
Compiler-Assisted Object Inlining with Value Fields
Rodrigo Bruno

Oracle Labs, Switzerland
rodrigo.b.bruno@oracle.com

Vojin Jovanovic
Oracle Labs, Switzerland

vojin.jovanovic@oracle.com

Christian Wimmer
Oracle Labs, USA

christian.wimmer@oracle.com

Gustavo Alonso
Systems Group, Dept. of Computer Science, ETH Zurich

alonso@inf.ethz.ch

Abstract
Object Oriented Programming has flourished in many areas
ranging from web-oriented microservices, data processing,
to databases. However, while representing domain entities
as objects is appealing to developers, it leads to high data
fragmentation as data is loaded into applications as large col-
lections of data objects, resulting in high memory footprint
and poor locality.
To minimize memory footprint and increase memory lo-

cality, embedding the payload of an object into another ob-
ject (object inlining) has been considered before but existing
techniques present severe limitations that prevent it from
becoming a widely adopted technique. We argue that object
inlining is mostly useful to optimize objects in the applica-
tion data-path and that such objects have value semantics,
unlocking great potential for inlining objects.

We propose value fields, an abstraction which allows fields
to be marked as having value semantics. We take advantage
of the closed-world assumption provided by GraalVM Native
Image to implement Object inlining as a compiler phase that
modifies both object layouts and accesses to inlined fields.
Experimental evaluation shows that using value fields in
real-world frameworks such as Apache Spark, Spring Boot,
and Micronaut, requires minimal to no effort at all from
developers. Results show improvements in throughput of up
to 3×, memory footprint reduction of up to 40% and reduced
GC pause times of up to 35%.

Keywords: Object Inlining, GraalVM, Native Image, Com-
pilers, Language Runtime, Memory Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’21, June 20–25, 2021, Virtual Conference
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

 0

 1000

 2000

 3000

 4000

 5000

 6000

Heap Headers Refs

M
e
m

o
ry

 S
iz

e
 (

M
B

)

Full Refs
Comp. Refs

a) OpenJDK 11 HotSpot VM

 0

 1000

 2000

 3000

 4000

 5000

 6000

Heap Headers Refs

M
e
m

o
ry

 S
iz

e
 (

M
B

)

Full Refs
Comp. Refs

b) GraalVM 20.3 Native Image

Figure 1. Memory usage to load the IMDB movie collection
dataset (plain text size on disk = 854 MB, 6.3M entries).

1 Introduction
Object-oriented programming (OOP) languages such as Java,
Python, and JavaScript are among the most popular program-
ming languages used to date. However, by allowing devel-
opers to easily express domain concepts as objects, OOP lan-
guages promote partitioning of application data into many
data objects, resulting in increased memory footprint and
poor memory locality. This overhead is further aggravated
in managed languages that tend to i) promote generalized ob-
jectification (everything is an object), and ii) embed metadata
into object headers to help with language runtime tasks.

In managed languages, objects are typically represented in
memory in two components: header, and payload (contents
of the object). The object header contains the type of the ob-
ject, as well as some additional information used for garbage
collection, synchronization, hashing, etc. Object headers can
account for up to 16 bytes in current production Java Virtual
Machine (JVM) implementations such as OpenJDK HotSpot
when references are not compressed (heaps larger than 32 GB
cannot take advantage of compressed references). In many
scenarios, such boxed primitives in Java, the object header
corresponds to a large proportion of the total memory occu-
pied by the object. Different runtimes have different object
header sizes but, in overall, headers largely contribute to a
higher memory consumption.

Figure 1 shows the amount of memory used by object head-
ers and object references required to load a movie collection
database (IMDB dataset [11]) into memory. Two VMs are
analysed: the Java HotSpot VM of OpenJDK 11, and GraalVM
20.3 Native Image. For each VM, two variants are considered,

1

https://doi.org/10.1145/1122445.1122456

PLDI ’21, June 20–25, 2021, Virtual Conference R. Bruno et al.

with and without reference compression[36]. Results show
that, out of the 5794 MB and 5133 MB required to load the
dataset, 36% and 20% of the memory is dedicated to object
headers, for HotSpot and Native Image, respectively. Object
references also take significant amounts of space, 18% and
21% of the memory. The combined effect of headers and ref-
erences accounts for up to 54% and 41% of the total memory
required for the dataset. Enabling compressed references
leads to an approximate reduction of 50% of the space used
for object headers and references, but the remaining over-
head is still significant as headers and references are still in
place. In summary, partitioning data into large collections of
domain objects has a high memory cost.

