
The Flavour of Real World Vulnerability
Detection and Intelligent Configuration

Cristina Cifuentes
Oracle Labs
May 2021

Click to add image

The Oracle Parfait static code
analysis tool is used by thousands
of developers worldwide on a day-
to-day basis over commercial and
open source codebases of multi-
million lines of code.

Copyright © 2021, Oracle and/or its affiliates2

Copyright © 2021, Oracle and/or its affiliates3

The Parfait Design and Implementation
2007 design

2007-2018 implementation

Copyright © 2021, Oracle and/or its affiliates4

Scalability achieved by
• Layered approach
• Demand-driven analyses
• Process subsets of the code; not whole program at a time

• Multiple ways to parallelise framework
• Per bug-type, per analysis, per “executable”-file

Key Features of the Parfait Design

Copyright © 2021, Oracle and/or its affiliates5

Scalability achieved by
• Layered approach
• Demand-driven analyses
• Process subsets of the code; not whole program at a time

• Multiple ways to parallelise framework
• Per bug-type, per analysis, per “executable”-file

Precision achieved by
• Multiple lists of bugs (NoBugs, PotentialBugs, RealBugs)
• Bugs moved from PotentialBugs to RealBugs list conservatively

Key Features of the Parfait Design

Copyright © 2021, Oracle and/or its affiliates6

The Parfait Implementation

Copyright © 2021, Oracle and/or its affiliates7

Built on top of LLVM

Drop-in
replacement for

C compiler

parfait-gcc –o test
test.c

parfait test.bc

Drop-in
replacement for
Java compiler

parfait-javac –o test
test.java

parfait test.bc

Build Integration for Make (C, Java) and Python

Copyright © 2021, Oracle and/or its affiliates8

Drop-in
replacement for

Python bytecode
compiler

parfait-python –p test-
dir –o test.bc test-dir

parfait test.bc

buildscript {
repositories {

maven { url ‘https://<artifactory-parfait-release>’} }
dependencies {

classpath ‘oracle.parfait:gradle.plugins:1.0.5’}
}
apply plugin: ‘oracle.parfait’

Build Integration with Maven and Gradle Plugins (Java)

Copyright © 2021, Oracle and/or its affiliates9

Orchestrated by the
plugin

Data flow analysis
• Keeps track of data values at each point in

the program

Partial evaluation
• Executes partially-evaluated slice of a

potential bug

Symbolic analysis
• Symbolically tracks values of a program slice

of interest

Control flow analysis
• Keeps track of flow of control through the

program

Taint analysis
• Keeps track of data that is user controllable

Leak analysis
• Keeps track of sensitive data that reaches

lower privileged parts of the application

Sample Analyses

Copyright © 2021, Oracle and/or its affiliates10

C, C++
• Buffer overflows
• Memory/pointer bugs
• NULL pointer dereference, use after free, double

free, memory leak, …

• Integer overflow

Java EE
• SQL injection, cross-site scripting (XSS),

LDAP injection, OS injection, …
• XXE/XEE
• Insecure crypto
• Insecure deserialization

Java Platform
• Unguarded caller-sensitive method calls
• Unsafe use of doPrivileged
• Call to overridable method during

deserialization

Python
• SQL injection, command injection
• Insecure deserialization
• Unsafe eval

Bugs and Vulnerabilities that Matter

Copyright © 2021, Oracle and/or its affiliates11

C, C++
• Buffer overflows
• Memory/pointer bugs
• NULL pointer dereference, use after free, double

free, memory leak, …

• Integer overflow

Java EE
• SQL injection, cross-site scripting (XSS),

LDAP injection, OS injection, …
• XXE/XEE
• Insecure crypto
• Insecure deserialization

Java Platform
• Unguarded caller-sensitive method calls
• Unsafe use of doPrivileged
• Call to overridable method during

deserialization

Python
• SQL injection, command injection
• Insecure deserialization
• Unsafe eval

Bugs and Vulnerabilities that Matter

Copyright © 2021, Oracle and/or its affiliates12

Cross-language vulnerabilitie
s (Java - C)

