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ABSTRACT

The popularity of the Java programming language has led to its wide
adoption in cloud computing infrastructures. However, Java appli-
cations running in untrusted clouds are vulnerable to various forms
of privileged attacks. The emergence of trusted execution environ-
ments (TEEs) such as Intel SGXmitigates this problem. TEEs protect
code and data in secure enclaves inaccessible to untrusted software,
including the kernel and hypervisors. To efficiently use TEEs, devel-
opers must manually partition their applications into trusted and
untrusted parts, in order to reduce the size of the trusted comput-
ing base (TCB) and minimise the risks of security vulnerabilities.
However, partitioning applications poses two important challenges:
(i) ensuring efficient object communication between the partitioned
components, and (ii) ensuring the consistency of garbage collection
between the parts, especially with memory-managed languages
such as Java. We presentMontsalvat, a tool which provides a prac-
tical and intuitive annotation-based partitioning approach for Java
applications destined for secure enclaves.Montsalvat provides an
RMI-like mechanism to ensure inter-object communication, as well
as consistent garbage collection across the partitioned components.
We implementMontsalvat with GraalVM native-image, a tool
for compiling Java applications ahead-of-time into standalone na-
tive executables that do not require a JVM at runtime. Our extensive
evaluation with micro- and macro-benchmarks shows our parti-
tioning approach to boost performance in real-world applications
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up to 6.6× (PalDB) and 2.2× (GraphChi) as compared to solutions
that naively include the entire applications in the enclave.
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1 INTRODUCTION

The Java programming language is widely used in cloud in-
frastructures. Popular cloud frameworks such as Hadoop [19],
ZooKeeper [21] and Spark [20] are based on Java. The recent growth
of cloud-based services surrounding these popular tools raises se-
curity and privacy concerns. To address security issues in the cloud,
major CPU vendors have introduced trusted execution environ-
ments (TEEs), such as Intel SGX [16], AMD SME [27] and ARM
TrustZone [3], which shield sensitive code and data inside secure
memory regions called enclaves. In spite of their attractive security
properties, programming TEEs is complex: it is usually done in
compiled languages and low-level APIs at the function level, and
it requires developers to make non-trivial efforts to minimise the
trusted computing base (TCB). Enforcing privacy with TEEs in a
high-level, managed language like Java is particularly challenging.

Solutions exist to run entire applications (including the JVM)
inside enclaves, while relying on a library OS [4, 7, 40, 52] to emulate
unsupported OS logic in the enclave. This approach offers good
compatibility for legacy applications and requires little intervention
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from developers. However, it significantly increases the size of the
TCB: library OSs inside the enclave typically hit millions of lines of
code [47], which violates the principle of least privilege [43] and
increases the chances of enclave vulnerabilities.

Others (e.g., Civet [53], Uranus [26]) try to mitigate this problem
by partitioning Java applications for enclaves. Civet leverages static
analysis [6] to partition Java applications, but embeds a JVM and
a library OS [52] inside the enclave, hence resulting in a large
TCB. Uranus provides a technique to partition Java applications
by annotating sensitive methods, but it requires developers to use
third-party tools to infer trusted partitions of applications, as well as
manual intervention by developers during the partitioning process.
One canmanually partition specific Java frameworks for enclaves [9,
44, 60], but this approach cannot be used for generic applications.
Some systems like Glamdring [30] propose techniques to partition
native applications in C and C++ automatically, but they cannot be
used for Java applications that rely on a managed runtime.

Partitioning Java applications for enclaves raises two significant
challenges which were not sufficiently addressed by previous work:
(1) Code running outside of an enclave (in the untrusted runtime)

may allocate objects inside the enclave (in the trusted runtime),
and code running inside the enclavemay allocate objects outside
of the enclave. Since both runtimes operate on separate memory
heaps, there is a need for an efficientmechanism to ensure object
communication across the two runtimes.

(2) Since there may be references between the untrusted runtime
and the enclave, the garbage collector have to be extended to
ensure consistency, i.e., objects in one runtime should not be
destroyed if objects in the opposite runtime still reference them.
To address these problems, we proposeMontsalvat, a tool that

leverages annotations to partition Java applications into trusted and
untrusted components automatically. Montsalvat leverages byte-
code transformation to split Java applications between the trusted
and untrusted runtimes, and applies distributed techniques like
remote method invocation [22] to enable efficient communication
between trusted and untrusted objects. Montsalvat introduces
a dedicated GC helper to synchronise garbage collection (GC) be-
tween both runtimes. Contrary to approaches based on library
OSs [40, 52, 53], Montsalvat introduces a shim library in the
enclave that relays unsupported libc calls in the enclave to the
untrusted runtime, which reduces the TCB.

We implemented our approach withGraalVM [8] and Intel SGX.
GraalVM is a high-performance JDK distribution that makes it
possible to build and run applications implemented in a wide range
of high-level languages (e.g., Java, Scala, JavaScript, Clojure, Kotlin,
etc.). Montsalvat leverages a GraalVM tool named Native Image
supporting ahead-of-time (AoT) compilation of applications into
native executables, called native images [18, 35, 57], which do not
require a JVM at runtime. GraalVM native-image AoT compiles
only reachable application methods, classes and fields, thereby
excluding any redundant application logic from the final executable.
This results in quicker startup times and lower memory footprint
for applications. These properties of GraalVM native images make
them particularly well-suited for restricted environments such as
enclaves. We evaluateMontsalvat using synthetic benchmarks as
well as real-world Java applications such as LinkedIn’s PalDB [31]
and GraphChi [29]. Our evaluation results show that partitioning

PalDB and GraphChi can yield up to 6.6× and 2.2× performance
improvements respectively, as compared to solutions that run these
applications on a JVM in the enclave.

In summary, we propose the following contributions:
• A practical and intuitive annotation-based approach for par-
titioning Java applications into insecure classes and secure
classes to be run inside TEE enclaves.

• An RMI-like mechanism for inter-object communication
across the trusted and untrusted runtimes.

• A garbage collection extension to synchronise object destruc-
tion across the trusted and untrusted heaps.

