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Abstract

We study validation set construction via data001
augmentation in true few-shot text classifica-002
tion. Empirically, we show that task-agnostic003
methods—known to be ineffective for improv-004
ing test set accuracy for state-of-the-art models005
when used to augment the training set—are ef-006
fective for model selection when used to build007
validation sets. However, test set accuracy on008
validation sets synthesized via these techniques009
does not provide a good estimate of test set ac-010
curacy. To support better estimates, we propose011
DAUGSS, a generative method for domain-012
specific data augmentation that is trained once013
on task-agnostic data and then employed for014
augmentation on any data set, by using pro-015
vided training examples and a set of guide016
words as a prompt. In experiments with 6 data017
sets, both 5 and 10 examples per class, training018
the last layer weights and full fine-tuning, and019
the choice of 4 continuous-valued hyperparam-020
eters, DAUGSS is better than or competitive021
with other methods of validation set construc-022
tion, while also facilitating better estimates of023
test set accuracy.024

1 Introduction025

Few-shot learning, i.e., learning with only a handful026

of training examples, is growing area of machine027

learning and the subject of significant study. Few-028

shot learning problems manifest in many practical029

scenarios, including model adaptation—especially030

when a single model is being fine-tuned for a num-031

ber of new domains. Given the typical reliance of032

state-of-the-art models on large datasets and the033

high cost of collecting new data, techniques that034

enable effective few-shot learning are especially035

valuable. Recent work in few-shot learning employ036

a variety of techniques include: data augmentation037

and meta-learning.038

While reported few-shot learning results are pos-039

itive, recent work argues that, by and large, these040

results were achieved in unrealistic experimental041

settings (Perez et al., 2021). In particular, most 042

evaluations of few-shot learning systems leverage a 043

validation set (i.e., held-out examples) for model se- 044

lection. But, in practice, validation data is unavail- 045

able in few-shot learning, and thus experiments 046

used to study few-shot learning methods should 047

assume no access to additional examples for vali- 048

dation (Bragg et al., 2021). Perez et al. go on to 049

explore the so-called true few-shot setting, in which 050

there are no dedicated validation examples. Their 051

experiments reveal that model selection via either 052

cross-validation or minimum description length— 053

two classic model selection methods that require 054

no dedicated validation set—yield models that per- 055

form much worse than those selected using a vali- 056

dation set. 057

Given the importance of validation data for 058

model selection in few-shot learning, we propose 059

validation set creation via data augmentation. Data 060

augmentation describes a family of techniques for 061

constructing examples for a wide variety of learn- 062

ing problems. Typically, these methods are invoked 063

to synthesize specific types of examples that are 064

underrepresented in the training set or, to expand a 065

small training set with a wide variety of examples, 066

such as in few-shot learning. Unlike previous work, 067

we employ data augmentation to synthesize exam- 068

ples for model selection. We find that in true few- 069

shot classification (i.e., no dedicated validation set), 070

data augmentation methods are better used for cre- 071

ating validation examples than expanding training 072

sets; even for methods known to provide negligible 073

performance gains (when used for training set ex- 074

pansion) (Longpre et al., 2020). Our experiments 075

also reveal that model selection with synthetic data 076

yields better models than both selection with cross- 077

validation, or with data held out from the (small) 078

few-shot training set. 079

While synthesized examples can be used effec- 080

tively for model selection, we find that performance 081

on these examples is not indicative of test set per- 082
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formance. To remedy this, we design DAUGSS, a083

new generative method for data augmentation de-084

signed for use in few-shot classification settings. In085

DAUGSS, we train a sequence to sequence genera-086

tion model using generic, publicly available data.087

After training, the generation model is prompted088

with available task-specific data in order to gener-089

ate examples in-domain examples. Importantly, the090

generation model also takes a set of guide words as091

input, which provide some control over the model’s092

output. Empirically, we show that DAUGSS is best093

among the data augmentation methods tested in094

terms of model selection. Moreover, we find that095

the selected model’s performance on the synthetic096

data provides the most accurate estimate of test set097

performance, among all methods.098

2 Intent Classification099

In this work, we study few-shot intent classifica-100

tion. Intent classification is the task of classifying101

natural language utterances into intents. Typically,102

utterances are short, ranging from a single word103

to a few sentences. The number of intents varies104

by domain: problem instances studied in this work105

range from having 7 to 150 intents.106

In practice, intent classification systems are a107

basic building block of virtual assistants (Coucke108

et al., 2018) where few-shot learning ability is crit-109

ical. Virtual assistants are deployed in a wide va-110

riety of domains (e.g., medicine, travel, etc.), and111

as such, they are often pre-trained by a developer112

using a large amount of data, and then fine-tuned113

for each specialized usage. Since each usage re-114

quires its own fine-tuning data (and data collection115

is typically not scalable), virtual assistants must116

perform well when the number of fine-tuning ex-117

amples is small. Furthermore, ed virtual assistant118

must adapt to new domains over time, i.e., handle119

an ever-growing number of intents, adaptation with120

only a few additional examples is necessary (Ku-121

mar et al., 2019).122

3 DAUGSS123

Training a state of the art model typically requires124

a large number of examples for training and vali-125

dation. In the few-shot setting, i.e., when only a126

handful of examples are available, one approach127

is to generate more data. However, generating ad-128

ditional data can be challenging, especially when129

the task at hand lies in a highly specialized domain,130

and for which no existing data generators exist.131

Target: is it safe to play at casinos online in the uk? 

