
Truffle: your favorite language on JVM
without compromises

Štěpán Šindelář

Kraków, 17-19 May 2017

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 2

Safe Harbor Statement

The following is intended to provide some insight into a line of research
in Oracle Labs. It is intended for information purposes only, and may not
be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making
purchasing decisions. Oracle reserves the right to alter its development
plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any
Oracle product or service remains at the sole discretion of Oracle. Any
views expressed in this presentation are my own and do not necessarily
reflect the views of Oracle.

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

Program Agenda

1

2

3

4

Motivation

How Truffle Works

Graal Compiler

Demos

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

Implementing another (dynamic) language

Prototype a new language

Parser and language work to build
syntax tree (AST), AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter,
spend a lot of time implementing
runtime system, GC, …

People start using it

Define a bytecode format and
write bytecode interpreter

People complain about performance

Write a JIT compiler
Improve the garbage collector
Write an optimizing JIT compiler

Performance is still bad

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | 5

Systems come with Various Interfaces

My
Lang

?

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 6

You can execute any language on the JVM / CLR

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 7

You can execute any language on the JVM / CLR

- as long as it looks like Java / C#.

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

Prototype a new language

Parser and language work to build
syntax tree (AST), AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter,
spend a lot of time implementing
runtime system, GC, …

People start using it

Define a bytecode format and
write bytecode interpreter

People complain about performance

Write a JIT compiler
Improve the garbage collector

Performance is still bad

Prototype a new language in Java

Parser and language work to build
syntax tree (AST)
Execute using AST interpreter

Integrate with VM-building framework

Integrate with Modular VM
Add small language-specific parts

People start using it

And it is already fast

Current situation How it should be

Truffle: write your own language with ease!

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

Program Agenda

1

2

3

4

Motivation

How Truffle Works

Graal Compiler

Demos

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 10

AST Interpreter

+

1 2

interface Node { Object execute(); }

class Add implements Node {
 public Node left;
 public Node right;
 @Override
 public Object execute() {
 return left.execute() + right.execute();
 }
}

class Constant implements Node {
 public int value;
 @Override
 public Object execute() { return value; }
}

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 11

The Biggest Problem of Dynamic Languages

interface Node { Object execute(); }

class Add implements Node {
 public Node left;
 public Node right;
 @Override
 public Object execute() {
 return left.execute() + right.execute();
 }
}

class Constant implements Node {
 public int value;
 @Override
 public Object execute() { return value; }
}

Objectint String

 left + right

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 12

Self Optimizing AST Interpreter
● Unitinitialized node

● are left and right operands integers => rewrite to integer addition
● are left and right operands strings => rewrite to string concatenation
● ...

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 13

Self Optimizing AST Interpreter
● Integer addition node

● operands are not of integer types => rewrite the node
● integer addition

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 14

Intermezzo: Partial Evaluation

int f(int x, int y){
return x*42 + y;

}

Given x = 3 int f(int y) {
return 126 + y;

}

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 15

Intermezzo: Partial Evaluation

int f(int x, int y){
return x*42 + y;

}

Given x = 3 int f(int y) {
return 126 + y;

}

Given a fixed node
representing a+2

run(node, vars){
 node.execute(vars);
}

run(vars) {
vars.a + 2;

}

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 16

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U

I

D

G

Uninitialized Integer

Generic

DoubleString

Partially Evaluated Self Optimizing AST

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 17

Partially Evaluated Self Optimizing AST
● Integer addition node

● operands are not of integer type => rewrite the node
● integer addition

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 18

Partially Evaluated Self Optimizing AST
● Integer addition node

● operands are not of integer type => rewrite the node
● integer addition

● Do not PE
● Insert DEOPT

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 19

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update
Profiling Feedback

Recompilation using
Partial Evaluation

The argument is suddenly double...

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. 20

High performance interoperability

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

Program Agenda

1

2

3

4

Motivation

How Truffle Works

Graal Compiler

Demos

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

• Modern alternative to HotSpot C2
l Maintainable code base

l Toolable, approachable

l Ready for today's code

l JEP 243: Java Compiler Interface (JVMCI)

• Partial evaluation

• Aggressive speculations

• Smooth de-optimizations

Graal Compiler

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | 23

GraalVM: One VM to Rule them all!

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

Program Agenda

1

2

3

4

Motivation

How Truffle Works

Graal Compiler

Demos

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

Acknowledgements
Oracle
Danilo Ansaloni
Stefan Anzinger
Cosmin Basca
Daniele Bonetta
Matthias Brantner
Petr Chalupa
Jürgen Christ
Laurent Daynès
Gilles Duboscq
Martin Entlicher
Bastian Hossbach
Christian Humer
Mick Jordan
Vojin Jovanovic
Benoit Daloze
Brandon Fish
Petr Chalupa
Duncan MacGregor
Kevin Menard
Chris Seaton
Peter Kessler
David Leopoldseder
Kevin Menard
Jakub Podlešák

Oracle (continued)
Aleksandar Prokopec
Tom Rodriguez
Roland Schatz
Chris Seaton
Doug Simon
Štěpán Šindelář
Zbyněk Šlajchrt
Lukas Stadler
Codrut Stancu
Jan Štola
Jaroslav Tulach
Michael Van De Vanter
Christian Wimmer
Christian Wirth
Paul Wögerer
Mario Wolczko
Andreas Wöß
Thomas Würthinger
Miloslav Metelka
Tomáš Stupka
Florian Angerer
Tomáš Myšík
Petr Pišl
Svatopluk Dědic
Martin Entlicher

JKU Linz
Prof. Hanspeter
Mössenböck
Benoit Daloze
Josef Eisl
Thomas Feichtinger
Matthias Grimmer
Christian Häubl
Josef Haider
Christian Huber
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of
Edinburgh
Christophe Dubach
Juan José Fumero
Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University of California,
Irvine
Prof. Michael Franz
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj
Lei Zhao

T. U. Dortmund
Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California,
Davis
Prof. Duncan Temple Lang
Nicholas Ulle

University of Lugano,
Switzerland
Prof. Walter Binder
Sun Haiyang
Yudi Zheng

Oracle Interns
Brian Belleville
Miguel Garcia
Shams Imam
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash
David Piorkowski
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Alumni
Erik Eckstein
Michael Haupt
Christos Kotselidis
Hyunjin Lee
David Leibs
Chris Thalinger
Till Westmann
Adam Welc

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. |

Q/A
oracle.com/technetwork/oracle-labs/program-languages

github.com/graalvm

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

	PRESENTATION TITLE
	Slide 2
	Slide 3
	Slide 4
	Polyglot: But Runtime Environments are Different
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	GraalVM: One VM To Rule Them All (+ Tools)
	Slide 24
	Slide 25
	Slide 26
	Slide 27