• Extensive experimental evaluation with various applications
demonstrating the efficiency of our approach.

This paper is organised as follows. §2 provides background con-
cepts and §3 discusses related work. Our threat model is introduced
in §4. The architecture and implementation of Montsalvat are
detailed in §5. §6 presents our extensive experimental evaluation,
and we conclude in §7.

2 BACKGROUND

2.1 Intel software guard extensions

Intel software guard extensions (SGX) is an extension to the Intel
instruction set architecture [46] that enables applications to create
enclaves, i.e., secure isolated regions in memory. Enclave code and
data are stored in a secure memory region, the enclave page cache
(EPC). All EPC pages in DRAM are encrypted and only decrypted
by a memory encryption engine (MEE) when they are loaded into
a CPU cache line. Recent Intel processors support a maximum of
256MB of EPC memory (only 192MB are usable by SGX enclaves),
limiting the amount of data in the enclave at any given time. The
Linux SGX kernel driver can swap pages between the EPC and
regular DRAM. This paging mechanism lets enclave applications
use more than the total EPC, but at a significant cost [9, 50].

SGX applications are typically partitioned into trusted and un-
trusted parts that handle sensitive and non-sensitive operations,
respectively. Enclaves only run in user mode [16], hence OS services
such as system calls cannot be executed directly inside of them and
are instead relayed to the untrusted runtime. To enable communica-
tion across runtimes, Intel SGX provides ecall and ocall routines,
which are specialised function calls that are used to respectively
enter and exit an enclave. These calls induce costly context switches
that last up to 13,100 CPU cycles [55, 59].

The Intel SDK [15] makes it possible to partition and build
enclave-based applications in C/C++ manually. The SDK provides
an enclave definition language (EDL) to define the enclave’s inter-
face, i.e., the set of all ecall and ocall routines. An additional tool,
Edger8r, generates edge routines using the EDL specifications. The
edge routines sanitise and marshal data into and out of the enclave.
All enclave code is then compiled into a final shared object that
is cryptographically hashed for verification at runtime when it is
loaded into enclave memory.

Manual partitioning can be avoided as solutions exist to easily
run entire applications inside enclaves (e.g., SCONE [4], Graphene-
SGX [52], SGX-LKL [40], etc.). However, these solutions have large
TCBs, which degrade application performance and increase the
chances of enclave vulnerabilities.
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2.2 GraalVM native-image

GraalVM native-image is a tool, built on top of the GraalVM
compiler [8], to compile ahead-of-time applications into standalone
executables, which are named native images. It supports JVM-based
languages, e.g., Java, Scala, Clojure and Kotlin. Native images can
also execute dynamic languages such as JavaScript, Ruby, R or
Python [35]. GraalVM native-image leverages a points-to analy-
sis [5, 42, 57] approach to find all the reachable application meth-
ods that are compiled into the final native image, leading to faster
startup times and lower memory footprint as compared to other
Java runtimes. GraalVM native-image enables applications to exe-
cute initialisation code (e.g., reading and parsing a configuration
file) at build time, effectively reducing the application startup as less
logic is executed at run time. To transfer the result of the initialisa-
tion (Java objects) from build to runtime, GraalVM native-image
takes a snapshot of the heap (called the image heap) at the end of the
build, and stores it into the generated executable. The image heap
is memory mapped inside the application heap at startup, allowing
the application to start from the state initialised at build time.

GraalVM native-image makes a closed-world assumption, i.e., it
considers that all application classes that can be executed at run time
are known and available at build time. To support dynamic features
such as reflection, the user provides a list of the classes, fields, and
methods that can be accessed dynamically. Each element of this list
is then always included in the native image, in addition to all classes,
fields and methods transitively reachable from these elements. This
list can be provided through e.g., CLI options, programmatically, or
a JSON file. GraalVM native-image provides a tracing agent [39]
which assists developers in generating such a JSON file.

GraalVM native images do not run on a regular JVM (e.g.,
HotSpot): runtime components that are needed to run JVM-based
applications, such as a garbage collector, support for thread sched-
uling and synchronisation, as well as stack walking and exception
handling are directly included inside the created native images.

GraalVM native-image provides the possibility of creating
multiple independent VM instances at runtime, which are called
isolates. Each isolate operates on a separate heap, allowing garbage
collection to be performed independently. Thus, threads executing
in one isolate are not affected by garbage collection done in
another isolate. Montsalvat creates a default isolate for each one
of the two runtimes of the partitioned Java application (trusted and
untrusted), which provides the execution contexts for all “entry
point” methods (e.g., main).

3 RELATEDWORK

We classify the related work into four categories: (i) systems that
make it possible to run full, unmodified applications inside enclaves,
(ii) framework-specific systems that support partial execution inside
enclaves, (iii) systems that allow for partitioning generic native
applications, and (iv) systems that allow for partitioning generic
Java applications.

Running full applications inside enclaves. Prior systems such
as Haven [7], SCONE [4], Graphene-SGX [52] and SGX-LKL [40]
propose solutions to run entire legacy applications inside enclaves.
They introduce a library OS into the enclave to emulate OS logic.
For instance, SCONE leverages a modified version of the libc to run
microservices inside Docker [17] containers. While these solutions

offer good compatibility with a wide range of applications and
require low developer effort, they introduce millions of lines
of code into the TCB. This may significantly decrease enclave
performance and leaves more room for security vulnerabilities.

Framework-specific partitioning. Some recent systems propose
to manually partition specific frameworks and/or the applications
that run on them into trusted and untrusted parts. VC3 [44] is
a system for trustworthy data analytics in Hadoop that requires
manually rewriting Map and Reduce functions to be used in SGX
enclaves, while keeping the main Hadoop library outside the en-
clave. SecureKeeper [9] proposes an extension to ZooKeeper which
preserves confidential user data inside enclaves while maintain-
ing the ZooKeeper framework outside the enclave. The authors of
Plinius [59] manually partition a persistent memory and machine
learning (ML) library in order to enable efficient ML in SGX en-
claves. Opaque [60] is a secure data analytics platform built on top
of Spark SQL that focuses on preventing access pattern leakage; it
notably introduces SGX-enabled oblivious operators that can be
used on tables that store sensitive data. These systems help reduce
the size of the TCB but focus on individual frameworks, which
limits their flexibility.

