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Safe Harbor Statement

The following is intended to provide some insight into a line of research
in Oracle Labs. It is intended for information purposes only, and may not
be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making
purchasing decisions. Oracle reserves the right to alter its development
plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any
Oracle product or service remains at the sole discretion of Oracle. Any
views expressed in this presentation are my own and do not necessarily
reflect the views of Oracle.
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Implementing another (dynamic) language

Prototype a new language

Parser and language work to build 
syntax tree (AST), AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter,
spend a lot of time implementing 
runtime system, GC, …

People start using it

Define a bytecode format and 
write bytecode interpreter

People complain about performance

Write a JIT compiler
Improve the garbage collector
Write an optimizing JIT compiler

Performance is still bad
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Systems come with Various Interfaces

My
Lang

?
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You can execute any language on the JVM / CLR
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You can execute any language on the JVM / CLR

- as long as it looks like Java / C#. 



Copyright © 2017 Oracle and/or its affiliates. All rights reserved.  |

Prototype a new language

Parser and language work to build 
syntax tree (AST), AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter,
spend a lot of time implementing 
runtime system, GC, …

People start using it

Define a bytecode format and 
write bytecode interpreter

People complain about performance

Write a JIT compiler
Improve the garbage collector

Performance is still bad

Prototype a new language in Java

Parser and language work to build 
syntax tree (AST)
Execute using AST interpreter

Integrate with VM-building framework

Integrate with Modular VM
Add small language-specific parts

People start using it

And it is already fast

Current situation How it should be

Truffle: write your own language with ease!
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AST Interpreter

+

1 2

interface Node { Object execute(); }

class Add implements Node {
  public Node left;
  public Node right;
  @Override
  public Object execute() {
    return left.execute() + right.execute();
  }
}

class Constant implements Node {
  public int value;
  @Override
  public Object execute() { return value; }
}
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The Biggest Problem of Dynamic Languages

interface Node { Object execute(); }

class Add implements Node {
  public Node left;
  public Node right;
  @Override
  public Object execute() {
    return left.execute() + right.execute();
  }
}

class Constant implements Node {
  public int value;
  @Override
  public Object execute() { return value; }
}

Objectint String

 left + right



Copyright © 2017 Oracle and/or its affiliates. All rights reserved.  12

Self Optimizing AST Interpreter
● Unitinitialized node

● are left and right operands integers => rewrite to integer addition
● are left and right operands strings => rewrite to string concatenation
● ...



Copyright © 2017 Oracle and/or its affiliates. All rights reserved.  13

Self Optimizing AST Interpreter
● Integer addition node

● operands are not of integer types => rewrite the node
● integer addition
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Intermezzo: Partial Evaluation

int f(int x, int y){
return x*42 + y;

}

Given x = 3 int f(int y) {
return 126 + y;

}
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Intermezzo: Partial Evaluation

int f(int x, int y){
return x*42 + y;

}

Given x = 3 int f(int y) {
return 126 + y;

}

Given a fixed node
representing a+2

run(node, vars){
   node.execute(vars);
}

run(vars) {
vars.a + 2;

}
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Node Rewriting 
for Profling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions
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Uninitialized Integer

Generic

DoubleString

Partially Evaluated Self Optimizing AST
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Partially Evaluated Self Optimizing AST
● Integer addition node

● operands are not of integer type => rewrite the node
● integer addition
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Partially Evaluated Self Optimizing AST
● Integer addition node

● operands are not of integer type => rewrite the node
● integer addition

● Do not PE
● Insert DEOPT
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Deoptimization
to AST Interpreter
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Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation

The argument is suddenly double...
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High performance interoperability



Copyright © 2017 Oracle and/or its affiliates. All rights reserved.  |

Program Agenda

1

2

3

4

Motivation

How Truffle Works

Graal Compiler

Demos



Copyright © 2017 Oracle and/or its affiliates. All rights reserved.  |

• Modern alternative to HotSpot C2
l Maintainable code base

l Toolable, approachable

l Ready for today's code

l JEP 243: Java Compiler Interface (JVMCI)

• Partial evaluation

• Aggressive speculations

• Smooth de-optimizations

Graal Compiler
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GraalVM: One VM to Rule them all!
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Q/A
oracle.com/technetwork/oracle-labs/program-languages

github.com/graalvm
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