- Buffer overflows

- Dereference of untrusted pointer

- SQL injection

- All injection vulnerabilitie
s

Copyright © 2021, Oracle and/or its affiliates13

Detecting SQL Injection in C, Java and
Python Code

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates14

protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username +

"' and password = ‘” + password + "'";
...
try {

Statement statement =
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}

https://github.com/WebGoat/WebGoat

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates15

protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username +

"' and password = ‘” + password + "'";
...
try {

Statement statement =
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates16

protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username +

"' and password = ‘” + password + "'";
...
try {

Statement statement =
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates17

protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username +

"' and password = ‘” + password + "'";
...
try {

Statement statement =
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates18

public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates19

public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

A source of tainted data

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates20

public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

No sanitisation of
String values

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates21

public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

Returns tainted String values[0]

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates22

protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username +

"' and password = ‘” + password + "'";
...
try {

Statement statement =
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}

tainted String

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates23

protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username +

"' and password = ‘” + password + "'";
...
try {

Statement statement =
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}
A sink of tainted data

Copyright © 2021, Oracle and/or its affiliates24

A source to sink trace for
SQL injection example

Copyright © 2021, Oracle and/or its affiliates25

Finding Unguarded Caller-Sensitive Method
Call Vulnerabilities in the Java Platform
CVE 2012-4681, August 2012

The Java Security model is access control based on inspecting current call stack

• The SecurityManager checks all frames on the stack
• E.g., if to execute a method, the method needs permission q, then all frames on the stack need to

have permission q

A Caller-Sensitive Method (CSM) is a Java platform method that bypasses the standard stack inspection
• The check is determined based on the immediate caller’s ClassLoader

• E.g., Class.forName(“Foo”) is a CSM that returns the Class object associated with the “Foo”
class

The Java Security Model

Copyright © 2021, Oracle and/or its affiliates26

Gondvv in a Nutshell

Copyright © 2021, Oracle and/or its affiliates27

private Class GetClass(String paramString) throws Throwable
{

Object arrayOfObject[] = new Object[1];
arrayOfObject[0] = paramString;
Expression localExpression = new

Expression(Class.class, “forName”, arrayOfObject);
localExpression.execute();
return (Class)localExpression.getValue();

}

a Java platform restricted
package

localExpression Ξ Expression{
Class.forName(“sun.awt.SunToolkit”) }

2 Gondvv.GetClass(String)

1 Gondvv.SetField(Class, String,
Object, Object)

Gondvv in a Nutshell

Copyright © 2021, Oracle and/or its affiliates28

private Class GetClass(String paramString) throws Throwable
{

Object arrayOfObject[] = new Object[1];
arrayOfObject[0] = paramString;
Expression localExpression = new

Expression(Class.class, “forName”, arrayOfObject);
localExpression.execute();
return (Class)localExpression.getValue();

}

Expression.execute() is a JDK method
(and therefore trusted)

3 Expression.execute()

2 Gondvv.GetClass(String)

1 Gondvv.SetField(Class, String,
Object, Object)

a Java platform restricted
package

The Exploit’s Stack Trace

Copyright © 2021, Oracle and/or its affiliates29

12 Class.forName(String)

11 ClassFinder.findClass(String)

10 ClassFinder.findClass(String, ClassLoader)

9 ClassFinder.resolveClass(String, ClassLoader)

8 Expression(Statement).invokeInternal()

7 Statement.access$000(Statement)

6 Statement$2.run()

5 AccessController.doPrivileged(PrivilegedExceptionAction<T>, AccessControlContext)

4 Expression(Statement).invoke()

3 Expression.execute()

2 Gondvv.GetClass(String)

1 Gondvv.SetField(Class, String, Object, Object)

CSM is reachable from untrusted code
CSM is unprotected
One of the following holds based on CSM used

a) Taint CSM: the arguments to the CSM are tainted and not sanitised
b) Escape CSM: the CSM returns an object that is leaked to untrusted code
c) Taint-or-escape CSM: a) or b) applies
d) Taint-and-escape CSM: a) and b) applies.