is it safe to play at casinos online in the uk? 

safe play casinos online uk

casinos online uk safe

Training Example
what gambling sites accept bitcoin in nigeria | casinos 
online uk safe è
is it safe to play at casinos online in the uk?

Extract FAQ Pages1 Sample Prompt & 

Target Question Pairs
2

Construct Training Examples3

a

b

c Guide Words

Figure 1: DAUGSS Training Set Construction. 1)
FAQ pages are extrated from Common Crawl. 2) pairs
of questions that appear within the same FAQ are sam-
pled; each pair contains a prompt and a target. 3) guide
words are subsampled from the target in three steps: a.
all stopwords are removed, b. a small fraction of the
remaining tokens are removed, and c. the remaining
tokens are shuffled. The guide words are prepended
with the prompt followed by a pipe character ("|") and
map to the target, thereby constituting a sequence to
sequence training example for the generator.

Such cases require a domain specific generator, but 132

training such a model is complicated by the scant 133

in-domain data. It is possible to use a task-agnostic 134

method, like EDA (Wei and Zou, 2019), to con- 135

struct new examples by perturb existing data, but 136

these methods have been shown to be ineffective 137

when used alongside state-of-the-art transformer 138

models (Longpre et al., 2020). 139

In this section, we describe DAUGSS, an al- 140

gorithm for training a generative model for text, 141

intended for us in few-shot, domain-specific set- 142

tings. Since we assume a very limited amount of 143

available in-domain data, we train the generator 144

on unlabeled, out-of-domain data from Common 145

Crawl. After the generator is trained (on out-of- 146

domain), we use the available in-domain data to 147

prompt the model to generate in-domain data. We 148

begin with a discussion of the generator, its inputs 149

and its outputs. Then, we describe how the genera- 150

tor is trained. 151
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3.1 The Generator152