The overhead of OOP is particularly noticeable in applica-
tions/frameworks that handle massive amounts of objects
in memory. Examples include in-memory caches [10, 23],
data analytics [4, 8, 41], databases [7, 10, 14], among others.
To mitigate the inefficiencies introduced by splitting appli-
cation data into many data objects, we propose the use of
object inlining [19, 20], a technique that reverts data separa-
tion by aggregating multiple objects into a single one. This
idea is supported by our first key insight: data objects are
confined, i.e., object sub-graphs rooted by data objects are
disjoint. Using object inlining, it is then possible to aggregate
each of these data sub-graphs into a single object.
Aggregating multiple objects into a single one can lead

to reduced memory bloat and improved memory locality.
However, it introduces two main challenges that derive from
relaxing the properties associated with objects: i) loss of
object identity and ii) loss of atomic field access (more details
in §2). To overcome these challenges, we rely on our second
key insight: data objects have value semantics, i.e., data
objects are used to carry values so neither identity nor atomic
field access are required for these objects.
To take advantage of these insights, we propose value

fields, a simple abstraction that enables fields to be marked
as having value semantics, allowing the compiler to inline
the marked fields. This new abstraction hides all the com-
plexity of object inlining and offers a solution to have better
control over the memory layout of application data, thereby
reducing the memory footprint and improving memory lo-
cality. Fields marked as value fields are inlined upon field
store, and copied into a newly allocated object upon field
load. Compiler optimizations help reducing the pressure on
the garbage collector by removing allocations of objects that
can be escape analyzed. We show that value fields can be
used in real-world frameworks to reduce memory footprint
and improve throughput with minimal to no user effort.
We implement value fields as a compilation phase in the

GraalVM Native Image builder [40]. We take advantage of
the closed-world assumption and static analysis capabilities,
that provide us with enough information to make inlining
decisions at image build-time. In addition, it allows easy in-
tegration with other compiler optimizations such as escape

1: class Point {
2: int x;
3: int y;
4: }
5: class Line {
6: Point a;
7: Point b;
8: }

a) Language Layout

Line
a Point

x
y

b

Point
x
y

b) Original Memory

Line
a_x
a_y
b_x
b_y

c) Inlined Memory

Figure 2. Object inlining example.

analysis [34], build-time initialization [40], and method inlin-
ing, that amortizes the costs of accessing inlined objects. We
show that, for a variety of realistic use-cases, value fields can
be used to reduce memory footprint and improve throughput
with minimal or even no developer effort (more details in
§6). Results show that memory footprint is reduced by up to
40% for data analytics using Apache Spark [41], throughput
is improved by up to 3× for graph database requests using
OrientDB, and garbage collection pauses are reduced by up
to 35% for microservice requests for both Micronaut and
Spring Boot.

In summary, this paper contributes with the following:
• It revisits the topic of object inlining, presenting the
challenges that prevent it from being a generally ap-
plicable optimization;
• It proposes value fields, a simple abstraction which,
when applied in a closed-world environment, unlocks
significant potential for object layout optimizations
(object inlining) resulting in reduced memory footprint
and improved memory locality;
• It integrates value fields into GraalVM Native Image, a
production system targeting Java applications;
• It studies and evaluates the usefulness of the proposed
technique using platforms and workloads inspired by
real use-cases, showing when and how it can be effec-
tive for improving performance and reducing memory
footprint with little to no developer effort.

2 Object Inlining
Object inlining [19, 20, 37] is a technique that optimizes

the memory layout of a set of objects. As described in previ-
ous work [19, 37], object inlining is applicable to two objects
that are in a parent-child relationship. Parent-child relation-
ships are one-to-many,meaning that one child has one parent
but a parent may have multiple children. Object inlining can
be applied multiple times over the same object graph until
no more parent-child relationships exist. In the scope of this
work, object inlining is used to replace a parent field by a set
of children fields. Figure 2 presents a simple example of object
inlining where Line, the parent type, has two fields of Point
type, the child type, which will be inlined. After inlining is
finished, the children fields (Point.x and Point.y) replace
the original parent fields (Line.a and Line.b). The memory
layouts before (center) and after (right) object inlining show

2

Compiler-Assisted Object Inlining with Value Fields PLDI ’21, June 20–25, 2021, Virtual Conference

that both the headers of the Point objects and the references
(parent fields) were removed.

Object inlining produces a compact memory representa-
tion for object graphs at the expense of additional complexity
to load and store parent fields. Using the example from Figure
2, a field store to Line.a is converted into a copy of Point.x
and Point.y into Line.a_x and Line.a_y, respectively. A
field load from Line.a is converted into the allocation of a
new object of Point type followed by its initialization using
the values of the Line.a_x and Line.a_y.
Finally, because object inlining rearranges the layout of

types, type polymorphism in the child type is not allowed.
Therefore, to enable inlining Line.a and Line.b, the Point
type needs to be final, i.e., there can be no sub-types of Point.

2.1 Data Layout Optimizations in a Closed World
Data layout optimizations that involve changing type lay-
outs (such as object inlining) are particularly hard to apply in
language runtimes such as JVMs because once objects are al-
located with their optimized layout, the optimization cannot
easily be invalidated and reverted since changes have been
committed to memory. Type layout deoptimization would
require a complete memory re-write, converting all objects
to their original memory layout, something we consider in-
feasible in terms of performance overhead. To avoid doing
so, it is required that all type optimizations are proven to
be applicable before the optimization is applied, and thus,
speculative optimizations are often not possible or severely
restricted. For example, the parent field (Line.a) cannot be
inlined unless it is proven that all instances of Point have ex-
actly two int fields. Language runtimes that allow dynamic
class loading, for example, render this particular inlining can-
didate unviable as new sub-types of Point could be loaded
with different type layouts.

