—ORACLE

—

~— —_— —

e — = e ———

— —

I —
——————
e —— e
e
—— e
P e ————
—_—
e
—
—
el

Towards Formal Verification of HotStuff-Based

Byzantine Fault Tolerant Consensus in Agda
NASA Formal Methods 2022

Mark Moir
Architect
Oracle Labs

Joint work with: Harold Carr, Christa Jenkins, Victor Cacciari Miraldo
and Lisandra Silva

Agenda

1 Problem and contributions

2 Abstract model and definitions

3 Key theorem, relating it to an implementation
4 Remarks about approach

5 Concluding remarks

2 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Agenda

1 Problem and contributions

N

Abstract model and definitions
Key theorem, relating it to an implementation

Remarks about approach

g &L W

Concluding remarks

3 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Byzantine Fault Tolerant Consensus

- Consensus: distributed peers (repeatedly) agree on proposed values

- Fault tolerant: even if some are “faulty” (e.g., crash)

- Byzantine: even if some peers actively and maliciously misbehave

« Many proposed BFT consensus solutions in literature, with various properties
» Notoriously difficult to get right
« Many examples of incorrect “solutions”
* None with fully formal, machine checked proofs

* New solutions emerging and being adopted
« HotStuff (Yin et al., PODC 2019)
« LibraBFT / DiemBFT (based on HotStuff)

« Context: we have developed a Haskell implementation based on LibraBFT, and we are
working towards formally verifying its correctness

4 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Contributions

- Defined abstract model of core protocol underlying HotStuff/LibraBFT

« Precisely formulated assumptions
* Limits on combined power of dishonest peers
* Rules that honest peers obey

« Precisely stated correctness (safety) properties (liveness would be proved for specific
implementations, not the abstract model)

 Informally, “honest peers agree”
* Formal, machine-checked proofs
 Developmentisin Agda

« Available in open source
« https://github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022

5 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

https://github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022

Power of abstraction

- Abstract model knows nothing of message formats, validation, implementation data
structures and logic, etc.

Focusing on core protocol enables verifying a range of implementations, without
repeating hard work of verifying underlying protocol

- LibraBFT under development during verification effort, no need to repeat abstract
work when updating our implementation

6 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Agenda

1 Problem and contributions

2 Abstract model and definitions

3 Key theorem, relating it to an implementation
4 Remarks about approach

5 Concluding remarks

7 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

s S 77

Growing a chain of Records

« Start with initial (genesis) record |

8 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

- F & 4 ’
Y # "

Growing a chain of Records

« Start with initial (genesis) record |
« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them

9 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

- F & 4 ’
Y # "

Growing a chain of Records

« Start with initial (genesis) record |
« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them

10 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

- F & 4 ’
Y # "

Growing a chain of Records

« Start with initial (genesis) record |
« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them

| <— by «— qo <«— b;

1 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

_ ¥ r ' &
- - FII/L77

Growing a chain of Records

- Start with initial (genesis) record |
« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
« If QC not formed/known, time out and propose alternative Block

("

| <— by «— qo <«— b;

12 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

_ ¥ r ' &
- - FII/L77

Growing a chain of Records

- Start with initial (genesis) record |
« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
« If QC not formed/known, time out and propose alternative Block

(_b2<—CI2

| <— by «— qo <«— b;

13 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

_ ¥ r ' &
- - FII/L77

Growing a chain of Records

- Start with initial (genesis) record |

« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
« If QC not formed/known, time out and propose alternative Block

 What if QC does emerge for b,?

(_b2<—CI2

|<—bo<—C{o<—b1<_Q1

14 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

_ ¥ r ' &
- - FII/L77

Growing a chain of Records

- Start with initial (genesis) record |

« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
« If QC not formed/known, time out and propose alternative Block

 What if QC does emerge for b,?

(_b2<—CI2

| e— by «— gy «— by «— (g <« b3

15 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

_ ¥ r ' &
- - FII/L77

Growing a chain of Records

- Start with initial (genesis) record |

« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
« If QC not formed/known, time out and propose alternative Block

 What if QC does emerge for b,?

(_b2<—CI2

| e— by «— gy «— by «— (g <« b3

16 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

_ ¥ r ' &
- - FII/L77

Growing a chain of Records

- Start with initial (genesis) record |

« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
« If QC not formed/known, time out and propose alternative Block

 What if QC does emerge for b,?

(_b2<—CI2

| <— by «— Qqy e b — @ — b3 & (3 & b5 — (s

by, «— q; «— by, +—
17 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Growing a ehain tree of Records

- Start with initial (genesis) record |

« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
« If QC not formed/known, time out and propose alternative Block

 What if QC does emerge for b,?

« Must model a tree of Records

(_b2<—CI2

| <— by «— Qqy e b — @ — b3 & (3 & b5 — (s

by, «— q; «— by, +—
18 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Growing a ehain tree of Records

- Start with initial (genesis) record |

« Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
« If QC not formed/known, time out and propose alternative Block

 What if QC does emerge for b,?