At a high-level, a DAUGSS-trained generator is a153

model that takes 2 strings and generates a string.154

The first input—which we call the prompt—p, and155

is a clause that embodies the style and semantic156

content that the model should generate. The sec-157

ond input is a variable length sequence of guide158

words, w (Pascual et al., 2021). The guide words159

are tokens that the model is trained to include in160

the output, and thus provide additional control over161

the generation. While the guide words appear in162

the input and output of all of the generator’s train-163

ing examples, unlike previous work, the model’s164

output need not include all guide words provided165

as input.166

In more detail, consider a few-shot, k-way, text167

classification data set X = {(xi, yi)}Ni=0, where168

y ∈ {c0, c1, . . . , ck}. Let X[c] = {xj : (xj , yj) ∈169

X , yj = c} be the subset of utterances in X of class170

c. Finally, let g be a DAUGSS-trained generator,171

g : p ×w → z. To generate a new example of a172

class, c, we must we must choose a prompt, p, and173

guide words, w. We choose a prompt uniformly174

at random among utterances of class c, i.e., p ∼175

U(X[c]). Next, we select guide words. To do so,176

we begin by building a per-class token distribution.177

That is, for each utterance in X[c], we filter all stop178

words with spaCy (Honnibal et al., 2020), and179

compute the empirical distribution of the remaining180

tokens. To sample guide words for a class c, we first181

sample a length L from the empirical distribution182

of lengths of examples in X[c], and then sample183

L guide words independently from the per-class184

token distribution for c.185

Our use of an utterance to prompt the genera-186

tor is inspired by work on Example Extrapolation187

(EX2) (Lee et al., 2021). Whereas their work fo-188

cuses on problems with uneven amounts of data189

per class, we focus on few-shot learning—where190

EX2 is inappropriate. Unlike their work, we only191

provide the generator with a single utterance, but192

we also provide a sequence of guide words. The193

guide words yield some control over the generation194

process, including control in making the outputs195

diverse. This is especially important when data is196

scarce for all classes.197

3.2 Training198

In the DAUGSS algorithm, the generator, g, is199

trained from a set of triples Q = {(pi,wi, zi)}Mi=1,200

where g must generate zi from inputs pi and wi.201

Given the assumption of operating in a few-shot 202

setting, DAUGSS is self-supervised and does not 203

require any in-domain data. In other words, the 204

generator’s training data, Q, does not include 205

any examples in X . Instead, examples in Q are 206

constructed from a public data source, such as 207

Wikipedia or Common Crawl. A primary bene- 208

fit of such a generator is that it can be trained once, 209

and then employed to generate data for any number 210

of tasks. 211

For any training example, (p,w, z), the prompt, 212

p, and output, z, should be stylistically and semanti- 213

cally related. This is so that the generator, g, learns 214

to generate in-domain data when the prompt, p, is 215

an in-domain example. Moreover, the guide words, 216

w, should appear in z, since the guide words are 217

intended to be used to control the generated out. 218

In order to accomplish this, we assume access to 219

a (rudimentary) similarity function. Formally, let 220

J be a collection of utterances (e.g., sentences in 221

Wikipedia) and let s : J × J → [0, 1] be a binary 222

function that returns 1 if its inputs are similar. An 223

example of s is a function that returns 1 when two 224

utterances appear on the same webpage. To con- 225

struct an example (p, w, z), we select two similar 226

utterances (with respect to s). The first we set to be 227

p; the second, z. The guide words, w, are (a subset 228

of) the non-stopword in z. 229

In our work, examples in Q are constructed from 230

a subset of Common Crawl that includes frequently 231

asked questions (FAQ) pages. We set s to be the 232

function that returns 1 if two utterances appear 233

on the same web page (i.e.,in the same FAQ). To 234

construct training examples, we randomly select 235

two questions from the same page to serve as the 236

prompt, p, and output, z, respectively. We only 237

utilize questions (and not answers) because the 238

questions share some stylistic characteristics with 239

typical utterances in intent classification (e.g., both 240

are typically short questions or instructions). The 241

guide words, w, are a randomly selected 95% of the 242

non-stop word tokens in z1. We use 95% of the non- 243

stopwords (instead of all non-stopwords) so that 244

the model does not learn that all the guide words 245

represent all non-stopwords in the desired output. 246

In our work, g is parameterized by T5 (Raffel et al., 247

2020), a large-scale, sequence to sequence model, 248

and as such, the inputs pi and wi and concatenated, 249

but delimited by a "|". See Figure 1 for an example 250

training instance in Q. 251

1w is ordered arbitrarily.
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FAQ Extraction from Common Crawl: we ex-252

tract FAQs from Common Crawl—a large-scale253

archive of crawled webpages. We use a single254

dump from January 2021, which includes 3.4 bil-255

lion webpages. To detect QA contents nested in256

raw webpages, we leverage structured markup for257

QA2 and FAQ3 pages. This markup is widely used,258

and facilitates the display of Q & A result previews259

along with search results (e.g., google search).260

Naive search in billions of webpages in costly.261

Therefore, to extract FAQs, we first perform a fast262

regex-based search that yields approximately 2.3263

million matching pages. After parsing the result-264

ing (HTML) pages, we are able to extract approx-265

imately 10 million QA/FAQ data snippets. After266

post-processing the snippets, (e.g., removing badly267

formatted snippets where question/answer cannot268

be automatically recovered; removing empty ques-269

tion/answer bodies), and perform language detec-270

tion to identify English QA pairs. We group the En-271

glish questions by page and randomly select 200k272

question pairs for training such that both questions273

appeared on the same page.274

4 Experiments275

In this section, we present an experimental study276

of model selection methods in few-shot text clas-277

sification. We report test set accuracy achieved278

by models selected using various methods. For279

methods that utilize validation examples, we also280

measure the error incurred by employing validation281

accuracy as an estimate of test accuracy. Finally,282

for data created via augmentation methods, we eval-283

uate whether that data is best used when added to284

the training set, the validation set, or both.285

Datasets: experiments are performed with the286

following datasets: clinc, bank, snips, curekart,287

powerplay, and mattress (Larson et al., 2019;288

Casanueva et al., 2020; Coucke et al., 2018; Arora289

et al., 2020). To resemble the few-shot setting, we290

subsample each dataset to a specific number of291

examples per class. When referring to a dataset,292

we use the suffix -k (e.g., clinc-k) to indicate that293

the dataset has been subsampled to k examples294

per class4. Following previous work, we omit out-295

2https://developers.google.com/search/
docs/advanced/structured-data/qapage

3https://developers.google.com/search/
docs/advanced/structured-data/faqpage

4For any class that has fewer than k examples, we select
all examples of c.