To realistically apply type optimizations we argue that
a closed-world environment is particularly important as it
guarantees that all the application code is known at compile-
time. Such an environment offers strong static analysis that
significantly increases the chances of successfully applying
type transformations such as object inlining. Therefore, to
improve the applicability of the type transformations pro-
posed in this work, we take advantage of the Native Image
builder, provided as part of GraalVM. A closed-world envi-
ronment is now feasible [40] and has been shown to work
for a variety of real-world use-cases such as microservice
frameworks like Spring Boot [17] and Micronaut [5].

2.2 Detaching Memory and Language Data Layouts
While the closed-world environment maximizes the number
of potential candidates for object inlining, it still does not
provide enough guarantees to automatically apply object
inlining. There are two reasons to this: i) non-atomic parent
field load/store; and ii) loss of object identity during inlining.
The first issue emerges from the fact that a single parent field

is replaced by a set of children fields and therefore, a single
field access is now converted into multiple accesses (one for
each child field). For example, using Java code to represent
the before and after transformation logic, the following code

Point p = line.a;

will be converted into
Point p = new Point();
p.a = line.a_x;
p.y = line.a_y;

Since multiple field read and write operations are not
guaranteed to be executed atomically, data races are possible.
Solutions involving locks require expensive operations and
would lead to additional memory to keep the lock state. Wide
read and write operations could be a possible solution but
these are often differently supported in different CPUs/ar-
chitectures and require complex cache alignments in order
to achieve an atomic operation.
The second issue stems from the fact that loading the

parent field will result in the allocation of a new object which
is not guaranteed to have the same identity as the original
object stored into the parent field. For example, the following
code would not succeed if Line.a is inlined:

line.a = p;
assert(line.a == p);

Maintaining object identity would require extra memory
space to keep a reference to the original object, defeating the
purpose of using object inlining to reduce memory footprint.
Returning a copy of the object stored in the parent field
also raises an additional problem with aliasing. For example,
updates to the object returned by a parent field access will
not be propagated back the original object and would be lost.
This issue however, only applies if the objects are mutable,
i.e., if the returned copy of the parent field can be modified.
Proving non-atomic access or loss of identity is difficult

as objects often escape the scope of allocation (for example,
when objects are inserted into a data structure). These two
issues (non-atomic parent field access and the loss of object
identity) prevent object inlining from being an automatic
optimization technique since applications can potentially
detect side-effects. We claim that to unlock type layout op-
timizations such as object inlining, new abstractions are
needed to detach the language-level data layout from the
memory layout. To this end, we propose value fields.

3 Value Fields
Often, big data and data science applications handle many
objects with value semantics. Such objects carry data that
needs to be processed but do not benefit from having an iden-
tity nor atomic field access. However, neither the compiler
nor the language runtime can easily detect that such objects
have value semantics and therefore, optimizations such as
object inlining are severely restricted. To unlock memory
layout optimizations, we propose value fields, a simple ab-
straction that allows fields to be marked as data carriers, i.e.,

3

PLDI '21, June 20�25, 2021, Virtual Conference R. Bruno et al.

a) Types before Inlining

b) Types after Inlining c) Load �eld after Inlining d) Store �eld after Inlining

Figure 3. Type and �eld access transformations to inlineLine.a .

as having value semantics. Fields marked asvalue �eldswill
be selected by the compiler to be subject to type transfor-
mations and code transformations (update how to access
inlined �elds).

3.1 Type Transformations

Fields marked asvalue �eldswill be inlined at Native Im-
age build-time. We continue using the initial example from
Figure 2 and, in Figures 3.a and 3.b, we illustrate the type
transformations for inliningLine.a andLine.b . This exam-
ple is simple but yet representative of the transformations
required during object inlining.

Type transformations use the following procedure. For
each �eld marked as avalue �eld (parent �elds, Line.a
and Line.b), remove it from the parent type (Line) and
replace it by the respective children �elds (Point.x and
Point.y). Finally, a state �eld is also added (Line.a_state
and Line.b_state) to keep track of whether the �eld is
initialized or not.

All types besides the parent type (Line) remain unchanged,
thus limiting changes to the �elds marked asvalue �elds. No
additional types are created.

3.2 Field Access Transformations

To cope with the type transformations just described, �eld
loads and �eld stores to the parent �eld (�eld marked as
value �eld) need to be updated. Figure 3.c and 3.d present a
simpli�ed version of the Graal compiler Intermediate Rep-
resentation (IR) [22] graph after the �eld access transforma-
tions are applied. Solid arrows denote control �ow while
dashed arrows represent data dependencies.

Load Field To load a parent �eld (Line.a in this exam-
ple), a singleLoadField IR node is converted into the IR
sub-graph presented in 3.c. In this sub-graph, anif node is
utilized to separate the execution depending on whether the
parent �eld is initialized or not. If it is initialized, then a new
instance of the child type (Point) is allocated and all chil-
dren �elds are copied from theLine object into the newly
allocated instance. If, on the other hand, the parent �eld is
not initialized, anull value is passed down as a result. De-
pending on the branch taken at run-time, thephi node will
provide the resulting value which replaces the value returned
by the originalLoadField (before the transformation).