Native code partitioning. Glamdring [30] provides a technique
to automatically partition C/C++ applications into untrusted and
trusted parts using static program slicing. Panoply [47] introduces
micro-containerswhich expose standard POSIX abstractions and run
inside enclaves; applications must be refactored to extract sensitive
code and data to be placed inside micro-containers. These systems
do not tackle the complexities introduced by managed languages.

Java code partitioning. Civet [53] and Uranus [26] are two recent
frameworks for running parts of Java applications inside enclaves.
Civet requires defining methods which will serve as the partitioning
boundary, and Uranus requires annotating all sensitive methods.
We argue that placing the enclave boundary at class level is more
intuitive for developers. Additionally, our system benefits from
GraalVM’s optimisations, such as class initialisations at build time.
Rather than a small shim library that relays unsupported calls to
the trusted runtime as in our approach, Civet stores a full library OS
inside the enclave (specifically, it uses Graphene SGX [52]), which
leads to a larger trusted code base. CFHider [54] also proposes to run
parts of Java applications inside enclaves, but it specifically focuses
on branch statement conditions with the objective to guarantee
control flow confidentiality.

4 THREAT MODEL

Montsalvat assumes enclave code and the CPU package are
trusted, similar to related work with SGX [4, 26, 30, 44, 53]. The
source code annotation, image build via AoT compilation, and final
enclave signing are done in a trusted environment. This prevents
malicious classes/bytecode from being introduced into the enclave
at runtime [32]. The integrity of the enclave can then be validated
at runtime via remote attestation [12, 16] mechanisms.

Montsalvat supports a powerful adversary with control over
the full software stack, including the OS, hypervisors, and access
to the physical hardware (e.g., DRAM, secondary storage, etc.). The
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Figure 1: Overview ofMontsalvat’s workflow. Anno-

tated Java code, once compiled, is processed by the byte-

code transfomer to produce two versions of the applica-

tion classes. These classes are then used by the native im-

age generator to produce trusted and untrusted images,

which are finally linked with enclave libraries in the SGX

module to build the final SGX application.

adversary’s goal is to gain access to confidential data (e.g., pass-
words, encryption keys, etc.) which may be processed in trusted
application classes, or to damage the integrity of confidential data.

Montsalvat is resilient to physical attacks like cold boot at-
tacks [24] aimed at reading sensitive data in DRAM, or bus prob-
ing [58] to read the memory channel between the CPU and DRAM;
the SGX security model [16] prevents these.

We assume the adversary cannot physically open andmanipulate
the SGX-enabled processor package (as in [13]), and that the enclave
code does not intentionally leak sensitive data. Denial-of-service
and side-channel attacks [10, 45], for which mitigations exist [23,
33], are considered out of scope.

5 ARCHITECTURE

The main goal of Montsalvat is to partition Java applications for
SGX enclaves. The final partitioned application includes a trusted
and an untrusted part, respectively running inside and outside the
enclave. Figure 1 depicts Montsalvat’s complete workflow, from
the source code to the generation of the final SGX application. It
comprises 4 main phases: (1) code annotation, (2) bytecode trans-
formation, (3) native image partitioning, and (4) SGX application
creation.

To illustrate the inner workings of Montsalvat, we consider a
synthetic Java application to be partitioned (see Listing 1). Three
classes mutually interact via method calls: classes Account and
AccountRegistry perform sensitive operations, thus being secured
in an enclave. However, class Person is untrusted and will not be
included in the enclave.

5.1 Partitioning language

When partitioning applications destined for enclaves, an important
question to answer is how to specify what should be secured or
not. Some recent work proposed annotation of sensitive data [30],
others proposed annotation of sensitive routines [26, 53]. While
these strategies work, we argue they are not always very intuitive
for an application developer. Furthermore, they require complex
and expensive data-flow analysis to ensure sensitive data is not
leaked.

1 @Trusted
2 public class Account {
3 private String owner;
4 private int balance;
5 public Account(String s, int b) {
6 this.owner = s;
7 this.balance = b;
8 }
9 public void updateBalance(int v) {
10 this.balance += v;
11 }
12 }

13 @Trusted
14 public class AccountRegistry {
15 private List<Account> reg =
16 new ArrayList<Account>();

// Trusted in trusted obj
17 public AccountRegistry() {}
18 public void addAccount(Account a) {
19 this.reg.add(a);
20 }
21 }

22 @Untrusted
23 public class Person {
24 private String name;
25 private Account account;

// Trusted in untrusted obj
26 public Person(String s, int v) {
27 this.name = s;
28 this.account = new Account(s, v);
29 }
30 public Account getAccount() {
31 return this.account;
32 }
33 public void transfer(Person p, int v) {
34 p.getAccount().updateBalance(v);
35 this.account.updateBalance(−v);
36 }
37 }

38 @Untrusted
39 public class Main {
40 public static void main(String[] args) {
41 Person p1 = new Person("Alice", 100);
42 Person p2 = new Person("Bob", 25);
43 p1.transfer(p2, 25);
44 AccountRegistry reg =
45 new AccountRegistry();
46 reg.addAccount(p1.getAccount());
47 }
48 }

Listing 1: Illustrative example with annotated classes

using Montsalvat: trusted classes (lines 1-12 and 13-21),

and untrusted (lines 22-37 and 38-47).

Instead, we propose a technique based on class annotations.
Classes are a fundamental building block for object-oriented appli-
cations, and it is very intuitive to reason about security along class
boundaries. Using annotations, developers can easily specify which
classes need to be secured and which ones do not. Also, annotating
whole classes instead of methods or fields prevents expensive data-
flow analysis to track the propagation of sensitive data within a
class in order to determine other sensitive methods or fields. Hence
class annotation is a more pragmatic approach.

Montsalvat supports two principal annotations: @Trusted
and @Untrusted, which developers can use to specify secure
and insecure classes, respectively. In Listing 1, Account and
AccountRegistry classes are annotated as trusted, whereas class
Person is untrusted.

