08L°0 07280
LSET 9190 OTLL0 FS6L0 66680 T6L60 G099PAFEEHEZOAFOIX0 919270 20380 49
2e€l 01240 08980 €78L°0 SPI6'0 22860 S6E09F9.400%9.L889X0 L6120 996370
PO G66L0 099%°0 996L°0 77980 GSV6'0 PBET8ALGOTLABRFAIEX0 G0 1€18°0
082 11280 TH0S'0 T6SS0 L96L'0 TGVE'0 PISLOBFTETOLABPOEXQ 0LSL0 0998°0
¢8'L 1GGL0 S6IS0 6V6L0 TIG60 GSL6'0 STIFOHI0EOTOGE89EX0 1660 6180 9
129 01640 66180 09680 £926°0 9960 GSeTEFLZ6ZPOPGATEXO 1110 96370
116 61440 €3080 6980 01260 9L060 G20099GZ29ZF7EPETX0 GILZ0 L0L80
SL'E SISL0 9Z8L°0 90VS'0 8GOS0 SIT60 POTPEOEO099O9RESTXO STSL0 £868°0
PS'E 9000 998L°0 SSZS0 9SV6'0 TOLE0 PPTERGOEHZRISTOBTXO 496270 79930 9
P'E 6G6L0 LEES0 OPSS'0 GS06'0 9€66'0 GLI9OLTPPIOGIOBTXQ V140 486370
el 90180 7S8L0 €6LL0 FO63°0 G896°0 SSFTT0FSFAACTOSPXO €6LL0 €6.8°0
€8T OF8L0 SI6L'0 T9G8°0 FE06'0 19680 PEHPPZPATS8ZAPEOX0 O78L0 G8€8°0
€8T €628°0 €9LL°0 GTLL0 G6ZI60 GGL6'0 PBA0FHHEREAdFTeex0 069270 92830 79
08T LP2S0 T9G80 0S6L0 FZZ60 SE66'0 GLOSOGESAFTE8ESSX0 880.°0 09630
660 19080 TLVS0 78ISO GEVS0 FIZ60 PEIOFE6TISLPIASLXO 16110 819870
680 TO6L0 €6VS0 60280 80080 G9ZS'0 P9YSIESTIGABOFETLXO Z38L0 28180
660 6L9L°0 T99L0 89980 FFE60 GEG6'0 S00FO80Z9A090FLX0 5090 76990 &9
00T PIIS0 S6VL0 €998°0 69L6'0 T0S6'0 G8SBTLEGS8SFCOPFLXO 092.°0 209870
Y of f vy ef e D (v'w) By (vw) B sug

23

COMPUTATIONALLY EASY, SPECTRALLY GOOD MULTIPLIERS

(80218 108IR]) opr7 = W M SHDIN 10§ swordinu poor) 0] A1V,

s0I X 0T 6TLL°0 T2l80 89680 60980 0ZF6'0 SESTICIT0699.9BO000POIE0RREOGIEEX0 GTLLD 72870
s0T X OC 6608'0 €96L°0 EFISO LGTS'0 SI6LD GeTOE8AGO8T00q0EeRT LOOPOTZOPTIOFX0 ST6L0 F208°0
sOT X O'C 2ZLL0 O0V0S'0 68980 OLI60 LZL6'0 STLLFLOPO0PARATHOG9GHSEOPSOIET6FXO (TIL0 630 sel
0T X GZ €961°0 S698°0 €998°0 PSFG0 1ZS6'0 PHIFPOFIPASGHGROTFFTTIE6078TIZO0RX0 6TIL 0 36650
OTXTL GZ9L0 VILLO TVLL0 TIW6'0 0LF6'0 SO6.6BSAREHALADTITOAALOPXO G291 0 12280
OTX ST LT080 1080 G0ZS'0 0CFS'0 £6060 SASRZEPIOTED LHHOAIPSRPSX0 91640 62580
OIXG9 18180 72280 TTP80 £988°0 01960 SySTHOFee.9TdT99G89FTPOOX0 8640 97880 96
OIXO9 9080 GLSL0 T628°0 2I96'0 06860 SOSOVHOSSEOSHISEPALESHHOX0 GGTL0 976870
OTXTT 9800 TE0S0 9998°0 6SC6°0 LLI6'0 PSPS8AZOSEPLOYTHPROPXQ 98920 FEL8°0
OTXTT €600 00080 T2h80 TLLS0 62680 PIVSEIRTIEETSIO9ZTPOX0 76910 1768°0
OTXZT 0890 C928°0 0SPS'0 CLG6'0 TG36'0 SSTZP9z908zdsz0L998e%0 0£92°0 06880 08
OIXTT PSIL0 FCPL0 F988°0 L9E60 €266'0 GIRPRSyO0TERe8.EIEEPX0 FGTL0 76570

