
Mark Moir
Architect
Oracle Labs

Towards Formal Verification of HotStuff-Based
Byzantine Fault Tolerant Consensus in Agda
NASA Formal Methods 2022

Joint work with: Harold Carr, Christa Jenkins, Victor Cacciari Miraldo
and Lisandra Silva

Problem and contributions

Agenda

1

2

3

4

Abstract model and definitions

Key theorem, relating it to an implementation

Remarks about approach

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.2

5 Concluding remarks

Problem and contributions

Agenda

1

2

3

4

Abstract model and definitions

Key theorem, relating it to an implementation

Remarks about approach

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.3

5 Concluding remarks

Byzantine Fault Tolerant Consensus
• Consensus: distributed peers (repeatedly) agree on proposed values
• Fault tolerant: even if some are “faulty” (e.g., crash)
• Byzantine: even if some peers actively and maliciously misbehave
• Many proposed BFT consensus solutions in literature, with various properties

• Notoriously difficult to get right
• Many examples of incorrect “solutions”
• None with fully formal, machine checked proofs

• New solutions emerging and being adopted
• HotStuff (Yin et al., PODC 2019)
• LibraBFT / DiemBFT (based on HotStuff)

• Context: we have developed a Haskell implementation based on LibraBFT, and we are
working towards formally verifying its correctness

4 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Contributions
• Defined abstract model of core protocol underlying HotStuff/LibraBFT
• Precisely formulated assumptions

• Limits on combined power of dishonest peers
• Rules that honest peers obey

• Precisely stated correctness (safety) properties (liveness would be proved for specific
implementations, not the abstract model)
• Informally, “honest peers agree”

• Formal, machine-checked proofs
• Development is in Agda
• Available in open source

• https://github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022

5 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

https://github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022

Power of abstraction

6

• Abstract model knows nothing of message formats, validation, implementation data
structures and logic, etc.

• Focusing on core protocol enables verifying a range of implementations, without
repeating hard work of verifying underlying protocol

• LibraBFT under development during verification effort, no need to repeat abstract
work when updating our implementation

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Problem and contributions

Agenda

1

2

3

4

Abstract model and definitions

Key theorem, relating it to an implementation

Remarks about approach

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.7

5 Concluding remarks

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

8 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

I

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

9 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

10 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

11 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

12 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1

b2

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

13 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1

b2 q2

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

14 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1 q1

b2 q2

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

15 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1 q1 b3

b2 q2

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

16 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1 q1 b3

b2 q2

b4 q4

Growing a chain of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

17 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1 q1 b3

b2 q2

q3 b5 q5

b4 q4 b6 q6

Growing a chain tree of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

18 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1 q1 b3

b2 q2

q3 b5 q5

b4 q4 b6 q6

Growing a chain tree of Records
• Start with initial (genesis) record I
• Extend with alternating Block proposals and Quorum Certificates (QCs) to “certify” them
• If QC not formed/known, time out and propose alternative Block
• What if QC does emerge for b1?
• Must model a tree of Records
• How to ensure honest peers agree on decisions?

19 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1 q1 b3

b2 q2

q3 b5 q5

b4 q4 b6 q6

Desired property, less informally
• If two honest peers each commit (decide on) a Block, then the Blocks do not “conflict”:

there is a single path in the tree that contains them both:
• Commit b1 and b6: no problem
• Commit b2 and b6: conflict!

20 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1 q1 b3

b2 q2

q3 b5 q5

b4 q4 b6 q6

Abstract records
• QCs indicate UID and round of Blocks they certify
• To enable specifying rules to ensure consistent decisions Blocks have round numbers
• QCs and Votes they contain indicate the Round of the voted-for Block

21 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

data Record : Set where
I : Record
B : Block → Record
Q : QC → Record

record Block : Set where
field
bRound : Round
bId : UID
bPrevQC : Maybe UID

record QC : Set where
field
qRound : Round
qCertBlockId : UID
qVotes : List Vote
…

record Vote : Set where
field

abs-vRound : Round
abs-vMember : …
abs-vBlockUID : UID

Extends relation (_←_)
• _←_ imposes constraints on rounds
• QC is for same round as Block it extends
• Block is for higher round than Block it extends (via a QC)

22 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

data _←_ : Record → Record → Set where
I←B : {b : Block}
→ 0 < getRound b
→ bPrevQC b ≡ nothing
→ I ← B b