A trusted class will always be instantiated and manipulated in-
side the enclave, which has two main implications. First, its member
fields which are not instances of untrusted classes will be allocated
on the enclave heap. Second, its methods are always executed inside
the enclave.

Similarly, an untrusted class will have its instance objects allo-
cated only on the untrusted heap, along with all its member fields
which are not instances of trusted classes. All its methods will be
executed outside the enclave.

Montsalvat maintains a single version of a trusted or an un-
trusted object in both worlds by leveraging proxy objects (see §5.2).
In our programming model, some classes can be neutral as they may
not be inherently trusted or untrusted. This is the case for utility
classes (i.e., Arrays, Vector, String) or other similar application-
specific classes added by the developer.

Such classes are not security-sensitive and can be accessed in or
out of the enclave without the use of proxies. Contrary to trusted
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1 public class Person {
2 private int hash;
3 public Person(String s, int v) {
4 byte[] buf = serialize(s);
5 CCharPointer ptr = getPointer(buf);
6 this.hash = getHash(this);
7 ocall_relayPerson(this.hash, ptr, v);
8 }
9 public void Account getAccount() {
10 ocall_relayGetAccount();
11 }
12 public void transferPerson(Person p, int v) {
13 ocall_relayTransferPerson(p.getHash(), v);
14 }
15 }

Listing 2: Proxy for the untrusted class Person.

and untrusted classes, neutral class instances can have several
copies in both worlds and may evolve independently. The @Neutral
annotation is optional, i.e., classes that are not annotated are by
default neutral.

One may legitimately question the relevance of two annotations,
thinking the Trusted annotation is sufficiently expressive. Our ar-
gument for an @Untrusted annotation is twofold: (1) some classes
may perform many system-related operations that are not sup-
ported inside enclaves, and keeping them in the enclave needlessly
increases the TCB as they will perform many ocall transitions to
the outside; (2) classes which could introduce potential security
vulnerabilities in the enclave should preferably be kept out of the
enclave. The @Untrusted annotation solves these problems, while
also allowing for easy distinction with neutral classes.

Assumptions.We assume all annotated classes are properly encap-
sulated (i.e., class fields are private). On the one hand, this prevents
complex and expensive data flow analysis to ensure sensitive class
fields do not leave the enclave. On the other hand, it guarantees that
all class fields can only be accessed from outside classes via public
getters and setters exposed by the class. As such, it is easier to
control access to these sensitive class fields by applying techniques
such as transparent encryption/decryption at the level of these pub-
lic methods. Encapsulation being one pillar of object orientation,
we believe this assumption to be reasonable.

5.2 Bytecode transformation

The artefacts of the partitioned application consist of two native
images: a trusted and an untrusted image. The trusted image will
not have any untrusted functionality, and the untrusted image
will not have any trusted functionality. However, trusted objects
(i.e., instances of trusted classes) may call untrusted objects (i.e.,
instances of untrusted classes) and vice versa. Hence we need to
have a bidirectional communication mechanism for code flow exe-
cution. For that purpose, we introduce the notion of proxy classes:
instances of untrusted classes have proxies in the trusted runtime,
and conversely instances of trusted classes have proxies in the un-
trusted runtime. These proxies will serve as gateways to access
the functionalities (i.e., methods) of their real class in the opposite
runtime.

The proxy classes expose the same methods as the original
classes and replace the method implementations by a transition
logic to access the original functionalities across enclave bound-
aries. This design makes cross-enclave object communication easier
and helps maintain the object-oriented nature of the program as a
whole after it is partitioned. We rely on bytecode transformations to

1 public class Account {
2 private int hash;
3 public Account(String s, int b) {
4 byte[] buf = serialize(s);
5 CCharPointer ptr = getPointer(buf);
6 this.hash = getHash(this);
7 ecall_relayAccount(this.hash, ptr, b);
8 }
9 public void updateBalance(int v) {
10 ecall_relayUpdateBalance(this.hash, v);
11 }
12 }

Listing 3: Proxy for the trusted class Account.

create these proxy classes and inject code into existing classes to im-
plement the enclave transitions. Montsalvat uses Javassist [25], a
popular bytecode transformation framework, to achieve this phase.

Montsalvat automatically introduces matching proxy classes
for all trusted and untrusted classes. The points-to analysis of
GraalVM native-image automatically prunes/removes proxies for
classes that are not reachable, which removes unnecessary proxies.
As GraalVM does not include unreachable proxy classes in the
generated native images (see §5.3), we did not include that analysis
in the bytecode transformer. Listings 2, 3 and 4 illustrate the result
of bytecode transformations for the corresponding classes.

For the purposes of the trusted image, this process creates proxy
classes for untrusted classes by stripping the methods (i.e., remov-
ing the method bodies) of the untrusted classes. Listing 2 shows
the corresponding proxy class for the untrusted class Person in
our illustrative example. The bodies of the stripped methods are
replaced with native routines which will perform ocall transitions
to the corresponding method in the untrusted runtime (lines 7, 10,
13 in Listing 2). Analogously, for untrusted image generation, the
bytecode transformer creates proxy classes for trusted classes by
stripping all methods of trusted classes, and replacing the method
bodies with native methods which will perform ecall transitions.
Listing 3 shows the corresponding proxy class for the trusted class
Account in our illustrative example. The proxy class fields are re-
moved and a hash field is added to each proxy class which stores the
hash of the proxy object (i.e., line 6 in Listing 3). Our present imple-
mentation uses a hash function based on Java identity hash codes.
To minimize hash collisions, a hashing algorithm like MD5 [41]
should be used. The result of the stripping operations is the re-
moval of all untrusted functionality from the trusted runtime, and
conversely. Only annotated classes are modified by the bytecode
weaver, i.e., neutral classes are not changed.