of-scope utterances (included in clinc, curekart, 296

powerplay, and mattress). 297

4.1 Model Selection 298

We study true few-shot text classification, i.e., few- 299

shot learning in which no validation data is pro- 300

vided. Given the importance of selecting suitable 301

hyperparameters for state-of-the-art models, we 302

experiment with the following approaches for con- 303

structing a validation set: 304

• HOLDOUT - 20% of the training data (per 305

class) is held out and used for validation. This 306

resembles a typical workflow for non-few- 307

shot settings. 308

• TRAIN - use the training set as the validation 309

set; overfitting is expected. 310

• DAUGSS - generate the validation set, with 311

20 examples per class, using a generator 312

trained by DAUGSS5. 313

• EDA - similar to the previous approach but 314

use task-agnostic data augmentation for gen- 315

eration (Wei and Zou, 2019). This style of 316

augmentation is known to yield little improve- 317

ments when used for training set augmenta- 318

tion for state-of-the-art models (Longpre et al., 319

2020). 320

• TEST - use the test set as the validation set; 321

a highly competitive yet unrealistic baseline 322

included for completeness. 323

Setup: in our experiments, we begin by training 324

a model on the training data using a variety of hy- 325

perparameter configurations. After each training 326

epoch (and for every hyperparamter configuration), 327

we evaluate the model’s loss on the validation set 328

(constructed via one of the methods above). For all 329

construction methods except for TEST, we select 330

the model (i.e., training epoch and hyperparame- 331

ter configuration) with the lowest validation loss; 332

for TEST we make the selection based on highest 333

validation accuracy. 334

Each experiment is repeated 10 times (this in- 335

cludes subsampling new examples). For each val- 336

idation set construction method, we report mean 337

and standard deviation of test set accuracy. Since 338

training sets differ in each experimental repetition— 339

and we expect high variance—we also compute 340

5This value was chosen arbitrarily.
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k = 5 bank clinc curekart powerplay11 snips sofmatress
HOLDOUT 0.700.01 0.850.01 0.580.06 0.510.04 0.870.02 0.590.05
TRAIN 0.740.01∗ 0.860.01∗ 0.540.06 0.530.06 0.860.03 0.600.05
DAUGSS 0.740.01∗ 0.880.01∗ 0.620.06 0.540.03∗ 0.890.01∗ 0.640.05∗
EDA 0.750.01∗ 0.870.01∗ 0.580.06 0.550.03∗ 0.880.03 0.650.06∗
TEST 0.750.01∗ 0.880.01∗ 0.670.04∗ 0.500.17 0.910.01∗ 0.690.04∗

k = 10

HOLDOUT 0.810.01 0.910.00 0.650.06 0.560.03 0.920.01 0.690.03
TRAIN 0.810.03 0.900.01 0.640.04 0.570.03 0.890.02 0.670.04
DAUGSS 0.830.01∗ 0.910.01∗ 0.700.04∗ 0.590.03∗ 0.890.03 0.720.02∗
EDA 0.840.01∗ 0.920.01∗ 0.690.04 0.600.02∗ 0.930.01 0.720.03∗
TEST 0.850.01∗ 0.920.00∗ 0.730.03∗ 0.630.02∗ 0.940.01∗ 0.770.01∗

Table 1: Test Set Accuracy, FINETUNE, k = {5,10}. Mean and standard deviation test set accuracy of models
selected in the FINETUNE setting. Bolded text indicates the highest mean per dataset (other than TEST); asterisk (*)
indicates improvement over HOLDOUT is statistically significant (1-sided Wilcoxon signed rank test, p = 0.05).

whether each method is significantly better than341

HOLDOUT using a one-sided Wilcoxon signed-342

rank test with significance level of p = 0.05 (Schu-343

urmans, 2006; Wilcoxon, 1947). For each exper-344

imental setting, we either train all model param-345

eters (FINETUNE) or only the parameters in the346

final layer (FROZEN). We include results for the347

FROZEN case (also known as the "linear prob-348

ing" setting) since it is common when latency349

and/or computing cost are constrained. More-350

over, FROZEN training has been shown to gener-351

alize better to out-of-distribution data than FINE-352

TUNE training when pre-trained representations353

are "good" (Kumar et al., 2021). This is relevant to354

the few-shot domain where most data may be con-355

sidered out-of-distribution because of the scarcity356

of training data. In the main text, we report re-357

sults for the HuggingFace roberta-base model op-358

timized with the AdamW optimizer (Wolf et al.,359

2019; Loshchilov and Hutter, 2018).360

Hyperparameters: we tune 4 hyperparameters:361

learning rate, weight decay, dropout among hid-362

den units, and dropout among classifier units. We363

employ Optuna—a hyperparameter optimization364

library (Akiba et al., 2019). For each experimental365

setting, we give Optuna an operating budget of 100366

trials (i.e., unique hyperparameter configurations)367

with trial pruning turned on. All models are trained368

for up to 30 epochs6. Hyperparameter ranges used369

during hyperparameter optimization are included370

in Appendix A.1.371

6why?