Store Field A store to a parent �eld (Line.a in this exam-
ple) is converted into the IR sub-graph presented in Figure
3.d. In this sub-graph, anif node is utilized to separate the
execution depending on whether the value being passed for

4

Compiler-Assisted Object Inlining withValue Fields PLDI '21, June 20�25, 2021, Virtual Conference

1: class Point {
2: int x;
3: int y;
4: }
5: class Line {
6: Point a;
7: Point b;
8: }
9: class Plane {

10: Point p;
11: Line l;
12:}

a) Language Layout b) Original Types c) Value �eldstypes d) Value graphtypes e) Original memory f) Inlined memory

Figure 4. Object graph inlining example.

the �eld store is null or not. If the value is non-null , all
children �elds are copied from thePoint object into the
Line object. The state �eld (Line.a_state) is set. If, on the
other hand, the value being passed to the �eld store isnull ,
all reference �elds and the state �eld must be reset by stor-
ing anull value in reference �elds and 0 in the state �eld.
Resetting all reference �elds avoids memory leaks as these
references could never be accessed by the application again
but the garbage collector would not be able to collect the
objects referenced by them.

3.3 Type Layout Optimizations

For performance reasons, we allow extra information to be
passed to the compiler to indicate speci�c properties of chil-
dren �elds used to optimize the layout of the parent type. In
particular, we allow two properties to be de�ned: a) children
�elds that have anon-null value, and b) children �elds that
can be recomputed if needed. The former (non-null �elds)
can be used as a replacement for the state �eld as it will only
have anull value if the parent �eld is not initialized. The
latter can be used to ignore particular children �elds that
can be discarded during inlining. We evidence the usability
of these properties using theString type as an example.

String objects often represent a large portion of applica-
tion data objects and, in many cases, String objects have
value semantics (i.e., the object is only used as a data car-
rier). Strings are wrappers for a byte array which stores the
String's content. For a given String, the byte array (from here
on calledString.value) is always initialized upon the ini-
tialization of the String object. Taking advantage of this fact,
this �eld is marked as anon-null �eld and therefore no state
�eld is required and all checks are performed directly on the
String.value �eld. This optimization further reduces the
memory footprint (no state �eld) and also avoids both the set
and unset operations on thevalue �eld (required for inlined
�eld stores). Strings also contain ahash�eld which caches
the result of hashing the String's content. This particular
�eld can be recomputed if necessary. To save extra memory
space, we skip this �eld during inlining.

4 Object Graph Inlining
Object inlining is not limited to one-level inlining but instead,
it supports multi-level inlining or, in other words, object
graph inlining. Figure 4.a shows a simple extension of the
example presented in Figure 2. In this example, a single
instance ofPlane is the root for an object graph containing
one Line instance and threePoint instances (Figure 4.e).
Using object graph inlining, it is possible to compact all �ve
objects into a single object as shown in Figure 4.f. We present
two variants for object graph inlining.

Value �elds can be used to inline entire object graphs
into a single object. For instance, it is possible to mark as
value �eldsall non-primitive �elds in the presented example
(Line.a , Line.b , Plane.p, andPlane.l). This will result in
type transformations not only inLine, but also inPlane, as
depicted in Figure 4.c. LoadingPlace.l will return an object
of Line type which inlines bothPoint �elds.

Value graphs, a di�erent inlining primitive, can also
be utilized to inline object graphs. Fields marked asvalue
graphswill inline the entire object graph but type transfor-
mations will be limited to the parent type. For example, if
both Plane.p andPlane.l are marked asvalue graphs, and
no other �elds are marked asvalue �eldsor value graphs,
only thePlane type will be transformed (see Figure 4.d). This
object graph inlining variant is bene�cial when changing
children types is not possible.

Both variants of object graph inlining produce the same
inlined memory layout for an instance ofPlane type (see
Figure 4.f). The algorithm used for our inliner is depicted in
Algorithm 1. In the �rst phase (lines2-9) all possible parent
�elds are considered. If a particular parent �eld contains
children �elds that are also parents to other �elds (line6),
then this parent �eld is deferred for later inlining (line7).
Otherwise, the �eld is inlined (line9).

After the �rst phase is �nished, all one-level inlining is
�nished and all the remaining parent �elds will be inlined in
the second phase (lines10-17). The idea behind the second
phase is to inline �elds from the bottom to the top, i.e., all
parent �elds whose children �elds are not parent �elds to
other children, are inlined �rst. The algorithm converges
after all inlineable �elds have been inlined. For simplicity,

5

PLDI '21, June 20�25, 2021, Virtual Conference R. Bruno et al.

Algorithm 1 Object graph inlining.
1: queue »¼
2: for parent_t ype in known_t ypesdo
3: for parent_f ield in f ields¹t ypeº do
4: if is_inl ineable ¹parent_f ield º then
5: child _t ype t ype¹parent_f ield º
6: if has_inl ineable _f ields¹child _t ypeº then
7: queue:push¹f ield º
8: else
9: inl ine ¹parent_t ype; parent_f ield º

10: while not _empty ¹queueº do
11: parent_f ield queue:pop¹º
12: if is_inl ineable ¹parent_f ield º then
13: child _t ype t ype¹parent_f ield º
14: if has_inl ineable _f ields¹child _t ypeº then
15: queue:push¹parent_f ield º
16: else
17: inl ine ¹parent_t ype; parent_f ield º

several methods are left out. In particular,is_inlineable
checks if the �eld is marked as avalue �eld or value graph,
and if the type of the �eld is monomorphic. Arrays, primitive
�elds, and �elds marked asvolatile are also not considered
for inlining. Cyclic data structures are also automatically
ignored. Theinline method internally updates the compiler
data structures to accommodate the changes in the parent
type (which depend on the variant of object inlining).