In the rest of the paper, we refer to all unstripped classes as
concrete classes and stripped classes as proxy classes. We respectively
call the instances of these classes concrete objects and proxy objects.
If a concrete object in one runtime (trusted or untrusted) has a
correspondence with a proxy object in the opposite runtime, we
refer to that concrete object as a mirror object (i.e., the proxy’s
mirror copy).
Relay methods. For the methods in one runtime (a native image)
to be callable from the other runtime (another native image), these
methods must be exported as entry points. GraalVM native-image
provides an annotation (@CEntryPoint [37]) for specifying entry
point methods which can be callable from C. These entry point
methods must be static, they may only have non-object parameters
and return types, i.e., primitive types or Word types (including point-
ers) [35], and they must specify theGraalVM isolate that will serve
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1 public class Account {
2 private String owner;
3 private int balance;
4 public Account(String s, int b) {...}
5 public void updateBalance(int v) {...}

7 @CEntryPoint
8 public static void relayAccount(Isolate ctx, int hash, CCharPointer buf, int b) {
9 String s = deserialize(buf);
10 Account mirror = new Account(s, b);
11 mirrorProxyRegistry.add(hash, mirror);
12 }
13 @CEntryPoint
14 public static void relayUpdateBalance(Isolate ctx, int hash, int v) {
15 Account mirror = mirrorProxyRegistry.get(hash);
16 mirror.updateBalance(v);
17 }
18 }

Listing 4: Concrete class Account, once transformed.

as execution context for the method. As a result of these restrictions,
it is not feasible to export all methods of concrete classes as entry
points directly, as this would require changing their signatures. To
circumvent this limitation, we introduce static entry point methods
to act as wrappers for the invocations of the associated class or
instance methods. We call these relay methods.

For every public method in a concrete class, including all con-
structors, the bytecode transformer adds an associated relaymethod
to the class. The native methods (i.e., ecall and ocall routines) we
added to the stripped methods of the proxy classes will perform
enclave transitions to invoke the corresponding relay methods.

The parameters of a relay method comprise: an isolate which
provides the execution context for the method call, the hash of the
calling proxy object (for non-static methods), all primitive parame-
ters of the associated method, and pointers (i.e., CCharPointer [36])
which represent the addresses of buffers obtained from the serializa-
tion of any object parameters which are instances of neutral classes
(as these classes do not need proxies). For proxy object parameters,
the hash of the corresponding proxy is passed as parameter and the
corresponding mirror object will be used as the parameter once the
real (i.e., concrete) method is called in the opposite runtime. Simi-
larly, for mirror object parameters, the hash of the corresponding
proxy is also sent, and the corresponding proxy object is used in
the opposite runtime as parameter in the method.

As for the serialized buffers, they are deserialized and the cor-
responding object parameter recreated in the body of the relay
method. For relay methods of constructors, we add code to instan-
tiate the corresponding mirror object, as well as code to add the
mirror object strong reference and associated proxy hash to a global
registry, which we call the mirror-proxy registry. For instance meth-
ods, we add code to look up the corresponding mirror object in the
registry, and then invoke the instance method on that mirror ob-
ject with its corresponding parameters. Neutral object return types
from the untrusted runtime are also serialized and copied across the
enclave boundary. Both the trusted and untrusted runtimes have a
mirror-proxy registry.

The code in Listing 4 outlines the state of concrete class Account
after bytecode transformation. For illustration, the relay method
relayAccount (line 8) is added into concrete class Account in the
trusted runtime automatically.

We complete the transformation of the other classes of our
illustrative example as follows. For proxy class Person, we
will have ocalls instead to the relay methods. For proxy class

1 public void addAccount(Account acc) {
2 ecall_relayAddAccount(acc.getHash());
3 }

5 @CEntryPoint
6 public static void relayAddAccount(Isolate ctx, int hash) {
7 Account mirror = mirrorProxyRegistry.get(hash);
8 this.addAccount(mirror);
9 }

Listing 5: Proxy (top) and relay (bottom) methods for

the AccountRegistry class.

AccountRegistry, we have a proxy Account as parameter in the
addAccountmethod, and only its hash will be passed to the opposite
runtime. The resulting proxy method and the corresponding relay
method in concrete class AccountRegistry are shown in Listing 5.

Native transition methods. The native transition methods (e.g.,
ecall_addAccount) are C routines which perform enclave transi-
tions to the opposite runtime. At the time of bytecode transforma-
tion, the definitions of the native transition methods are absent
and only their signatures are provided. Their definitions will be
generated by the native image generator (see the next section).

5.3 Native image partitioning

The GraalVM native image generator is responsible for building
native images. It takes as input compiled application classes (byte-
code) and all their associated external libraries, including the JDK.
The native image generator then performs points-to analysis [57]
to find the reachable program element (classes, methods and fields).
Only reachable methods are then compiled ahead-of-time into the fi-
nal native image. For an SGX-based environment, this let us exclude
any redundant application logic from the enclave. The resulting
image embeds runtime components for garbage collection (memory
management), thread scheduling, etc.
Static analysis for trusted and untrusted image generation.

The bytecode transformations produced two sets of class files: the
first set (T ) comprises modified trusted classes and untrusted proxy
classes, while the second set (U ) comprises modified untrusted
classes and secure proxy classes. The unannotated/neutral classes
(N ) were not changed by the bytecode transformer. These three
sets of classes are used by GraalVM to generate two native images,
i.e., the partitioned application.

The native image generator in Montsalvat uses set (T ∪ N )

as input for trusted image generation and the set (U ∪ N ) as input
for untrusted image generation. To determine reachable program
elements (i.e., classes, fields and methods) the native image gen-
erator leverages a static analysis technique known as points-to
analysis [48, 57]. Points-to analysis starts with all entry points and
iteratively processes all transitively reachable classes, fields and
methods [57]. For the sake of brevity, we do not include all the steps
performed during points-to analysis in GraalVM native-image
(see [57] for details). For the trusted image, all the relay methods of
trusted classes will serve as entry points (recall the @CEntryPoint
annotation, e.g., in Listing 4). For the untrusted image, the main
entry point (Java application’s mainmethod) and the relay methods
of untrusted classes will serve as entry points. Conceptually, we
can include the main entry point in either the trusted or untrusted
image. However we chose to add it in the untrusted image because:
(1) it prevents an ecall transition to invoke the main method and
ocall transition to create garbage collection helper threads (see
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Figure 2: For the trusted image, the relay meth-

ods in the trusted classes ensure that other trusted class

methods, as well as methods from neutral classes (e.g.,
serialize, registry.add, etc.), are reachable. Similarly, for

the untrusted image, the main entry point ensures that

the Person class methods, as well as methods from proxy

classes (Account and AccountRegistry), are reachable. This
is a subset of the full graph (other methods will be made

reachable at leaf nodes).