B←Q : {b : Block} {q : QC}
→ getRound q ≡ getRound b
→ bId b ≡ qCertBlockId q
→ B b ← Q q

Q←B : {q : QC} {b : Block}
→ getRound q < getRound b
→ just (qCertBlockId q) ≡ bPrevQC b
→ Q q ← B b

Defining RecordChains

23 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

b0I q0 b1

data RecordChainFrom (o : Record) :
Record → Set where

empty : RecordChainFrom o o
step : ∀ {r r'}

→ (rc : RecordChainFrom o r)
→ r ← r'
→ RecordChainFrom o r'

RecordChain : Record → Set
RecordChain = RecordChainFrom I

RecordChain (B b1)

Defining !-Chains

24 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

data !-chain (R : ℕ → Record → Record → Set)
: (k : ℕ){o r : Record} → RecordChainFrom o r → Set where

0-chain : ∀{o r} {rc : RecordChainFrom o r} → !-chain R 0 rc
s-chain : ∀{k o r}{rc : RecordChainFrom o r}{b : Block}{q : QC}

→ (r←b : r ← B b)
→ (prf : R k r (B b))
→ (b←q : B b ← Q q)
→ !-chain R k rc
→ !-chain R (suc k) (step (step rc r←b) b←q)

-- Contiguous !-chains are those in which all adjacent pairs of
-- Records have contiguous rounds.
Contig : ℕ → Record → Record → Set
Contig 0 _ _ = Unit
Contig (suc _) r r' = round r' ≡ suc (round r)

Roughly speaking,

!-Chain Contig k rc

Says that rc contains at
least k Blocks, such that
the Rounds of the last k
Blocks are consecutive

How to decide a Block is committed?

25 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

data CommitRuleFrom {o r : Record}(rc : RecordChainFrom o r)(b : Block) : Set where
commit-rule : (c3 : !-chain Contig 3 rc)

→ b ≡ c3 b⟦ suc (suc zero) ⟧
→ CommitRuleFrom rc b

CommitRule : ∀{r} → RecordChain r → Block → Set
CommitRule = CommitRuleFrom

b0I q0 b1 q1 b2 q2

CommitRule rc b1

rc : RecordChain (Q q3)

round 1 round 4 round 5

b3 q3

round 6

Block b1 is now committed (and all Blocks before it, i.e., b0)

Problem and contributions

Agenda

1

2

3

4

Abstract model and definitions

Key theorem, relating it to an implementation

Remarks about approach

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.26

5 Concluding remarks

Key theorem: thmS5

27 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

• If we have CommitRules for Blocks b and b’ enabling commiting both Blocks, then the
one of the Blocks is in the RecordChain of the other’s CommitRule (i.e., there is no
conflict in committing them both)…

• …unless there are two different Blocks “in the system” with the same block ID.

thmS5 : ∀ {q q'}
→ {rc : RecordChain (Q q)} → All-InSys rc
→ {rc' : RecordChain (Q q')} → All-InSys rc'
→ {b b' : Block}
→ CommitRule rc b
→ CommitRule rc' b'
→ NonInjective-≡-pred (InSys ∘ B) bId
⊎ (B b) ∈RC rc’
⊎ (B b') ∈RC rc

Relating thmS5 to an implementation

28

module LibraBFT.Abstract.RecordChain.Properties
(UID : Set) -- type for Block ids
…
…
(! : EpochConfig UID …) -- specifies peers, assumptions, …
…
(InSys : Record → Set …) -- which abstract Records are represented

(e.g., in messages that have been sent)
(votes-only-once : VotesOnlyOnceRule InSys) -- honest peers obey two rules
(preferred-round-rule : PreferredRoundRule InSys)

where
…
thmS5 : …
… proof of thmS5

• To invoke thmS5 for a particular implementation, we must instantiate these module
parameters:

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

• An honest peer does not send inconsistent Votes for the same Round:

• Manual proof in an early LibraBFT paper required “Increasing Round” constraint:
An honest node that voted once for B in the past may only vote for B’ if
round (B) < round (B’)

• One contribution is making rules precise enough to enable rigorous (machine-checked)
proofs

Rules for honest peers (1/2)

