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The Oracle Parfait static code 
analysis tool is used by thousands 
of developers worldwide on a day-
to-day basis over commercial and 
open source codebases of multi-
million lines of code.
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The Parfait Design and Implementation
2007 design

2007-2018 implementation



Copyright © 2021, Oracle and/or its affiliates4



Scalability achieved by
• Layered approach
• Demand-driven analyses
• Process subsets of the code; not whole program at a time

• Multiple ways to parallelise framework
• Per bug-type, per analysis, per “executable”-file

Key Features of the Parfait Design
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Scalability achieved by
• Layered approach
• Demand-driven analyses
• Process subsets of the code; not whole program at a time

• Multiple ways to parallelise framework
• Per bug-type, per analysis, per “executable”-file

Precision achieved by
• Multiple lists of bugs (NoBugs, PotentialBugs, RealBugs)
• Bugs moved from PotentialBugs to RealBugs list conservatively

Key Features of the Parfait Design
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The Parfait Implementation
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Built on top of LLVM



Drop-in 
replacement for 

C compiler

parfait-gcc –o test 
test.c

parfait test.bc

Drop-in 
replacement for 
Java compiler

parfait-javac –o test 
test.java

parfait test.bc

Build Integration for Make (C, Java) and Python
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Drop-in 
replacement for 

Python bytecode 
compiler

parfait-python –p test-
dir –o test.bc test-dir

parfait test.bc



buildscript {
repositories {

maven { url ‘https://<artifactory-parfait-release>’} }
dependencies {

classpath ‘oracle.parfait:gradle.plugins:1.0.5’}
}
apply plugin: ‘oracle.parfait’

Build Integration with Maven and Gradle Plugins (Java)
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Orchestrated by the 
plugin



Data flow analysis
• Keeps track of data values at each point in 

the program

Partial evaluation
• Executes partially-evaluated slice of a 

potential bug

Symbolic analysis
• Symbolically tracks values of a program slice 

of interest

Control flow analysis
• Keeps track of flow of control through the 

program

Taint analysis
• Keeps track of data that is user controllable

Leak analysis
• Keeps track of sensitive data that reaches 

lower privileged parts of the application

Sample Analyses
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C, C++
• Buffer overflows
• Memory/pointer bugs
• NULL pointer dereference, use after free, double 

free, memory leak, …

• Integer overflow

Java EE
• SQL injection, cross-site scripting (XSS), 

LDAP injection, OS injection, …
• XXE/XEE
• Insecure crypto
• Insecure deserialization

Java Platform
• Unguarded caller-sensitive method calls
• Unsafe use of doPrivileged
• Call to overridable method during 

deserialization

Python
• SQL injection, command injection
• Insecure deserialization
• Unsafe eval

Bugs and Vulnerabilities that Matter
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C, C++
• Buffer overflows
• Memory/pointer bugs
• NULL pointer dereference, use after free, double 

free, memory leak, …
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• XXE/XEE
• Insecure crypto
• Insecure deserialization

Java Platform
• Unguarded caller-sensitive method calls
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deserialization
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• Insecure deserialization
• Unsafe eval

Bugs and Vulnerabilities that Matter
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Cross-language vulnerabilitie
s (Java - C)

- Buffer overflows

- Dereference of untrusted pointer

- SQL injection

- All injection vulnerabilitie
s
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Detecting SQL Injection in C, Java and 
Python Code



Taint Using Dataflow Analysis for SQL Injection
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protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username + 

"' and password = ‘” + password + "'";
...
try {

Statement statement = 
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}

https://github.com/WebGoat/WebGoat



Taint Using Dataflow Analysis for SQL Injection
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Taint Using Dataflow Analysis for SQL Injection
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Taint Using Dataflow Analysis for SQL Injection
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protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username + 

"' and password = ‘” + password + "'";
...
try {
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connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
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Taint Using Dataflow Analysis for SQL Injection
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public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}



Taint Using Dataflow Analysis for SQL Injection
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public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

A source of tainted data



Taint Using Dataflow Analysis for SQL Injection
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public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

No sanitisation of 
String values



Taint Using Dataflow Analysis for SQL Injection
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public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

Returns tainted String values[0]