5 Using Value Fields
Value �eldscombine semantics from value types and refer-
ence types. When usingvalue �elds, deciding if a particular
object is passed by reference or value does not depend on
the type, but rather on the operation in which the object
is being utilized. From the previous example, instances of
Point are always passed by reference except when being
loaded/stored from/to a �eld marked as avalue �eld.

Fields can be marked asvalue �eldseither through a Java
�eld annotation (@ValueFieldor @ValueGraph), or through
a con�guration �le (JSON �le which contains a list of Java
value graph/�elds). By default, onlyvalue �eldsof immutable
child type orvalue graphsof immutable child type hierarchy
are inlined. This restriction prevents lost updates resulting
from the lack of aliasing between the object returned by a
parent �eld load and the inlined �eld. For example, if a parent
�eld of a mutable type is inlined, a store to an object returned
by a parent �eld load will not be propagated to the inlined
�eld. This problem does not occur when inlining is restricted
to immutable child types as no updates are possible.

Our experience usingvalue �eldsto inline objects pro-
cessed by large frameworks such as Spring Boot, Micronaut,
or Spark, suggests that identifying candidate �elds for in-
lining is a simple task, taking no more than a few minutes
per application. To further simplify this task, we developed
a JVMTI-based agent that can be used for pro�ling when
running the same application on the HotSpot VM. The agent

periodically traces the entire Java heap and tracks �elds refer-
encing con�ned object graphs, i.e., disjoint object graphs that
have a single incoming reference. Such �elds are reported
to developers as candidates for inlining. By reporting �elds
referencing con�ned object graphs, the pro�ler helps re-
ducing potential memory overheads resulting from inlining
the same object in multiple locations. The pro�ler, however,
does not guarantee that the application semantics won't be
impacted due to the loss of object identity or non-atomic
inlined �eld access.

We also noted that in all the frameworks we analyzed so
far, most data objects are immutable and neither object iden-
tity nor atomic �eld access are necessary. On the one hand,
object identity is often used to implement a fast-path for
the equals method but it does not compromise correctness.
On the other hand, synchronization among multiple worker
threads is usually done at a much coarser grain to avoid
inter-worker synchronization overhead and is commonly
provided at the data structure entry level.

6 Evaluation
We evaluate di�erent aspects of a set of applications we
use to testvalue �elds. Our analysis is focused on three
main metrics: footprint reduction, throughput improvement,
and e�ort to integrate into existing applications/frameworks.
While the �rst two metrics are easy to measure experimen-
tally, the third required us to utilize and deploy di�erent
applications and try to assess the extent of changes required.

Object inlining is implemented as a compilation phase of
the GraalVM 20.3 Native Image builder. The new compilation
phase is executed early in the compilation pipeline (right
after generating the Graal IR [22]) so that the transformed
code can bene�t from all the existing compiler optimizations
such as method inlining and escape analysis to optimize the
code produced by the inlining transformation.

Experiments run in isolation for at least 10 iterations (more
iterations are used if the results take longer to stabilize). The
last 5 iterations are utilized to create average values. The
standard deviation resulting from measurements is low in
most experiments and therefore we only include it in our
plots if it is above 5%.Value �eldsproduce no measurable
footprint overhead and less than 1% increase in compilation
time during Native Image building. The default Native Im-
age Garbage Collector (GC) is utilized in all experiments
(using the recently added Garbage First Native Image GC
did not a�ect the bene�ts ofvalue �elds). Experiments run
in a single cluster node running Debian 10 (Linux kernel
4.19.0-10) equipped with an Intel(R) Xeon(R) CPU E3-1225
v6 @ 3.30GHz, and 32GB of DDR4 DRAM. CPU frequency
scaling and hyper-threading are disabled.

The remainder of this section is divided into sub-sections,
each exploring a speci�c use-case. We picked di�erent use-
cases from di�erent areas ranging from data analytics (Apache

6

Compiler-Assisted Object Inlining withValue Fields PLDI '21, June 20�25, 2021, Virtual Conference

a) Original b) Inlined c) Spec+Inlined

Figure 5. Combining type specialization and inlining.

a) Throughput b) Memory Footprint

Figure 6. Performance of data structures withvalue �elds.

Spark), Microservices (Spring Boot and Micronaut), to Graph
Databases (OrientBD) to illustrate the wide applicability of
value �elds. We also benchmark the e�ect of object inlining
on widely used Java data structures and take advantage of
DaCapo [18] and Renaissance [32] to study the applicability
of object inlining on a wider spectrum of applications.

6.1 Optimizing Java Generic Data Structures

We start by demonstrating howvalue �eldscan be used to
improve both the memory footprint and throughput of Java
generic data structures. To this end, we select two of the most
widely used data structures in the Java Development Kit
(JDK):ArrayList<V> andHashMap<K,V>. We parametrize
both data structures usingLine (as value) andString (as key,
only for HashMap). These two data structures are selected as
representative of other JDK generic data structures.