« Must model a tree of Records

 How to ensure honest peers agree on decisions?

(_b2<—CI2

| <— by «— Qqy e b — @ — b3 & (3 & b5 — (s

19 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Desired property, less informally

« If two honest peers each commit (decide on) a Block, then the Blocks do not “conflict”:
there is a single path in the tree that contains them both:

« Commit by and bg: no problem
e Commit by, and bg: conflict!

(_b2<—CI2

| <— by «— Qqy e b — @ — b3 & (3 & b5 — (s

by, «— q; «— by, +—
20 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Abstract records

* QCs indicate UID and round of Blocks they certify
« To enable specifying rules to ensure consistent decisions Blocks have round numbers

- QCs and Votes they contain indicate the Round of the voted-for Block

data Record : Set where record Block : Set where
| : Record field
B:Block - Record bRound :Round
Q:QC - Record bld -UID

bPrevQC : Maybe UID

record QC : Set where

field record Vote : Set where
gRound : Round field
gCertBlockld :UID abs-vRound :Round
gVotes . List Vote abs-vMember : ...

abs-vBlockUID : UID

21 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

_ & 4 & >
- = T/ 77

Extends relation (<)

« _&_imposes constraints on rounds
 QCis for same round as Block it extends
- Block is for higher round than Block it extends (via a QC)

data _«_: Record = Record - Set where
|<B : {b : Block}
- 0 < getRound b
- bPrevQC b = nothing
- |1<Bb
B«Q : {b: Block} {q: QC}
- getRound q = getRound b
- bld b = gCertBlockld g
- Bb«<Qq
Q<B:{qg:QC}{b:Block}
- getRound g < getRound b
= just (gCertBlockld q) = bPrevQCb
- Qq¢<Bb

22 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

23

Defining RecordChains

| <— by «— qg «— b

RecordChain (B b,)

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

data RecordChainFrom (o : Record) :
Record = Set where
empty : RecordChainFrom o o
step :V{rr'}
= (rc : RecordChainFrom o r)
Srer

- RecordChainFromo r'

RecordChain : Record = Set
RecordChain = RecordChainFrom |

24

Defining K-Chains

data K-chain (R : N = Record = Record = Set)

: (k : N){o r : Record} = RecordChainFrom o r = Set where
O-chain: V{or} {rc:RecordChainFrom or} - K-chain RO rc
s-chain : V{k o r}{{rc : RecordChainFrom o r}{b : Block}{q : QC}

= (reb :r «Bb)

- (prf :Rkr(Bb))

- (beq:Bb<Qq)

- K-chain Rk rc

- [K-chain R (suc k) (step (step rc reb) b«q)

-- Contiguous K-chains are those in which all adjacent pairs of
-- Records have contiguous rounds.
Contig : N - Record - Record — Set

Contig O _ _=Unit
Contig (suc) r r' =roundr' = suc (round)

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Roughly speaking,
K-Chain Contig k rc

Says that rc contains at

least k Blocks, such that

the Rounds of the last k
Blocks are consecutive

- F & 4 ’
Y # "

How to decide a Block 1s committed?

data CommitRuleFrom {o r : Record}(rc : RecordChainFrom o r)(b : Block) : Set where
commit-rule : (c3 : K-chain Contig 3 rc)

- b = c3 b suc (suc zero) |
- CommitRuleFrom rc b

CommitRule : V{r} = RecordChain r = Block — Set
CommitRule = CommitRuleFrom

rc : RecordChain (Q gs)

|<—bo4—qo4—b14—Q14_b24_qz<_b3<_q3

round 1 round 4 round 5 round 6
CommitRule rc b

Block b, is now committed (and all Blocks before it, i.e., by)

25 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Agenda

1 Problem and contributions

N

Abstract model and definitions
Key theorem, relating it to an implementation

Remarks about approach

g &L W

Concluding remarks

26 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Key theorem: thmS5

« If we have CommitRules for Blocks b and b’ enabling commiting both Blocks, then the

one of the Blocks is in the RecordChain of the other’s CommitRule (i.e., there is no
conflict in committing them both)...

thmS5:V{qq'}
= {rc : RecordChain (Q q)} = All-InSys rc
- {rc' : RecordChain (Q q')} = All-InSys rc'
- {b b': Block}
- CommitRulerc b
- CommitRule rc' b'
- Nonlnjective-=-pred (InSys ° B) bld
W (B b) ERC rc’
W (Bb') ERCrc

« ...unless there are two different Blocks “in the system” with the same block ID.