Taint Using Dataflow Analysis for SQL Injection
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protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username + 

"' and password = ‘” + password + "'";
...
try {

Statement statement = 
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}

tainted String



Taint Using Dataflow Analysis for SQL Injection
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protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username + 

"' and password = ‘” + password + "'";
...
try {

Statement statement = 
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}
A sink of tainted data
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A source to sink trace for 
SQL injection example
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Finding Unguarded Caller-Sensitive Method 
Call Vulnerabilities in the Java Platform
CVE 2012-4681, August 2012



The Java Security model is access control based on inspecting current call stack

• The SecurityManager checks all frames on the stack
• E.g., if to execute a method, the method needs permission q, then all frames on the stack need to 

have permission q

A Caller-Sensitive Method (CSM) is a Java platform method that bypasses the standard stack inspection
• The check is determined based on the immediate caller’s ClassLoader

• E.g., Class.forName(“Foo”) is a CSM that returns the Class object associated with the “Foo” 
class

The Java Security Model
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Gondvv in a Nutshell
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private Class GetClass(String paramString) throws Throwable
{

Object arrayOfObject[] = new Object[1];
arrayOfObject[0] = paramString;
Expression localExpression = new

Expression(Class.class, “forName”, arrayOfObject);
localExpression.execute();
return (Class)localExpression.getValue(); 

}

a Java platform restricted 
package

localExpression Ξ Expression{ 
Class.forName(“sun.awt.SunToolkit”) }

2  Gondvv.GetClass(String)

1  Gondvv.SetField(Class, String, 
Object, Object) 



Gondvv in a Nutshell
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private Class GetClass(String paramString) throws Throwable
{

Object arrayOfObject[] = new Object[1];
arrayOfObject[0] = paramString;
Expression localExpression = new

Expression(Class.class, “forName”, arrayOfObject);
localExpression.execute();
return (Class)localExpression.getValue(); 

}

Expression.execute() is a JDK method 
(and therefore trusted)

3 Expression.execute() 

2  Gondvv.GetClass(String)

1  Gondvv.SetField(Class, String, 
Object, Object) 

a Java platform restricted 
package



The Exploit’s Stack Trace
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12 Class.forName(String) 

11 ClassFinder.findClass(String)

10 ClassFinder.findClass(String, ClassLoader)

9  ClassFinder.resolveClass(String, ClassLoader) 

8  Expression(Statement).invokeInternal()

7  Statement.access$000(Statement)

6  Statement$2.run()

5  AccessController.doPrivileged(PrivilegedExceptionAction<T>, AccessControlContext)

4  Expression(Statement).invoke() 

3  Expression.execute() 

2  Gondvv.GetClass(String)

1  Gondvv.SetField(Class, String, Object, Object) 



CSM is reachable from untrusted code
CSM is unprotected 
One of the following holds based on CSM used

a) Taint CSM: the arguments to the CSM are tainted and not sanitised
b) Escape CSM: the CSM returns an object that is leaked to untrusted code
c) Taint-or-escape CSM: a) or b) applies
d) Taint-and-escape CSM: a) and b) applies.

Rules to Detect Unguarded Caller-Sensitive Method Call
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Untrusted 
Code

Permission 
Check CSM

Sufficient
Privileges

Trusted Code

Untrusted 
Code

Permission 
Check CSM

Trusted Code

No
Leak



Finding Spectre Variant 1 Vulnerabilities in 
C, C++ Code
CVE-2017-5753
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CVE-2017-5753

“Systems with microprocessors utilizing speculative execution and branch prediction may allow 
unauthorized disclosure of information to an attacker with local user access via a side-channel 
analysis.”

Spectre (v1)  
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CVE-2017-5754

“Systems with microprocessors utilizing speculative execution and indirect branch prediction may allow 
unauthorized disclosure of information to an attacker with local user access via a side-channel analysis 
of the data cache.”