Internally, anArrayList contains anObject array which
keeps references to the objects inserted into the data struc-
ture. In this section, we usevalue �eldsto inline the �elds
of the Line type and compare to a version of the same data
structure with no inlining (see example in Figure 2). Simi-
larly, HashMaps also keep references to map entries inside
an array ofMapNode. EachMapNodecontains a reference to
a key and a value (Figure 5.a). The resulting type layout of
usingvalue �eldsto inline the �elds into Line is depicted in
Figure 5.b. To maximize throughput and reduce memory, we
further inline both thekey andvalue �elds in MapNodeus-
ing a technique called Type Specialization (described below).
Figure 5.c represents the �nal layout ofMapNodes. By com-
bining inlining with specialization, it is possible to reduce
by 3� the number of objects utilized inHashMaps.

Type Specialization [21, 33, 35] is a technique that allows
the specialization of generic data structures by allowing the
creation of specialized instances of such data structure. As
opposed to the regular utilization of generic Java data struc-
tures, which are subject to type erasure during compilation
and rely on arti�cial type casts introduced by the (Java)
compiler to complement the data structure implementation,
specialized data structures keep their type information until
run-time and therefore unlock inlining opportunities. For ex-
ample, specialization assigns a concrete type toMapNode.key
(String) andMapNode.value(Line) whereas in the original
generic version both �elds are ofObject type.

Specialized data structures are o�ered through a factory
provided as a library to applications. Developers simply need
to replace their regular generic data structure allocation

Map<String,Line> map =new HashMap<>();

by
Map<String,Line> map =

newHashMap(String.class,Line.class);

During Native Image building, calls to the factory methods
are statically analyzed and all data structure specializations
are created to accommodate all calls to factory methods. At
run-time, upon calling the factory methodnewHashMap, a
specialized instance is returned. We currently implement
specializations for a variety of the most widely used generic
Java data structures.

To evaluate the proposed data structures, we utilize a
simple micro-benchmark which performs random read and
write operations. Results (Figure 6) show that inlining leads
to both read and write speedups in all three data structures
variations:ArrayList (List), InlinedHashMap(IMap), and
Specialized and InlinedHashMap(S+IMap). Speedups are
more pronounced when using full references (FRefs) as the
locality is signi�cantly improved by inlining objects. Spe-
cialization also has a positive performance impact as it also
improves locality by avoiding one extra memory indirection
to access both thekey andvalue �elds in MapNode. Memory
footprint reduction ranges from 25% for IMap, and up to 55%
for List and S+IMap. Bene�ts come from reducing the num-
ber of object headers and object references. In sum, generic
Java data structures can greatly bene�t from object inlining
with minimal user involvement. Results show speedups of
up to 30% and memory reductions of up to 55%.

6.2 Value Inlining in Microservice Caches

Microservices [28] have recently received a lot of atten-
tion from the software industry as a way to split monolithic
applications into smaller, more maintainable, isolated, and
easier to deploy services. Large companies such as Net�ix [3],
Amazon [2], Ebay [6], and Uber [1] have transitioned several
of their services/applications into microservice architectures.

As a result many Microservice frameworks are now avail-
able to help users build, manage, and deploy microservices

7

PLDI '21, June 20�25, 2021, Virtual Conference R. Bruno et al.

Figure 7. PetClinic Throughput (left), Memory Footprint (center), GC Pause Time (right).

{
"value_fields" : {

"petclinic.model.BaseEntity" : ["id"],
"petclinic.model.Person" : ["firstName", "lastName"],
"petclinic.model.NamedEntity" : ["name"],
"petclinic.owner.Owner" : ["address", "city", "phone"],
"petclinic.owner.Pet" : ["birthDate", "type"],
"petclinic.visit.Visit" : ["date", "desc", "petId"]

}
}

Figure 8. Value �eld JSON con�guration for PetClinic.

more easily. Popular frameworks include, for example, Spring
Boot [17] and Micronaut [5]. Among many of the function-
alities provided by these frameworks, caching of requests
(through a@Cacheableannotation) is a common built-in fea-
ture. Cacheable requests usually keep in memory the result
of a database request, therefore improving throughput, but
at the expense of higher memory footprint. In this section we
evaluatevalue �eldsfor reducing the footprint and improv-
ing the throughput of two popular microservice frameworks,
Spring Boot and Micronaut.

6.2.1 Spring Boot PetClininc. To benchmark Spring Boot
with value �eldswe take advantage of a popular demo ap-
plication, PetClinic1. The setup includes: i) a MySQL Server
8 installation that keeps a database with all the state; ii) an
instance of the PetClinic application; and iii) JMeter [9] that
produces load based on a realistic dataset (which includes
names of people, addresses, etc). Requests are issued using
a combination of the services provided by the microservice
and try to emulate real users using the website.

To trigger object inlining, we look at the domain types
in the PetClinic application and create an object inlining
con�guration �le with all the �elds that should be inlined.
In total, 12 �elds are marked for inlining across 6 di�erent
domain types as can be seen in Figure 8. The con�guration
�le is loaded by the Native Image builder and thus no changes
to the application source code are required.