29

VotesOnlyOnceRule : Set …
VotesOnlyOnceRule

= (α : Member) → Meta-Honest-Member α
→ ∀{q q'} → InSys (Q q) → InSys (Q q’)
→ (v : α ∈QC q) (v' : α ∈QC q')
→ abs-vRound (∈QC-Vote q v) ≡ abs-vRound (∈QC-Vote q’ v’)
→ ∈QC-Vote q v ≡ ∈QC-Vote q' v'

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Rules for honest peers (2/2)

30

PreferredRoundRule : Set …
PreferredRoundRule

= ∀(α : Member) → Meta-Honest-Member α
→ ∀{q q'}
→ {rc : RecordChain (Q q)} → All-InSys rc
→ {n : ℕ} (c3 : !-chain Contig (3 + n) rc)
→ (v : α ∈QC q)
→ {rc' : RecordChain (Q q')} → All-InSys rc'
→ (v' : α ∈QC q')
→ abs-vRound (∈QC-Vote q v) < abs-vRound (∈QC-Vote q' v')
→ NonInjective-≡-pred (InSys ∘ B) bId
⊎ (getRound (kchainBlock (suc (suc zero)) c3) ≤ prevRound rc')

• The key rule that honest
peers must follow to avoid
contributing to QCs that
could result in committing
conflicting Blocks

• Key implementation
requirement for invoking
thmS5

• Again, result required only if
there is no injectivity failure
among Blocks “in the system”

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Problem and contributions

Agenda

1

2

3

4

Abstract model and definitions

Key theorem, relating it to an implementation

Remarks about approach

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.31

5 Concluding remarks

Block id injectivity

32

• Abstract model and proofs know nothing about UID, how Block ids are assigned, etc.
• Typical implementations use cryptographic hash functions (e.g., SHA256)
• Standard to assume that a computationally bounded adversary cannot find two

different values (e.g., Blocks) that hash to the same value
• Most related work implicitly or explicitly assumes that such hash collisions do not exist,

which is false by an easy counting argument (hash results are of fixed size)
• False implies anything. Danger!
• We don’t assume hash functions are injective. Instead, we ensure that our results hold

unless and until there is a collision between Blocks that the implementation considers
“in the system” (e.g., messages containing them have been sent).

• ToyChain (Pîrlea and Sergey, CPP 2018) work to address this issue required changes to
every proof, one ballooned from 10 lines to 150!

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Power of abstraction

33

• Abstract model also knows nothing of message formats, validation, implementation
data structures and logic, etc.

• Focusing on core protocol enables verifying a range of implementations, without
repeating hard work of verifying underlying protocol

• LibraBFT under development during verification effort, no need to repeat abstract
work when updating our implementation

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Power of abstraction

34

• Abstract model also knows nothing of message formats, validation, implementation
data structures and logic, etc.

• Focusing on core protocol enables verifying a range of implementations, without
repeating hard work of verifying underlying protocol

• LibraBFT under development during verification effort, no need to repeat abstract
work when updating our implementation

• That said, recently LibraBFT changed to a CommitRule based on 2-chains. That
implementation does not ensure the PreferredRoundRule defined in our development

• Does not mean it is not correct, but that it cannot be proved correct using our abstract
model

• Updating our work for a 2-chain-based CommitRule is future work

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

Problem and contributions

Agenda

1

2

3

4

Abstract model and definitions

Key theorem, relating it to an implementation

Remarks about approach

Copyright © 2022 Oracle and/or its affiliates. All rights reserved.35

5 Concluding remarks

Concluding remarks
• Byzantine Fault Tolerant consensus is notoriously difficult to get right
• Formal, machine-checked verification is important, but difficult and time consuming
• Our approach separates correctness of underlying protocol from details of a range of (but

not all) implementations
• We avoid the dangerous assumption that hash collisions do not exist (they do!) by tying

hash collisions to specific values actually encountered in an execution
• Results for a single “epoch”, epoch change / reconfiguration is future work
• Broader project includes:

• Agda translation of our Haskell implementation
• Syntax and library support to keep Agda close to Haskell implementation
• System Model and machinery for modeling and proving properties about a distributed system in which

honest peers follow implementation, dishonest ones unconstrained other than inability to forge honest
signatures

• Significant progress towards verifying that our implementation satisfies requirements to instantiate abstract
results

• Open source: https://github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022

36 Copyright © 2022 Oracle and/or its affiliates. All rights reserved.

https://github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022

Questions?

Mark Moir (mark.moir@oracle.com)

Architect
Oracle Labs

37