§5.5) once in the main method, and (2) it is in accordance with Intel
SGX’s programming convention, as all SGX applications begin in
the untrusted runtime.

Figure 2 illustrates a simplified reachability analysis done for two
entry point methods (relayAccount and main) to determine their
reachable methods. A similar process is performed for all other
entry points.

Once static analysis is complete, the trusted image no longer con-
tains untrusted methods/functionality. It embeds proxies instead,
in case some untrusted proxy class methods were reachable. Simi-
larly, the untrusted image does not contain trusted methods, but
only proxies to those if some proxy class methods were reachable.
Following from our illustrative example, proxy class Person will
not be included inside the trusted image since it is not reachable
from any of the trusted classes.

In the mainmethod in our illustrative example, at runtime during
object creation, the constructors of Person p1 and p2 will instanti-
ate a proxy object of the proxy Account class. The string parameters
“Alice” and “Bob” will be serialized and an ecall transition will
be made to create a corresponding mirror Account object in the
enclave. Similarly, when p1.transfer(p2, 25) is called, the corre-
sponding proxy Account objects will perform enclave transitions to
update the balances in the enclave. In the same way, the call to the
proxy AccountRegistry constructor performs a transition to create
a mirror object in the enclave corresponding to proxy object reg.
The latter performs a transition too when addAccount is called.

By default, the native image generator compiles all reachable
methods and links the latter with GraalVM’s native libraries to
produce an executable or a shared object file. We modified the
image generator to bypass the linking phase that produces executa-
bles or shared objects, so as to produce relocatable object files (.o)
which can be linked to other libraries to build the final SGX appli-
cation. The resulting images for the trusted and untrusted parts are
trusted.o and untrusted.o respectively. These will be dispatched
to the SGX module and used to build the final SGX application.

1 void ecall_relayAddAccount(int hash) {
2 Isolate ctx = getIsolate(); // Get the enclave isolate
3 relayAddAccount(ctx, hash);
4 }

Listing 6: C code for ecall_relayAddAccount.

SGX code generator. During bytecode transformation, native
ecall and ocall transition routines are added to proxy classes.
We extended GraalVM native-image with a class to generate C
code definitions for the corresponding ecall (added in trusted
proxy classes) or ocall (added in untrusted proxy classes) transi-
tions, as well as their corresponding header files. Listing 6 shows
the generated C code for the ecall_relayAddAccount method.

The code generator also creates associated EDL files used by the
Edger8r tool in the Intel SGX SDK to build bridge routines, which
marshal the data across the enclave boundary. The generated files
are dispatched to the SGX module.

5.4 SGX application creation

This is the final stage in the Montsalvat workflow. Because SGX
enclaves operate only in user mode, they cannot issue system calls
and standard OS abstractions (e.g., file systems, network), which are
ubiquitous in real-world applications. The solution to this problem
is to relay these unsupported calls to the untrusted runtime, which
does not have the same limitations. In contrast to systems that in-
troduce a LibOS (i.e., an entire operating system implemented as a
library) in the enclave, we leverage an approach which involves re-
defining unsupported libc routines as wrappers for ocalls. These
redefined libc routines in the enclave constitute Montsalvat’s
shim library. The latter intercepts calls to unsupported libc rou-
tines and relays them to the untrusted runtime. A shim helper library
in the untrusted runtime then invokes the real libc routines. This
by design reduces the TCB when compared to LibOS-based systems.

Montsalvat then compiles all generated ecall routines and
statically links them with the trusted image (trusted.o), the shim
library and native libraries from GraalVM to produce the final
enclave shared library, which corresponds to the trusted part of the
Java SGX application. Similarly, the generated ocall routines are
also compiled and linked with the untrusted image (untrusted.o)
andGraalVM native libraries to produce the final untrusted compo-
nent. In accordance with Intel SGX’s application model, Montsal-
vat compiles the main entry point of partitioned applications in the
untrusted component. The resulting trusted and untrusted compo-
nents compose the final SGX application. At runtime, a GraalVM
isolate is created in both the trusted and untrusted part of the appli-
cation. These isolates provide the execution contexts for transition
routines, i.e., the trusted isolate serves ecall routines while the
untrusted isolate serves ocall routines.

5.5 Garbage collection

Following our partitioned application design, untrusted code objects
can have trusted counterparts (proxies) and vice versa. This presents
a challenge at the level of garbage collection (GC) because we must
ensure synchronised destruction of objects across the trusted and
untrusted heaps. More specifically, we need to synchronise GC of
proxy and mirror objects, e.g., the mirror of proxy object reg should
not be destroyed before reg in our illustrative example (Listing 1).
Similarly, when reg is destroyed, its corresponding mirror object
should be made eligible for GC.
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Java provides finalizer methods [38] which the garbage collector
invokes prior to garbage collecting an object. So one could envi-
sion a solution based on finalizer methods. However, the latter are
deprecated since Java 9 and have badly designed semantics [34].
For example, a finalizer method can make a proxy object reachable
again, which will lead to an inconsistent state across the trusted
and untrusted heaps after the proxy’s mirror object is destroyed.

To address this problem, we implemented an application-level
GC helper based on weak references. When a proxy object is cre-
ated, Montsalvat stores a weak reference and the hash of the
former in a global list. We use a weak reference here because it
does not prevent the proxy object from being garbage collected
once it is eligible for GC. The GC helper thread periodically (e.g.,
every second) scans this list for null referents of weak references,
i.e., objects referred to by the weak references. Once such a null ref-
erent is found, it means the proxy object has been (or is eligible for
being) garbage collected, and thus we can remove the correspond-
ing mirror object from the mirror-proxy registry in the opposite
runtime. This makes the mirror object eligible for GC if it is not
strongly referenced anywhere else. Both the trusted and untrusted
runtimes maintain independent lists of proxy weak references for
the associated runtime, and two GC helper threads are spawned in
the application: one to scan the trusted list in the enclave, and the
other to scan the untrusted list.