Figure 7 shows the experimental results for PetClinic's
throughput, memory footprint, and GC latency, respectively.
All plots compare the original deployment of PetClinic (Orig-
inal) with the version usingvalue �elds(Inlined). Results
clearly indicate that throughput increases as time goes on

1https://github.com/spring-projects-experimental/spring-graalvm-
native/tree/master/spring-graalvm-native-samples/petclinic-jdbc

(this is a side-e�ect of more requests being served directly
from the in-memory caches) but the Inlined deployment is
always superior in terms of requests per second. After the
initial warmup, the Inlined deployment of PetClinic has 23%
higher throughput. At this point, requests are both being
served from the database and from the cache showing that,
in both situations,value �eldsmakes request handling faster.

Memory footprint and GC latency follow the same trend.
After the initial warmup, the memory footprint of PetClinic
is reduced by 33% and the GC latency, important for long
tail latencies of application requests, drops by 35%.

6.2.2 Micronaut ShopCart. The same approach of prepar-
ing a con�guration �le for object inlining that was used for
Spring Boot could also be applied to Micronaut. However,
since Micronaut performs most of its framework setup logic
at (Java) compilation-time (during annotation processing to
be speci�c), we extended Micronaut's annotation process-
ing engine to automatically con�gure object inlining for
cached objects. With such extension, no user involvement is
required and applications that use framework-based caching
automatically bene�t fromvalue �elds.

To benchmark Micronaut withvalue �elds, we developed
a simple application called ShopCart, which has similar oper-
ations when compared to PetClinic, but in a di�erent domain
(online shopping). One of the domain types used in the appli-
cation and returned in a@Cacheablerequest isProduct. The
following code shows the Java representation of the gener-
ated type whose instances are saved inside the microservice
cache instead of the originalProduct:

class Value$Product {
@ValueGraphProduct p;
public void inline (Product p) { this .p = p; }
public Product deinline () { return this .p; }

}

Our extension of Micronaut usesinline anddeinline
when inserting and retrieving into/from the cache, respec-
tively. Note that, in this use-case, inlining is used to compress
the memory layout only when objects are stored inside the
cache. This is made possible by creating a wrapper type
(Value$Product in this example) that inlines the original
Product object. At run-time, Micronaut automatically inter-
cepts cache accesses and callsinline anddeinline when
inserting and retrieving objects from the cache (respectively).

8

Compiler-Assisted Object Inlining withValue Fields PLDI '21, June 20�25, 2021, Virtual Conference

Figure 9. ShopCart Throughput (left), Memory Footprint (center), GC Pause Time (right).

Figure 10. ShopCart static data initialization at run-time
(left), build-time (middle), using inlining at build-time (right).

Similarly to the PetClinic experiments, JMeter is utilized to
produce load on the microservice by issuing a combination
of requests that emulate user requests on the website. In this
speci�c use-case, we do not use a backing database and all
information is kept inside the microservice caches.

Results are reported in Figure 9. After an initial warmup,
results stabilize for both the deployment with (Inlined) and
without (Original) object inlining. Throughput of the In-
lined deployment shows an improvement of approximately
7%. This improvement is less signi�cant compared to Pet-
Clinic because objects are only inlined while stored inside
the cache. When objects are retrieved form the cache, the
original layout is utilized. A throughput improvement means
that the overhead of restoring the original objects (during de-
inlining) is more than compensated by having fewer objects
in memory (thus reducing the pressure on the runtime).

Memory and GC latency show signi�cant improvements.
After the initial stabilization period, memory is reduced by
32% and GC latency is reduced by 35%. These performance
bene�ts come with zero user involvement as all object inlin-
ing setup is performed at compilation-time using Micronaut.

We also analyze the tradeo� between run-time and build-
time initialization and howvalue �eldscan reduce the size
of binaries produced by the Native Image builder. We de-
ploy ShopCart with a static table of product prices and de-
scriptions. This data can be loaded into the application a) at
run-time, in which case the loading time is included into the
startup time of the microservice or, b) at build-time, reducing
startup time but increasing the binary size generated by the
Native Image builder. Figure 10 shows howvalue �eldscan

Query Description

Q1 Number of movies released in a year by genre.
Q2 Movies ordered by movie rating.
Q3 Average age of a movie's actors.
Q4 Actors ordered by number of roles.
Q5 Year with more average rating vores.
Q6 Actors ordered by the number of roles in highly rated movies.

Table 1. Spark RDD queries.

be used to reduce the size of static data structures initialized
at build-time.

Results show that through object inlining, the binary size
can be reduced by up to 40%, leading to a total package size
(binary size plus static data size) increase of 1.3-2.16� com-
pared to run-time initialized. In exchange for the increased
binary size, startup time (time until the microservice is ready
to serve requests) is reduced by up to 98.3� . This great reduc-
tion in startup time is the result of pushing dataset loading
time to built-time. Loading the static data and inserting all
entries into an in-memory table (HashMap) takes up to 8.7
seconds for a 120 MB dataset with 10M entries.

6.3 Data analytics with Spark

We now look at how object inlining can be used to optimize
data analytics using Apache Spark [41]. We take advantage
of a public movie dataset with 6.3M entries [11] which is
loaded into aSparkRDDand used to execute a number of
queries (see Table 1). Queries are implemented using a mix
the most common SparkRDD operations (map, �lter, reduce,
�atMap, etc).