Meltdown



Spectre v1 in a Nutshell
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if (x < array1_size)
y = array2[array1[x] * 256];

P. Kocher et al, Spectre Attacks: Exploiting Speculative Execution: https://spectreattack.com/spectre.pdf

Registers

Cache

RAM
array1_size in RAM
array2 in RAM

x in registers or 
cache
k= array1[x] is 
cached

x is user controlled



Branch-load-load
• Branch is a bounds check on first load
• Offset to second load based on first load
• No LFENCE/MEMBAR/array_index_nospec() 

in the pattern
• Heuristics to determine whether array2 

cannot be held in one cache line
User-controllable offset to first load
Load-load is reachable from less privileged code

Spectre v1 Pattern
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if (x < array1_size)
y = array2[array1[x] * 256];

x is user controlled

P. Kocher et al, Spectre Attacks: Exploiting Speculative Execution: https://spectreattack.com/spectre.pdf



1. Identify branch-load-load pattern
2. Identify the API boundary between more 

and less privileged code, e.g., syscalls
3. Check (interprocedurally) for reachability 

and taint from the API entry points to the 
potential defect

Rules to Detect Spectre Variant 1
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API-1 (...) API-2 (...)

API-3 (...)

API-N-1 (...)

API-N (...)

if (x < array1_size)
y = array2[array1[x] * 256];

Trusted Code



Each level provides a service under certain assumptions
Each level consumes a service with certain expectations
Mismatch between assumptions and expectations can be exploited
Examples
• App and Library: Sanitisation not performed: SQL Injection
• Library and VM: Isolation not guaranteed: information leakage
• Processor and µ𝐴𝑟𝑐ℎ: Spectre/Meltdown

Security Issues Can Arise at Any Level of Abstraction
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App

Library

VM

Processor

μArch
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A Sample of Results



Parfait – Scalable, Deep Static Code Analysis

Codebase Non Commented 
Lines of Code

Number of Bug 
Types

Analysis 
runtime

Runtime in 
KLOC/min

Oracle Linux Kernel 5 16,586,325 C 34 19m 20s 858 KLOC/min

Cloud service 1,216,168 Java 5 7m 2s 173 KLOC/min

Cloud service 229,000 Python 4 5m 15s 43 KLOC/min
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Bugs fixed by developers once baseline had been established
Parfait – Precise, Deep Static Code Analysis
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Analysis of Full Codebase vs 
Analysis of Commit/Push/Pull/Merge Request

File1
File2

File3
… Parfait

Defects

Function 
summaries

File 1, File 2, …

Analysis of full codebase
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Analysis of Full Codebase vs 
Analysis of Commit/Push/Pull/Merge Request

File1
File2

File3
… Parfait

Defects

Function 
summaries

File 1, File 2, …

File N

Parfait Defects

Analysis of full codebase Analysis of changeset
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Defects

Analysis of Full Codebase vs 
Analysis of Commit/Push/Pull/Merge Request

File1
File2

File3
… Parfait

Defects

Function 
summaries

File 1, File 2, …

File N

Parfait

Analysis of full codebase Analysis of changeset

e.g., 15 mins scan

e.g., 2-3 secs for C, 

3-5 mins scan for Java
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Bugs Prevented from Being Introduced into the Codebase
Changeset analysis prevents 80% of new bugs (compared to baseline)
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• Efficient analysis of full codebase
• Used to be nightly runs
• Now part of Continuous Integration

• Efficient analysis of changeset
• Prevent bugs from being introduced into the codebase
• Can be hooked into the commit, push, pull request or merge request

Innovations During the Past 14 Years
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TestBuildCode

Parfait innovations 
• Precise results
• Scalable, can integrate early in 

the development cycle
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What About Configuring the Tool? 
Using machine learning to determine sanitisers, validators and taint sinks



• Taint sources, sanitisers, validators and taint sinks need to be configured

• Pre-made configurations for JDK, Java EE and commonly-used libraries are available in Parfait

Configuring Parfait for Taint Analysis Information
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• Fasterxml Jackson
• Google API Client
• Google Guava (partial!)
• Jsch
• Jmustache
• Micronaut

• OkHttp3
• Java Http Server
• gRPC
• Netty
• Eclipse Jetty
• Helidon

• Eclipse Vert.x
• Commons FileUpload
• Commons IO
• Commons Lang
• Spring Framework

• Apache Spark (partial!)
• Apache HttpComponents
• Apache Xerces
• Simple Java Mail
• Berkeley DB Java Edition API