Rules to Detect Unguarded Caller-Sensitive Method Call

Copyright © 2021, Oracle and/or its affiliates30

Untrusted
Code

Permission
Check CSM

Sufficient
Privileges

Trusted Code

Untrusted
Code

Permission
Check CSM

Trusted Code

No
Leak

Finding Spectre Variant 1 Vulnerabilities in
C, C++ Code
CVE-2017-5753

Copyright © 2021, Oracle and/or its affiliates31

CVE-2017-5753

“Systems with microprocessors utilizing speculative execution and branch prediction may allow
unauthorized disclosure of information to an attacker with local user access via a side-channel
analysis.”

Spectre (v1)

Copyright © 2021, Oracle and/or its affiliates32

CVE-2017-5754

“Systems with microprocessors utilizing speculative execution and indirect branch prediction may allow
unauthorized disclosure of information to an attacker with local user access via a side-channel analysis
of the data cache.”

Meltdown

Spectre v1 in a Nutshell

Copyright © 2021, Oracle and/or its affiliates33

if (x < array1_size)
y = array2[array1[x] * 256];

P. Kocher et al, Spectre Attacks: Exploiting Speculative Execution: https://spectreattack.com/spectre.pdf

Registers

Cache

RAM
array1_size in RAM
array2 in RAM

x in registers or
cache
k= array1[x] is
cached

x is user controlled

Branch-load-load
• Branch is a bounds check on first load
• Offset to second load based on first load
• No LFENCE/MEMBAR/array_index_nospec()

in the pattern
• Heuristics to determine whether array2

cannot be held in one cache line
User-controllable offset to first load
Load-load is reachable from less privileged code

Spectre v1 Pattern

Copyright © 2021, Oracle and/or its affiliates34

if (x < array1_size)
y = array2[array1[x] * 256];

x is user controlled

P. Kocher et al, Spectre Attacks: Exploiting Speculative Execution: https://spectreattack.com/spectre.pdf

1. Identify branch-load-load pattern
2. Identify the API boundary between more

and less privileged code, e.g., syscalls
3. Check (interprocedurally) for reachability

and taint from the API entry points to the
potential defect

Rules to Detect Spectre Variant 1

Copyright © 2021, Oracle and/or its affiliates35

API-1 (...) API-2 (...)

API-3 (...)

API-N-1 (...)

API-N (...)

if (x < array1_size)
y = array2[array1[x] * 256];

Trusted Code

Each level provides a service under certain assumptions
Each level consumes a service with certain expectations
Mismatch between assumptions and expectations can be exploited
Examples
• App and Library: Sanitisation not performed: SQL Injection
• Library and VM: Isolation not guaranteed: information leakage
• Processor and µ𝐴𝑟𝑐ℎ: Spectre/Meltdown

Security Issues Can Arise at Any Level of Abstraction

Copyright © 2021, Oracle and/or its affiliates36

App

Library

VM

Processor

μArch

Copyright © 2021, Oracle and/or its affiliates37

A Sample of Results

Parfait – Scalable, Deep Static Code Analysis

Codebase Non Commented
Lines of Code

Number of Bug
Types

Analysis
runtime

Runtime in
KLOC/min

Oracle Linux Kernel 5 16,586,325 C 34 19m 20s 858 KLOC/min

Cloud service 1,216,168 Java 5 7m 2s 173 KLOC/min

Cloud service 229,000 Python 4 5m 15s 43 KLOC/min

Copyright © 2021, Oracle and/or its affiliates38

Bugs fixed by developers once baseline had been established
Parfait – Precise, Deep Static Code Analysis