The Spark application contains only two domain types:
MovieandActor and all non-array and non-primitive �elds
are marked using the@ValueFieldannotation (6 annotated
�elds across 2 domain types):

1: class Movie {
2: Actor[] actors;
3: @ValField String genre;
4: @ValField String name;
5: @ValField Date release;
6: int votes;
7: float rating;
8: }

1: class Actor {
2: @ValField Date birth;
3: @ValField Date death;
4: @ValField String name;
5: }

We run Spark in a single node using 8 threads and 16GB
of memory. We anticipate that, in a cluster setting, most

9

PLDI '21, June 20�25, 2021, Virtual Conference R. Bruno et al.

a) Query execution time b) Memory and GC time

Figure 11. Spark performance usingvalue �elds.

Figure 12. Spark memory footprint.

bene�ts and conclusions are similar as the proposed opti-
mizations have e�ect on memory consumption and query
processing time, and not on data distribution over the net-
work. Since Spark is not yet supported by the Native Image
builder, we perform all inlining transformations by hand. No
other changes to the application (query implementation) or
to Spark platform are required.

Results for query execution time show an average speedup
of 1.35� compared to the original Spark deployment (see Fig-
ure 11.a). This improvement shows that since objects are
more compact in memory, Spark engines can process data
faster. Improvements can also be measured for memory foot-
print (up to 40%) and GC latency (up to 58%). Both memory
consumption and GC latency are a direct bene�t of optimiz-
ing the memory layout of objects to reduce the number of
headers and object references.

Figure 12 shows the memory utilization trace throughout
an entire run of loading the dataset, followed by a single
execution of each query. Comparing both deployments, one
can see that both curves share the same number of peaks
and relative duration but the inlined deployment presents
lower and earlier peaks, showing that each query used less
memory and executed faster. In sum, usingvalue �eldsyields
not only memory footprint reductions, but also throughput
improvements.

6.4 Graph Processing with OrientDB

We now look into how inlining can be helpful to optimize
graph/object databases. We take advantage of OrientDB [14],
an opensource graph/object database which we use to store a

Query Description

Q1 Get all citations of a paper.
Q2 Get all citations of a researcher.
Q3 Calculate the hIndex for a researcher.
Q4 Calculate the i10Index for a researcher.
Q5 Calculate the Impact Factor for a journal.

Table 2. OrientDB queries.

subset of S2ORC [27], a public collection of research articles.
Once the database is loaded, we perform a number of popular
queries such as fetching all citations of a paper/researcher,
or calculating the journal impact factor (see Table 2).

Queries are implemented in Java using a few domain types.
In total, 5 �elds are annotated across two domain types:

1: class Paper {
2: @ValField String id;
3: @ValField String title;
4: @ValField Publication pub;
5: }

1: class Researcher {
2: @ValField String id;
3: @ValField String name;
4: }

OrientDB's object API accepts object graphs which are
then serialized and merged into its internal graph repre-
sentation. The database data is stored in o�-heap memory
(memory which is not managed by the garbage collector).
OrientDB serializes object graphs to o�-heap memory using
their database format. Since OrientDB is not supported yet
by the Native Image builder, we perform all inlining transfor-
mations by hand. No other modi�cations to the application
or to OrientDB database are performed.

Throughput (see Figure 13.a) shows a signi�cant speedup
ranging from 2.5x to 3x for queries and 2x for writing new ar-
ticle entries into the database.Value �eldsleads to higher read
and write rates compared to the original deployment, a di-
rect consequence of reducing the number of objects involved
in serialization/deserialization to/from o�-heap. Footprint
improvements are depicted in Figure 13.b. For simplicity, we
show the memory traces for a single execution for a work-
load that starts by loading the dataset (the initial increase in
memory utilization), followed by a query execution phase.
During query processing time, memory utilization does not
increase as no new entries are inserted into the database.
Memory utilization is positively impacted by object inlining,
showing an 18% reduction compared to the original deploy-
ment. It is relevant to note that this example shows thatvalue
�elds can e�ectively reduce the size of serialized objects. Re-
sults for GC latency are not depicted as most of the memory
is allocated o�-heap and therefore, GC latency is negligible
as only a few objects reside inside the heap.

6.5 DaCapo and Renaissance Benchmark Suites

DaCapo [18] and Renaissance [32] are popular benchmark
suites that represent a wide spectrum of applications. In this
section, we use benchmarks from both suites to measure the
improvement ofvalue �elds. From the benchmarks included
in both suites, we exclude benchmarks that are not currently

10

	Abstract
	1 Introduction
	2 Object Inlining
	2.1 Data Layout Optimizations in a Closed World
	2.2 Detaching Memory and Language Data Layouts

	3 Value Fields
	3.1 Type Transformations
	3.2 Field Access Transformations
	3.3 Type Layout Optimizations

	4 Object Graph Inlining
	5 Using Value Fields
	6 Evaluation
	6.1 Optimizing Java Generic Data Structures
	6.2 Value Inlining in Microservice Caches
	6.3 Data analytics with Spark
	6.4 Graph Processing with OrientDB
	6.5 DaCapo and Renaissance Benchmark Suites

	7 Related Work
	8 Conclusions
	References