5.6 Running unpartitioned native images

Despite the benefits of partitioning an enclave application, situ-
ations may arise where it is much easier for the application de-
veloper to run the entire application as a native image inside the
enclave. This could happen when the majority of classes potentially
deal with sensitive information and no classes qualify as untrusted.
Consequently, Montsalvat makes it possible to run unpartitioned
applications. Unpartitioned applications do not require annotations,
hence no bytecode modifications are performed. The original appli-
cation is built into a single native image which is linked entirely to
the final enclave object.

5.7 Prototype implementation

Our current Montsalvat prototype is based on GraalVM CE
v21.0.0 for Java 8. GraalVM and the bytecode transformer are
implemented in Java. Our modifications in GraalVM amount to
∼1,400 lines of code (LOC). The bytecode transformer relies on
Javassist v3.26 and contains ∼2,100 LOC. The SGX module is based
on SGX SDK and SGX driver v2.11. It consists of ∼10,200 C/C++
LOC. We plan to releaseMontsalvat as open-source.

6 EVALUATION

This section presents an experimental evaluation of Montsalvat
based on micro- and macro-benchmarks with real-world applica-
tions. We seek to answer the following questions:
Q1) What is the cost of proxy object creation and remote method

invocations? (§6.2, §6.3)
Q2) How does partitioning impact GC performance? (§6.4)
Q3) How does partitioning impact application performance?

(§6.5)
Q4) How do partitioned and unpartitioned native images in SGX

enclaves compare with applications running on a JVM in
enclaves? (§6.6)
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6.1 Experimental setup

Our evaluation is conducted on a server equipped with a quad-core
Intel Xeon E3-1270 CPU clocked at 3.80 GHz, and 64GB of DRAM.
The processor has 32 KB L1i and L1d caches, 256 KB L2 cache and
8MB L3 cache. The server runs Ubuntu 18.04.1 LTS 64 bit and Linux
kernel 4.15.0-142. We run the Intel SGX platform software, SDK
and driver version v2.11. The EPC size on this server is 128MB, of
which 93.5MB is usable by enclaves. The enclaves have maximum
heap sizes of 4GB and stack sizes of 8MB. All native images are
built with a maximum heap size of 2 GB.

We use SCONE to run unmodified applications on a JVM
in SGX enclaves. The SCONE containers are based on Alpine
Linux [1]. The base SCONE image ships OpenJDK8 (tag:
8u181-jdk-alpine-scone5.1.0). For non-SCONE experiments, we
execute the GraalVM compiler, which generates the native images,
in OpenJDK-8u282. At execution, only the code of the generated
native images runs. All reported latencies are averaged over 5 runs.

6.2 Performance of proxy creation

(Answer to Q1) The goal of this experiment is to study the latency
of proxy creation in relation to normal (concrete) object creation.
The notion of proxy is an internal feature of Montsalvat which
could impact application performance. We use a synthetic Java
program to realise this experiment. Figure 3 shows the results ob-
tained. We perform object instantiations in four different scenarios:
concrete object creation in and out of the enclave methods (respec-
tively labelled concrete-in and concrete-out in Figure 3), and
proxy object in (proxy-in→out) and out (proxy-out→in) of the
enclave. Scenario concrete-out corresponds to the base line for
this experiment.

We observe that proxy object creation latency in the enclave is
3 orders of magnitude higher when compared to concrete object
creation in the enclave, and proxy object creation latency out of
the enclave is 4 orders of magnitude higher when compared to
concrete object creation out of the enclave. This performance drop
when creating proxy objects is mainly due to the expensive enclave
transitions required to instantiate the corresponding mirror objects
in the opposite runtime.

6.3 Performance of RMI and impact of

serialization

(Answer to Q1) The goal of this experiment is to study the perfor-
mance of remote method invocations by proxy objects, and under-
stand the impact of serialization on these invocations. To this end,
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Figure 4: Performance of remote method invoca-

tions (RMIs) by proxy objects vs. concrete object invoca-

tions, and impact of serialization on RMIs.

we generate synthetic programs where objects perform method
invocations in four different scenarios: concrete object invoking
instance methods in and out of the enclave (respectively labelled
concrete-in and concrete-out in Figure 4 (a)) and proxy object
invoking instance methods remotely from within (proxy-in→out)
and out of (proxy-out→in) the enclave without serializable param-
eters. We vary the number of method invocations of the objects
in these scenarios and calculate the corresponding latency of the
invocations.

Figure 4 (a) shows that when there is no serialization involved,
the latency of proxy object RMI in the enclave is 3 orders of magni-
tude higher than the latency of concrete object method invocation
in the enclave. On the other hand, the latency of proxy object RMI
out of the enclave is 4 orders of magnitude higher when compared
to concrete object method invocation latency. This overhead is sim-
ilar to that observed in proxy object creation, and is mainly due to
the expensive enclave transitions involved.

To understand the impact of serialization on proxy method in-
vocations, we introduce two more scenarios where proxies in and
out of the enclave invoke methods with a serializable parameter
(respectively labelled proxy-in→out+s and proxy-out→in+s in
Figure 4). The serialized parameter is a list of 16 byte string values.
We vary the size of the serialized list while keeping the number of
method invocations constant at 10,000 invocations. For scenarios
proxy-in→out and proxy-out→in, we use the same methods as
in the ...+s variants but without passing the list as parameter.

Figure 4 (b) shows that RMIs in the enclave with the serialized
parameter are about 10× more expensive than the corresponding
RMIs without serialization, while RMIs out of the enclave are about
3× more expensive than the corresponding RMIs without serializa-
tion.