Result: Table 1 contains the mean and standard 372

deviation for each model selection method on all 373

6 datasets for both k = 5 and k = 10 (i.e., 5 or 10 374

examples per class), when training via FINETUNE. 375

The results show that the generative methods (i.e., 376

either DAUGSS or EDA) achieve the highest mean 377

accuracy in all experimental conditions. We note 378

that in some cases, when considering the standard 379

deviation of mean accuracy over the 10 trials, error 380

bars overlap. However, high standard deviations 381

are anticipated (due to the use of unique subsets of 382

data in each data set used in each experimental con- 383

dition). When considering significantly significant 384

improvements over the HOLDOUT method, we find 385

that, for both k = 5 and k = 10, DAUGSS sees im- 386

provement in the largest fraction of data sets (i.e., 5 387

out of 6); more than EDA (4 out of 6) and TRAIN 388

(2 out of 6 for k = 5 and never for k = 10). The 389

results support the notion that both DAUGSS and 390

EDA are consistently high-performing methods of 391

model selection for few-shot text classification. For 392

brevity, we include the presentation and discussion 393

of results in the FROZEN training setting in the 394

Appendix. 395

4.2 Estimating Test Set Accuracy 396

While selecting the best performing model is a cru- 397

cial stage of a typical machine learning workflow, 398

an accurate estimate of the best model’s perfor- 399

mance is also required for decision making with 400

respect to model deployment. In other words, iden- 401

tifying the best performing model among a set 402

of models is insufficient; developers must have 403
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k = 5 bank clinc curekart powerplay11 snips sofmatress
HOLDOUT 0.040.02 0.040.02 0.180.07 0.360.04 0.120.04 0.250.09
TRAIN 0.260.01 0.140.01 0.460.06 0.470.06 0.140.03 0.400.05
DAUGSS 0.180.02 0.210.01 0.140.07 0.190.03 0.030.02 0.070.05
EDA 0.230.01 0.090.02 0.390.06 0.400.03 0.120.03 0.300.06

k = 10

HOLDOUT 0.030.02 0.030.01 0.190.07 0.320.02 0.070.02 0.240.06
TRAIN 0.190.03 0.100.01 0.360.04 0.430.03 0.110.02 0.330.04
DAUGSS 0.340.01 0.280.01 0.030.03 0.140.03 0.060.05 0.060.03
EDA 0.140.01 0.030.01 0.290.05 0.380.02 0.070.01 0.240.03

Table 2: FINETUNE Model Fidelity, k = 5. The mean and standard deviation of the absolute difference between
validation accuracy and test set accuracy of the selected model. Bolded text indicates the lowest mean per dataset.