Configuring a static analysis tool is a 
manual and time consuming process



Taint Using Dataflow Analysis for SQL Injection
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public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

A source of tainted data



Taint Using Dataflow Analysis for SQL Injection
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public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

No sanitisation of 
String values



Taint Using Dataflow Analysis for SQL Injection
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protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username + 

"' and password = ‘” + password + "'";
...
try {

Statement statement = 
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}
A sink of tainted data



Example sanitization of the query String using the Enterprise Security API for Java
Taint Using Dataflow Analysis for SQL Injection
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protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username + 

"' and password = ‘” + password + "'";
...
try {

Statement statement = 
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
query = ESAPI.encoder().encodeForSQL (MYSQL_CODEC, query);
ResultSet results = statement.executeQuery(query);
...

}
...

}

A sanitisation method 
for MySQL queries

https://github.com/ESAPI/esapi-java



Semi-automation of Configuration Generation using Machine Learning
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Parfait Labs Team

SRM 
model

Pre-made 
3rd party libraries 

configurations

curation

feedback

Offline process



Semi-automation of Configuration Generation using Machine Learning
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Parfait user

Parfait Labs Team

SRM 
model

Artifactory

Pre-made 
3rd party libraries 

configurations

Parfait

SRM 
model

curation

feedback

feedback

Application specific 
artifacts

Offline process



High-level Architecture
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Ground 
truth 

dataset

Feature 
Extraction

Program 
analysis 
features

Neural 
embedding 

features

Feature 
Fusion

Classifier

SRM 
model



High-level Architecture
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Neural embedding features

• Soot based light-weight program 
analysis

• Intra-procedure analysis

• 83 features in total:

• HasParam
• HasRetType
• RetConstant
• ParamFlowsToRet
• ParamFlowsToCondCheck
• ClassHasKnownSrc
• ClassHasKnownSink
• …

Program analysis features
Ground 

truth 
dataset

Feature 
Extraction

Program 
analysis 
features

Neural 
embedding 

features

Feature 
Fusion

Classifier

SRM 
model



Results – Detecting Sanitisers/Validators
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Library No. of Libraries 
Analyzed 

Total 
Classes

Total 
Methods

Sanitisers/
Validators

False 
Positives FP Rate

OCI Common Libraries 4 394 2,212 8 4 50%

Third-party Libraries 6 883 11,288 76 27 36%

Processing time:  ~2mins per JAR



Results – Detecting Sinks
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Library Total methods
Sinks manually identified 

by Parfait team
New sinks 

identified by SRM

Apache Commons IO 3,933 31 11

Netty 79,539 34 16

Apache Commons Lang3 7,301 11 1

Google Guava 48,122 22 7

Total - 87 35

Processing time: ~2mins per JAR



• Semi-automated:  42 mins analysis + 
108 mins manual curation for 21 libraries

• Manual: 63 person days manual curation 
for 21 libraries

2.5 hours vs 
63 person days
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Lessons Learnt



Click to add image

Analyses need to be precise, 
scalable and incremental in 
order to be useful to developers and 
practical for CI/CD integration.
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Click to add image

Fine tuning of the analysis is best 
done with a team who owns their 
codebase and understands the 
vulnerability at hand.
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Click to add image Analyses need to easily integrate 
into existing build processes.
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Makefile



Click to add image

Analyses need to explain why the 
tool reports a bug at a given line; 
i.e., provide a trace/witness.
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Click to add image Auto-configuration of the tool aids  
deployment and adoption.
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!High precision (i.e., few incorrect issues)

!Fast runtime (i.e., seconds and minutes, not hours)

!Integration into build system

!Explanation of results of the analysis

!Auto-configuration

Lessons Learnt 
Requirements To Successfully Deploy A Static Code Analysis Tool
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Success Metric –
Large Number of Bugs Fixed By 

Development 



Click to add image

Parfait – precise, scalable and 
incremental static analysis for C, 
Java and Python. 
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cristina.cifuentes@oracle.com

http://labs.oracle.com/locations/australia
Twitter:     @criscifuentes
LinkedIn:  drcristinacifuentes
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http://labs.oracle.com/locations/australia


Our mission is to help people see 
data in new ways, discover insights,
unlock endless possibilities.
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