0

1000

2000

3000

4000

5000

Ju
n'11

Dec
'11

Ju
n'12

Dec
'12

Ju
n'13

Dec
'13

M
ay'1

4

Nov'1
4

M
ay'1

5

Ja
n'16

Ju
n'16

Nov'1
6

M
ar'1

7

Ju
n'17

Bugs
reported and

fixed after
nightly

New bug types detected by Parfait

Initial baseline

Copyright © 2021, Oracle and/or its affiliates39

Analysis of Full Codebase vs
Analysis of Commit/Push/Pull/Merge Request

File1
File2

File3
… Parfait

Defects

Function
summaries

File 1, File 2, …

Analysis of full codebase

Copyright © 2021, Oracle and/or its affiliates40

Analysis of Full Codebase vs
Analysis of Commit/Push/Pull/Merge Request

File1
File2

File3
… Parfait

Defects

Function
summaries

File 1, File 2, …

File N

Parfait Defects

Analysis of full codebase Analysis of changeset

Copyright © 2021, Oracle and/or its affiliates41

Defects

Analysis of Full Codebase vs
Analysis of Commit/Push/Pull/Merge Request

File1
File2

File3
… Parfait

Defects

Function
summaries

File 1, File 2, …

File N

Parfait

Analysis of full codebase Analysis of changeset

e.g., 15 mins scan

e.g., 2-3 secs for C,

3-5 mins scan for Java

Copyright © 2021, Oracle and/or its affiliates42

Bugs Prevented from Being Introduced into the Codebase
Changeset analysis prevents 80% of new bugs (compared to baseline)

0

1000

20
12

-2

20
12

-3

20
12

-4

20
13

-1

20
13

-2

20
13

-3

20
13

-4

20
14

-1

20
14

-2

20
14

-3

20
14

-4

20
15

-1

20
15

-2

20
15

-3

20
15

-4

20
16

-1

20
16

-2

20
16

-3

20
16

-4

20
17

-1

20
17

-2

20
17

-3

20
17

-4

20
18

-1

20
18

-2

20
18

-3

20
18

-4

Bugs
reported and
fixed before
changeset
landed in

main

Copyright © 2021, Oracle and/or its affiliates43

• Efficient analysis of full codebase
• Used to be nightly runs
• Now part of Continuous Integration

• Efficient analysis of changeset
• Prevent bugs from being introduced into the codebase
• Can be hooked into the commit, push, pull request or merge request

Innovations During the Past 14 Years

Copyright © 2021, Oracle and/or its affiliates44

TestBuildCode

Parfait innovations
• Precise results
• Scalable, can integrate early in

the development cycle

Copyright © 2021, Oracle and/or its affiliates45

What About Configuring the Tool?
Using machine learning to determine sanitisers, validators and taint sinks

• Taint sources, sanitisers, validators and taint sinks need to be configured

• Pre-made configurations for JDK, Java EE and commonly-used libraries are available in Parfait

Configuring Parfait for Taint Analysis Information

Copyright © 2021, Oracle and/or its affiliates46

• Fasterxml Jackson
• Google API Client
• Google Guava (partial!)
• Jsch
• Jmustache
• Micronaut

• OkHttp3
• Java Http Server
• gRPC
• Netty
• Eclipse Jetty
• Helidon

• Eclipse Vert.x
• Commons FileUpload
• Commons IO
• Commons Lang
• Spring Framework

• Apache Spark (partial!)
• Apache HttpComponents
• Apache Xerces
• Simple Java Mail
• Berkeley DB Java Edition API

Configuring a static analysis tool is a
manual and time consuming process

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates47

public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

A source of tainted data

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates48

public String getRawParameter(String name) throws ParameterNotFoundException {
String[] values = request.getParameterValues(name);
if (values == null) {

throw new ParameterNotFoundException(name + “not found”);
else if (values[0].length() == 0) {

throw new ParameterNotFoundException(name + “was empty”);
}

return (values[0]);
}

No sanitisation of
String values

Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates49

protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username +

"' and password = ‘” + password + "'";
...
try {

Statement statement =
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
ResultSet results = statement.executeQuery(query);
...

}
...

}
A sink of tainted data

Example sanitization of the query String using the Enterprise Security API for Java
Taint Using Dataflow Analysis for SQL Injection

Copyright © 2021, Oracle and/or its affiliates50

protected Element createContent(WebSession s)
{

...
password = s.getParser().getRawParameter(PASSWORD);
...
String query = "SELECT * FROM user_system_data WHERE user_name = '" + username +

"' and password = ‘” + password + "'";
...
try {

Statement statement =
connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);
query = ESAPI.encoder().encodeForSQL (MYSQL_CODEC, query);
ResultSet results = statement.executeQuery(query);
...

}
...