an accurate sense of the model’s performance in404

practice—among many other statistics—in deter-405

mining whether that model is appropriate for use.406

We underscore that before deployment, many eval-407

uations must be performed—among which test set408

accuracy is only one (Ribeiro et al., 2020).409

4.2.1 Validation Accuracy of Selected Model410

To this end, we measure the extent to which vali-411

dation accuracy is a faithful estimator of accuracy412

on the test set for the methods discussed above.413

In Table 2 we report the mean and standard devia-414

tion of the absolute difference between validation415

and test set accuracy for models selected via each416

method in the FINETUNE setting for k = 5 and417

k = 10. For bank and clinc, HOLDOUT gives the418

highest fidelity estimate of test set accuracy. This419

is unsurprising since the validation set, while small,420

is (in some sense) drawn from the testing distribu-421

tion. DAUGSS achieves the lowest mean absolute422

difference for the remaining four datasets, which423

supports the notion that when using DAUGSS, it is424

possible to generate examples of similar difficulty425

as those in the training set.426

Notably, the two datasets for which HOLDOUT427

yields the highest fidelity estimates—bank and428

clinc—are the largest datasets. On the 4 smaller429

datasets, validation accuracy is an approximately430

3x worse predictor of test set accuracy, with higher431

variability. With a single validation example per432

class, validation accuracy is a very coarse approxi-433

mation of test set accuracy.434

Validation sets comprised of EDA or TRAIN435

examples provide poor estimates of test set accu-436

racy. This is unsurprising. Using the train set as437

the validation set leads to models with high valida-438

tion performance that belies test set performance.439

Since EDA generates new examples by perturbing 440

training instances, validation sets constructed via 441

EDA will lead to similarly high performance on 442

the validation set—and overestimates of test set 443

accuracy. 444

4.2.2 All Hyperparameter Configurations 445

For completeness, we examine the faithfulness of 446

validation accuracy to test accuracy for all hyper- 447

parameter configurations tested, all datasets, and 448

all epochs. We report the root mean square error 449

(RMSE) between validation accuracy and test set 450

accuracy in Table 3. This gives a sense of how 451

accurate test set accuracy can be predicted by vali- 452

dation accuracy for any model when the validation 453

set is built according to each of the methods tested. 454

This would be important if, for example, model se- 455

lection were done using one method, but estimating 456

test set accuracy were done by another. 457

The Table shows that for all training settings ex- 458

cept for FROZEN training with k = 10, DAUGSS 459

yields the highest fidelity estimates of test set accu- 460

racy. Moreover, for the case of FROZEN training 461

with k = 10 it achieves the second lowest RMSE, 462

following HOLDOUT. This supports the notion that 463

a validation accuracy, when computed from a small 464

set of validation examples, may not be a good esti- 465

mator of test set accuracy. On the other hand, gener- 466

ation of the validation set with DAUGSS generally 467

leads to more accurate estimates of test set accuracy 468

than when the validation set is constructed using 469

one of the other methods test; especially when the 470

amount of data is small (k = 5). 471

For a more detailed view, we visualize the cor- 472

relation between validation accuracy and test set 473

accuracy in Figure 2. The Figure shows that the 474

fidelity of validation accuracy with HOLDOUT is 475
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FROZEN-5 FROZEN-10 FINETUNE-5 FINETUNE-10
HOLDOUT 0.05568 0.04466 0.13285 0.11662
TRAIN 0.33245 0.27272 0.30056 0.23826
DAUGSS 0.00143 0.09386 0.00397 0.09185
EDA 0.22912 0.16706 0.24456 0.18061

Table 3: RMSE of Validation Accuracy. The root mean square error with respect to validation accuracy and test
set accuracy for all methods and training regimes. RMSE is computed from all hyperparameter configurations, all
epochs, and all datasets. Bolded text indicates the lowest RMSE per condition. Note that RMSE for TEST is 0 (by
definition).

0.0 0.2 0.4 0.6 0.8 1.0
Validation Acc

0.0
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1.0

Te
st

 A
cc

Validation Acc Fidelity (all datasets)
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DAugSS
EDA
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HoldOut

Figure 2: Fidelity of Validation Accuracy, FINETUNE,
k = 5. Validation set accuracy versus test set accuracy
for all hyperparamter configurations, all epochs, and for
all datasets.