27 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Relating thmS5 to an implementation

« To invoke thmS5 for a particular implementation, we must instantiate these module

parameters:
module LibraBFT.Abstract.RecordChain.Properties
(UID : Set) -- type for Block ids
(€ : EpochConfig UID ...) -- specifies peers, assumptions, ...
(InSys : Record = Set ...) -- which abstract Records are represented
(e.g., in messages that have been sent)
(votes-only-once : VotesOnlyOnceRule InSys) -- honest peers obey two rules
(preferred-round-rule : PreferredRoundRule InSys)
where
’E.h.mSS -
... proof of thmS5

28 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Rules for honest peers (1/2)

« An honest peer does not send inconsistent Votes for the same Round:

VotesOnlyOnceRule : Set ...
VotesOnlyOnceRule
= (a0 : Member) - Meta-Honest-Member a
2 V{qq'} = InSys (Qq) ~ InSys (Q q’)
= (v:a€QCq)(v':a€QCq’)
- abs-vRound (EQC-Vote g v) = abs-vRound (EQC-Vote q’ V')
- €QC-Vote g v = €QC-Vote g' V'

- Manual proof in an early LibraBFT paper required “Increasing Round” constraint:
An honest node that voted once for B in the past may only vote for B’ if
round (B) < round (B’)

« One contribution is making rules precise enough to enable rigorous (machine-checked)
proofs

29 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Rules for honest peers (2/2)

PreferredRoundRule : Set ... * The key rule that honest
PreferredRoundRule peers must follow to avoid
= V(o : Member) » Meta-Honest-Member a contributing to QCs that
- V{qq'} could result in committing

- {rc : RecordChain (Q q)} = All-InSys rc conflicting Blocks
- {n: N} (c3: K-chain Contig (3 + n) rc)

« Keyimplementation

- (v:a€QCQq) - - :

- {rc' : RecordChain (Q q')} = All-InSys rc’ :ﬁ?nuslrsement e LT

- (v':a€QCq’)

- abs-vRound (EQC-Vote q v) < abs-vRound (EQC-Vote q' V') « Again, result required only if
- Nonlnjective-=-pred (InSys ° B) bld there is no injectivity failure

¥ (getRound (kchainBlock (suc (suc zero)) c3) < prevRound rc') among Blocks “in the system”

30 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Agenda

1 Problem and contributions

2 Abstract model and definitions

3 Key theorem, relating it to an implementation
4 Remarks about approach

5 Concluding remarks

31 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Block 1d injectivity

« Abstract model and proofs know nothing about UID, how Block ids are assigned, etc.

- Typical implementations use cryptographic hash functions (e.g., SHA256)

- Standard to assume that a computationally bounded adversary cannot find two
different values (e.g., Blocks) that hash to the same value

- Most related work implicitly or explicitly assumes that such hash collisions do not exist,
which is false by an easy counting argument (hash results are of fixed size)

- False implies anything. Danger!

« We don’t assume hash functions are injective. Instead, we ensure that our results hold
unless and until there is a collision between Blocks that the implementation considers
“in the system” (e.g., messages containing them have been sent).

« ToyChain (Pirlea and Sergey, CPP 2018) work to address this issue required changes to
every proof, one ballooned from 10 lines to 150!

32 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Power of abstraction

- Abstract model also knows nothing of message formats, validation, implementation
data structures and logic, etc.

« Focusing on core protocol enables verifying a range of implementations, without
repeating hard work of verifying underlying protocol

- LibraBFT under development during verification effort, no need to repeat abstract
work when updating our implementation

33 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Power of abstraction

- Abstract model also knows nothing of message formats, validation, implementation
data structures and logic, etc.

« Focusing on core protocol enables verifying a range of implementations, without
repeating hard work of verifying underlying protocol

- LibraBFT under development during verification effort, no need to repeat abstract
work when updating our implementation

- That said, recently LibraBFT changed to a CommitRule based on 2-chains. That
implementation does not ensure the PreferredRoundRule defined in our development

 Does not mean it is not correct, but that it cannot be proved correct using our abstract
model

« Updating our work for a 2-chain-based CommitRule is future work

34 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

Agenda

1 Problem and contributions

2 Abstract model and definitions

3 Key theorem, relating it to an implementation
4 Remarks about approach

5 Concluding remarks

35 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Concluding remarks

« Byzantine Fault Tolerant consensus is notoriously difficult to get right
« Formal, machine-checked verification is important, but difficult and time consuming

 Our aﬁ)p_roach separates correctness of underlying protocol from details of a range of (but
not all) implementations

- We avoid the dangerous assumption that hash collisions do not exist (they do!) by tying
hash collisions to specific values actually encountered in an execution

* Results for a single “epoch”, epoch change / reconfiguration is future work

» Broader project includes:
« Agda translation of our Haskell implementation
» Syntax and library support to keep Agda close to Haskell implementation

 System Model and machinery for modeling and proving properties about a distributed system in which
honest peers follow implementation, dishonest ones unconstrained other than inability to forge honest
signatures

. Signliﬁcant progress towards verifying that our implementation satisfies requirements to instantiate abstract
results

« QOpen source: https://github.com /oracle/bft-consensus-agda/releases/tag/nasafm2022

36 Copyright © 2022 Oracle and/or its affiliates. All rights reserved. E

https://github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022

Questions?

Mark Moir (mark.moir@oracle.com)

Architect
Oracle Labs

37