}

A sanitisation method
for MySQL queries

https://github.com/ESAPI/esapi-java

Semi-automation of Configuration Generation using Machine Learning

Copyright © 2021, Oracle and/or its affiliates51

Parfait Labs Team

SRM
model

Pre-made
3rd party libraries

configurations

curation

feedback

Offline process

Semi-automation of Configuration Generation using Machine Learning

Copyright © 2021, Oracle and/or its affiliates52

Parfait user

Parfait Labs Team

SRM
model

Artifactory

Pre-made
3rd party libraries

configurations

Parfait

SRM
model

curation

feedback

feedback

Application specific
artifacts

Offline process

High-level Architecture

53 Copyright © 2021, Oracle and/or its affiliates

Ground
truth

dataset

Feature
Extraction

Program
analysis
features

Neural
embedding

features

Feature
Fusion

Classifier

SRM
model

High-level Architecture

54 Copyright © 2021, Oracle and/or its affiliates

Neural embedding features

• Soot based light-weight program
analysis

• Intra-procedure analysis

• 83 features in total:

• HasParam
• HasRetType
• RetConstant
• ParamFlowsToRet
• ParamFlowsToCondCheck
• ClassHasKnownSrc
• ClassHasKnownSink
• …

Program analysis features
Ground

truth
dataset

Feature
Extraction

Program
analysis
features

Neural
embedding

features

Feature
Fusion

Classifier

SRM
model

Results – Detecting Sanitisers/Validators

55 Copyright © 2021, Oracle and/or its affiliates

Library No. of Libraries
Analyzed

Total
Classes

Total
Methods

Sanitisers/
Validators

False
Positives FP Rate

OCI Common Libraries 4 394 2,212 8 4 50%

Third-party Libraries 6 883 11,288 76 27 36%

Processing time: ~2mins per JAR

Results – Detecting Sinks

56 Copyright © 2021, Oracle and/or its affiliates

Library Total methods
Sinks manually identified

by Parfait team
New sinks

identified by SRM

Apache Commons IO 3,933 31 11

Netty 79,539 34 16

Apache Commons Lang3 7,301 11 1

Google Guava 48,122 22 7

Total - 87 35

Processing time: ~2mins per JAR

• Semi-automated: 42 mins analysis +
108 mins manual curation for 21 libraries

• Manual: 63 person days manual curation
for 21 libraries

2.5 hours vs
63 person days

Copyright © 2021, Oracle and/or its affiliates57

Copyright © 2021, Oracle and/or its affiliates58

Lessons Learnt

Click to add image

Analyses need to be precise,
scalable and incremental in
order to be useful to developers and
practical for CI/CD integration.

Copyright © 2021, Oracle and/or its affiliates59

Click to add image

Fine tuning of the analysis is best
done with a team who owns their
codebase and understands the
vulnerability at hand.

Copyright © 2021, Oracle and/or its affiliates60

Click to add image Analyses need to easily integrate
into existing build processes.

Copyright © 2021, Oracle and/or its affiliates61

Makefile

Click to add image

Analyses need to explain why the
tool reports a bug at a given line;
i.e., provide a trace/witness.

Copyright © 2021, Oracle and/or its affiliates62

Click to add image Auto-configuration of the tool aids
deployment and adoption.

Copyright © 2021, Oracle and/or its affiliates63

!High precision (i.e., few incorrect issues)

!Fast runtime (i.e., seconds and minutes, not hours)

!Integration into build system

!Explanation of results of the analysis

!Auto-configuration

Lessons Learnt
Requirements To Successfully Deploy A Static Code Analysis Tool

Copyright © 2021, Oracle and/or its affiliates64

Copyright © 2021, Oracle and/or its affiliates65

Success Metric –
Large Number of Bugs Fixed By

Development

Click to add image

Parfait – precise, scalable and
incremental static analysis for C,
Java and Python.

Copyright © 2021, Oracle and/or its affiliates66

cristina.cifuentes@oracle.com

http://labs.oracle.com/locations/australia
Twitter: @criscifuentes
LinkedIn: drcristinacifuentes

Copyright © 2021, Oracle and/or its affiliates67

http://labs.oracle.com/locations/australia

Our mission is to help people see
data in new ways, discover insights,
unlock endless possibilities.

Copyright © 2021, Oracle and/or its affiliates68