highly variable, and tends to overestimate test set476

accuracy (i.e., validation accuracy is greater than477

test set accuracy). On the other hand, validation478

sets constructed by DAUGSS lead to consistent un-479

derestimates of test set accuracy with low RMSE.480

Neither EDA nor TRAIN make for validation sets481

from which test set accuracy can be accurately esti-482

mated. Unsurprisingly, both lead to overestimates483

(o test set accuracy). We include similar figures for484

the other experimental conditions in Appendix A.3.485

5 Related Work486

Model selection is a critical component of machine487

learning workflows, and especially of few-shot488

learning (Bragg et al., 2021). Despite this, most489

experimentation with few-shot learning methods490

either ignores model selection or assumes valida-491

tion data is available, which is unrealistic (Perez492

et al., 2021). Our work is a first systematic study493

of model selection in few-shot text classification,494

with a focus on validation set construction via data495

augmentation.496

Prior to our work, two other pieces have lever- 497

aged generative models to construct validation data. 498

In Datasets from Instructions (DINO), a pre-trained 499

GPT2-XL is prompted to generate labeled sentence 500

pairs to support learning improved sentence em- 501

beddings (Schick and Schütze, 2021). The set of 502

generated pairs is split into training and validation 503

sets. In this work, the validation set is used to deter- 504

mine when to (early) stop training, but it is unclear 505

whether it is also used to select among a range 506

of hyperparameter configurations. In our study, 507

we use constructed validation sets to select 4 im- 508

portant hyperparameters, in addition to early stop- 509

ping. That tasks we focus on are domain-specific, 510

where as DINO is aimed and learning better general- 511

purpose sentence embeddings–where it may be eas- 512

ier to generate relevant data for validation. 513

The second piece studies prompt order for "in- 514

context learning" (Brown et al., 2020), i.e., when 515

the model is given a handful of examples of a task 516

at inference time but no weights are updated. The 517

authors find that the order of the examples in the 518

prompt used for in-context learning can signifi- 519

cantly affect results (fluctuations between state-of- 520

the-art and random chance performance were ob- 521

served) (Lu et al., 2022). To alleviate this high 522

sensitivity in true few-shot settings, the authors 523

generate an unlabeled validation set with a large 524

pre-trained language model and use the set to se- 525

lect prompt orders via a proposed entropy-based 526

method. Unlike their study, we focus on the FINE- 527

TUNE and FROZEN cases rather than in-context 528

learning. Moreover, we select specific values of 529

continuous hyperparamters rather than the best 530

among 24 prompt-permutations. Finally, we point 531

out that the proposed approach for prompt-order 532

selection cannot be directly used to estimate test 533

set accuracy (as we study in Section 4.2). 534

A central component of our work is our proposed 535

DAUGSS algorithm. DAUGSS is inspired in part 536

by Example Extrapolation (EX2), which also uses 537

7



training examples as prompts; however their work538

is designed for imbalanced classes rather than few-539

shot settings (Lee et al., 2021). Like we do, pre-540

vious work makes use of a sequence-to-sequence541

model for generation, but unlike our work, their542

approaches focuses on filling in delexicalized utter-543

ances (Hou et al., 2018). Our use of guide words544

is also similar in spirit to previous work on decod-545

ing (Pascual et al., 2021). However, their approach546

can guarantee that guide words appear in the output547

by shifting token generation probabilities—which548

we do not require from our generators.549

While we experiment with a handful of ap-550

proaches, there is a large and growing literature551

on data augmentation for NLP. We briefly touch552

on some recently proposed methods, but refer in-553

terested readers to surveys on the subject (Feng554

et al., 2021). Most data augmentation algorithms555

can be roughly categorized as either retrieval (Du556

et al., 2021), perturbation (Wei and Zou, 2019),557

feature (Kumar et al., 2019; Sun et al., 2020; Wei,558

2021), or generation-based (Wang et al., 2021; Ku-559

mar et al., 2020; He et al., 2021; Yang et al., 2020).560

Some work focuses on counterfactual augmenta-561

tion (Kaushik et al., 2020; Joshi and He, 2021); like-562

wise, generating minimally perturbed training ex-563

amples with different labels (Zhou et al., 2021). In564

the literature, augmentation is generally employed565

as a tool for improving test set accuracy. But a566

recent study explores augmentation for mitigating567

gender stereotypes (Zmigrod et al., 2019). Unlike568

our work, virtually all previous studies focused on569

training set augmentation rather than validation set570

construction.571

6 Conclusion572

In this work we study true-few shot classification,573

i.e., few-shot classification when no dedicated val-574

idation set is provided for model selection. We575

experiment with constructing validation sets via576

known data augmentation techniques, as well as577

our proposed technique, DAUGSS, which is de-578

signed for true few-shot generative data augmen-579

tation. When a RoBERTa model is trained in the580

FINETUNE setting, models selected using valida-581

tion sets constructed by DAUGSS most consis-582

tently achieve the highest test set accuracy as well583

as the highest fidelity estimates of test set accu-584

racy among all competing methods tested. In the585

FROZEN case, DAUGSS also yields high perform-586

ing models, but so does model selection via the587

training loss. Overall, DAUGSS provides the high- 588

est fidelity estimates of test set accuracy across 589

all data sets, training epochs, and hyperparameter 590

configurations. 591

7 Limitations 592

In this work, we study various methods of valida- 593

tion set construction for the true few-shot setting. 594

While we show positive results for model selection 595

via a number of methods, our experiments only 596

deal with few-shot text classification. Moreover, 597

the datasets we use do not cover natural language 598

inference, which may require more complex rea- 599

soning about semantics than validation sets con- 600

structed with DAUGSS can provide. All of our 601

experiments are conducted on English language 602

data sets. Additionally, our experiments include 603

subsampled data sets with either 5 or 10 examples 604

per class (when enough examples per class exists), 605

but we do not explicitly experiment with (intention- 606

ally) unbalanced data sets. We only experiment 607

with the RoBERTa model. We choose RoBERTa 608

because it is high-performing and ubiquitous (and 609

therefore admits comparison to other work), but we 610

acknowledge that better models exist and may pro- 611

vide different results. Despite these limitations, we 612

believe that our results are sound and likely to gen- 613

eralize to models aside from RoBERTa. Finally, we 614

do not experiment with in-context learning meth- 615

ods (i.e., prompting with GPT-3); but we argue 616

that FROZEN and FINETUNE are still prominent 617

training paradigms. 618
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A Experiments837