ST0ZF TEPS'0 FILL0 TSISO TET60 STE6'0 PROZSTEG6LEASO9TTPXO 86920 47880

LOT6E SIS0 TOTS0 FI6L0 TSSO GT98'0 SeLOPECRPAB9ESGPEOX0 FT6L°0 PEPS0

ST0ZF TEPS0 F9LL'0 TSIS0 TEE6'0 STG6'0 PROZSTEG6.E£A899TZPX0 86920 37890 oL

LETTF 69GL°0 0€280 SGTS0 79960 TG66'0 PAAZISPRIIIPPPITHDX0 SETL0 650670

L9F2C G06L0 FS0S'0 GSG8'0 LSISO 99960 S69EEPIZLAY08.GS0LXO I6IL0 F2L8°0

G6'CTC TI6LO TL6L0 TPOS'0 LCPS'0 OT6L'0 SLGRFOSTPOVLEVEFE9X0 GTSL0 02180

FS00C 9280 96080 79780 €L88°0 09£8'0 PIPSYIOATHTEOAAIFIXO,, 280 €GeS0 L

6°SET TPES0 17980 GRES'0 GE68'0 9IS6'0 PPOYZTSGSR.99ATELLXO 669L°0 306570

CT6GIT GZ0S'0 0SI6°0 F2L80 PSSO 79060 S69ELP0SAPISHHO6AEX0 ISIL0 £918°0

ZOTIT 068L°0 T96L°0 SL08'0 GCE6L'0 €EI8°0 SIVIAPGOZIRTEOTSLEXO 06320 9208°0

TETIT GOLL0 OLFS'0 T068°0 F068°0 60L6°0 PISSALOFASLTSHSRLEXO 104270 97630 04

G196 89080 T68L°0 TTLS0 0LE6'0 CIS6'0 S68L2A99990%29090EX0 980L°0 096870

0676 SL9L°0 TLOS0 T9FS'0 S0SS'0 0IS6'0 PHITIOTZRSOTTEZLBTXO SI0L0 29180

9L'6F TPSL0 TI6L0 9TES0 16680 80060 SA9AOE.LZZREOOETESTX0 6TSL0 6978°0

G0'6G T6SL0 Q2GS0 S6GS'0 LVSS'0 TI960 PEFLOSSO6ASTIEISPTXO 08620 3880 69

266G LGTL0 6108°0 9L98°0 GZL6'0 L0S6'0 PST9TPOAAOPOREZOPTX0 LGTL0 72650

% of af v ef gf D (vw) By (v‘w) Sy sng

24

10.

11.

12.

13.

14.

GUY STEELE AND SEBASTIANO VIGNA

REFERENCES

. Arm Limited, 110 Fulbourn Road, Cambridge, England CB1 9NJ, Arm Instruction Set, Ver-

ston 1.0: Reference Guide, October 2018.

. Nicolas Bourbaki, Algébre. Chapitre 2: Algébre linéaire, Hermann, 1947.
. Mark J. Durst, Using linear congruential generators for parallel random number generation,

1989 Winter Simulation Conference Proceedings, IEEE Press, 1989, pp. 462—466.

. Karl Entacher, Thomas Schell, and Andreas Uhl, Efficient lattice assessment for LCG and

GLP parameter searches, Mathematics of Computation 71 (2002), no. 239, 1231-1242.

. George S. Fishman and Louis R. Moore III, An ezhaustive analysis of multiplicative con-

gruential random number generators with modulus 231 — 1, STAM Journal on Scientific and
Statistical Computing 7 (1986), no. 1, 24-45.

. John H. Halton, Pseudo-random trees: Multiple independent sequence generators for parallel

and branching computations, Journal of Computational Physics 84 (1989), no. 1, 1-56.

. W. Hérmann and G. Derflinger, A portable random number generator well suited for the

rejection method, ACM Trans. Math. Softw. 19 (1993), no. 4, 489-495.

. Intel Corporation, Intel 64 and IA-32 Architectures Software Developers Manual, Volume 2

(2A, 2B, 2C & 2D): Instruction Set Reference, A-Z, October 2019.

. Donald E. Knuth, The art of computer programming, volume 2: Seminumerical algorithms,

third ed., Addison-Wesley, Reading, MA, USA, 1998.

Pierre L’Ecuyer, Tables of linear congruential generators of different sizes and good lattice
structure, Math. Comput 68 (1999), no. 225, 249-260.

Derrick H. Lehmer, Mathematical methods in large-scale computing units, Annu. Comput.
Lab. Harvard Univ. 26 (1951), 141-146.

Arjen K. Lenstra, Hendrik W. Lenstra, and Laszl6 Lovasz, Factoring polynomials with rational
coefficients, Mathematische Annalen 261 (1982), no. 4, 515-534.

Ora E. Percus and Malvin H. Kalos, Random number generators for MIMD parallel processors,
Journal of Parallel and Distributed Computing 6 (1989), no. 3, 477-497.

Victor Shoup, NTL: A library for doing number theory, 2019.

ORACLE LABS
E-mail address: guy.steele@oracle.com

UNIVERSITA DEGLI STUDI DI MILANO, ITALY
E-mail address: sebastiano.vigna@unimi.it