A.1 Hyperparameters838

For hyperparameter optimization, we use Op-839

tuna (Akiba et al., 2019). Optuna allows a practi-840

tioner to identify the hyperparameters over which841

to conduct the search, as well as the allowable842

ranges. In our experiments, Optuna tunes the fol-843

lowing 4 parameters with the following ranges:844

1. learning rate, [0.00001, 0.1];845

2. weight decay, [0.0, 0.1];846

3. dropout among hidden units, i.e.,847

hidden_dropout_prob, [0.0, 0.5];848

and849

4. dropout among classification head units, i.e.,850

classifier_dropout, [0.0, 1.0].851

Optuna performs 100 trials (each trial may be852

pruned if the corresponding hyperparameters are853

deemed unlikely to yield a high performing854

model. New configurations are sampled using855

the TPESampler (the random seed is set to 37).856

Training in a full trial lasts for 30 epochs.857

A.2 Model Selection with FROZEN Training858

In this section we present the results of model se-859

lection when training is carried out in the FROZEN860

setting. Like in the FINETUNE setting, both gener-861

ative methods (i.e., DAUGSS and EDA) achieve862

many statistically significant improvements over863

HOLDOUT: DAUGSS offers improvement in all864

experimental setting (for both k = 5 and k = 10)865

while EDA offers improvements in 5 out of 6 ex-866

perimental conditions for both k = 5 and k = 10.867

However, in this case TRAIN achieves the highest868

mean accuracy in most experimental conditions869

(and also offers statistically significant improve-870

ment over the baseline in all but 1 experimental871

condition (for snips when k = 5).872

These results are surprising since using the train-873

ing set as the validation set is (intuitively) likely874

to cause overfitting. However, we note that in the875

FROZEN setting (in which only the last layer of876

parameters are trainable), overfitting is (perhaps)877

less likely. Moreover, model selection using the878

training set is equivalent to selecting the model879

with the lowest training loss which: i) is a strategy880

employed when a validation set is unavailable, and881

ii) is also somewhat performant in the FINETUNE882

case (Section 4.1). While DAUGSS and EDA offer883
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Figure 3: Fidelity of Validation Accuracy, FINETUNE,
k = 10. Validation set accuracy versus test set accuracy
for all hyperparameter configurations, all epochs, and
for all datasets.
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Figure 4: Fidelity of Validation Accuracy, FROZEN,
k = 5. Validation set accuracy versus test set accuracy
for all hyperparamter configurations, all epochs, and for
all datasets.

consistent improvements as in the previous results 884

(Section 4.1), the primary lesson learned from these 885

results is that in few-shot cases, training with all 886

provided data yields better models than holding 887

out data for validation, and that model selection 888

can even be done by selecting the model with the 889

lowest training loss. 890

A.3 Fidelity of Validation Set Accuracy 891
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k = 5 bank clinc curekart powerplay11 snips sofmatress
HOLDOUT 0.330.01 0.520.01 0.280.04 0.290.04 0.760.10 0.300.02
TRAIN 0.390.01∗ 0.600.01∗ 0.360.03∗ 0.330.03∗ 0.790.10 0.370.03∗
DAUGSS 0.390.01∗ 0.600.01∗ 0.350.04∗ 0.320.03∗ 0.840.02∗ 0.400.03∗
EDA 0.390.01∗ 0.600.01∗ 0.350.03∗ 0.320.03∗ 0.750.12 0.380.02∗
TEST 0.520.03∗ 0.690.01∗ 0.440.01∗ 0.350.02∗ 0.860.02∗ 0.380.02∗

k = 10

HOLDOUT 0.540.01 0.740.01 0.430.03 0.340.02 0.850.04 0.380.02
TRAIN 0.660.03∗ 0.820.01∗ 0.540.04∗ 0.370.02∗ 0.880.01∗ 0.520.02∗
DAUGSS 0.590.02∗ 0.770.01∗ 0.500.03∗ 0.370.03∗ 0.880.01∗ 0.460.03∗
EDA 0.610.03∗ 0.810.01∗ 0.530.04∗ 0.370.02∗ 0.880.02 0.460.02∗
TEST 0.670.02∗ 0.820.01∗ 0.560.05∗ 0.410.03∗ 0.890.01∗ 0.500.03∗

Table 4: Test Set Accuracy, FROZEN, k = {5, 10}. Mean and standard deviation test set accuracy of models
selected in the FROZEN setting. Bolded text indicates the highest mean per dataset (other than TEST); asterisk (*)
indicates improvement over HOLDOUT is statistically significant (1-sided Wilcoxon signed rank test, p = 0.05).

k = 5 bank clinc curekart powerplay11 snips sofmatress
HOLDOUT 0.050.04 0.040.04 0.150.06 0.180.09 0.130.11 0.150.11
TRAIN 0.450.02 0.370.01 0.590.04 0.550.03 0.200.09 0.520.07
DAUGSS 0.080.02 0.150.01 0.080.04 0.070.03 0.040.03 0.090.04
EDA 0.200.03 0.260.01 0.470.03 0.400.02 0.180.06 0.410.03

k = 10

HOLDOUT 0.030.02 0.040.02 0.060.04 0.090.05 0.070.07 0.210.08
TRAIN 0.320.01 0.180.01 0.400.03 0.450.03 0.120.01 0.480.02
DAUGSS 0.250.01 0.280.01 0.080.03 0.020.02 0.120.03 0.040.02
EDA 0.100.02 0.100.01 0.260.03 0.370.02 0.100.02 0.340.02

Table 5: FROZEN Model Fidelity, k = {5, 10}. The mean and standard deviation of the absolute difference
between validation accuracy and test set accuracy of the selected model. Bolded text indicates the lowest mean per
dataset.
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Figure 5: Fidelity of Validation Accuracy, FROZEN,
k = 10. Validation set accuracy versus test set accuracy
for all hyperparamter configurations, all epochs, and for
all datasets.
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