It should be noted that the orders of magnitude and ratios cal-
culated will vary depending on the latency of the method opera-
tions themselves, without taking into account the cost of parameter
serializations or enclave transitions. The methods used in these
experiments are setter methods updating an object field, which
are relatively inexpensive operations. For more expensive methods,
the cost of the method operations should outweigh the cost of en-
clave transitions or parameter serializations, hence decreasing the
importance of the latter.
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Figure 5: Garbage collection performance.

6.4 Garbage collection performance

(Answer toQ2) To understand the performance variations of garbage
collection in and out of the enclave, we performed an experiment
which involves creating multiple concrete objects, making them
eligible for GC and invoking the garbage collector in and out of the
enclave. We record the total time spent for garbage collection in
both scenarios. Figure 5 (a) shows the results obtained. We observe
that the enclave adds an order of magnitude more overhead to the
garbage collection operation. GraalVM native images embed a
serial stop and copy GC [35]; the copy operation of this GC in the
enclave leads to more data exchange between the CPU and the EPC,
hence the overhead when compared to GC performance outside
(i.e., concrete-out).

We performed a second experiment to demonstrate garbage
collection consistency in and out of the enclave. In this experiment
a synthetic Java program creates proxy objects in the untrusted
runtime, makes some of the objects eligible for GC and invokes
the GC in the untrusted runtime. This operation is repeated for a
given time range. The number of live (not garbage collected) proxy
objects out of the enclave and the number of mirror objects in the
enclave mirror-proxy registry are recorded at different timestamps.
Figure 5 (b) shows the results obtained. We observe that as proxy
objects are garbage collected, mirror objects are removed from
the in-enclave mirror-proxy registry, making them eligible for GC
too. In the same way, as more proxies are created, we notice a
similar increase in the number of mirror objects in the enclave.
These results show that GC is consistent between the trusted and
untrusted image.

6.5 Speed up due to partitioning

(Answer to Q3) To demonstrate the performance improvements of
partitioning native applications for enclaves withMontsalvat, we
leverage a synthetic Java program, and two real-world applications,
i.e., PalDB [31] and GraphChi [29].

Synthetic benchmark.We developed a Java program generator
to create Java applications with various numbers of classes anno-
tated as trusted or untrusted. We generated a Java application with
100 classes. Each class contains an instance method which performs
either CPU intensive operations (i.e., compute a fast Fourier trans-
form [14] on a 1MB double array) or I/O intensive operations (i.e.,
writes 4 KB of data to a file). The main method instantiates each
class and invokes the associated instance method. We vary the num-
ber of trusted and untrusted classes for two scenarios: (1) all class
instance methods perform CPU intensive operations and (2) all class
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instance methods perform I/O intensive operations. We then calcu-
late the total execution time of the resulting application. Figure 6
shows the results.

We observe that, as the percentage of untrusted classes increases
(i.e., more classes are moved out of the enclave), the overall applica-
tion runtime improves. For I/O operations, fewer enclave transitions
are done for I/O write operations, leading to better performance.
For CPU operations, enclave performance can get more expen-
sive when random reads and writes are done on data which is not
present in the CPU [4, 56]. This decrease in performance is caused
by on-the-fly encryption/decryption of CPU cache-lines by the
MEE [56] when data is transferred between the CPU and the EPC.
In summary, this synthetic benchmark suggests that by delegating
computations to the untrusted runtime, we relieve the enclave of
expensive computations, leading to better enclave performance, and
better overall application performance. We illustrate this further
with the two real world applications below.

PalDB. PalDB is an embedabble persistent key-value store de-
veloped by LinkedIn, used in analytics workflows and machine-
learning applications. We consider a Java application based on
PalDB which writes and reads a list of key-value (K/V) pairs in a
store file. The keys are string values of randomly generated integers
(in the range [0, 231 − 1]), while the values are randomly generated
strings of length 128. For this, we introduced two classes: DBReader
and DBWriter which exploit PalDB’s API for respectively reading
from and writing to the store file. A natural and intuitive partition-
ing scheme for this application is to partition along the DBWriter
and DBReader classes, depending on the security requirements
of the application. For this we consider two possible scenarios:
DBReader trusted and DBWriter untrusted (RTWU ), and DBReader

untrusted and DBWriter trusted (RUWT ). We run the unpartitioned
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Figure 8: Typical GraphChi program workflow.

application (base line) as a native image in an SGX enclave and
compare its performance to the partitioned version with the above
mentioned schemes, as well as the native image running without
SGX enabled. Figure 7 shows the results obtained.

For both partitioning schemes (RTWU and RUWT ) we ob-
serve performance improvements after partitioning the application.
RTWU is on average 2.5× times faster while RUWT is on average
1.04× faster when compared to the unpartitioned native image.
PalDB optimises reads by memory mapping the store file in mem-
ory, but does regular I/O for writes to the store file. This explains the
greater performance improvement after partitioning using RTWU
as it relieves the enclave of expensive write-induced enclave tran-
sitions to perform I/O, making it closer to the native performance
(no SGX). For RUWT the performance improvement is less as more
ocall transitions (23× more on average than RTWU ) are done to
write K/V pairs to the store file fromwithin the enclave.As expected,
the application has best performance when running without SGX,
however this is the most insecure configuration.
GraphChi. GraphChi is a large-scale graph processing framework.
We use the popular PageRank [2] algorithm as an example applica-
tion for partitioning. PageRank evaluates the relative importance
of nodes in a directed graph. Typically, GraphChi applications fol-
low the workflow outlined in Figure 8. The input graph is split
by a sharder (FastSharder) into multiple parts (shards) which are
then processed in the core execution engine (GraphChiEngine) to
produce the final result (PageRank values in our case). A possi-
ble partitioning scheme for the application would be along the
FastSharder and GraphChiEngine classes. For this we make the
GraphChiEngine trusted and the FastSharder untrusted. We run
the PageRank algorithm on synthetic directed graphs generated
using the RMAT algorithm [11]. We vary graph sizes by varying the
number of vertices (V ) and edges (E) in the graph. For each graph,
we vary the number of shards for the PageRank computations and
compare the performance of the partitioned native image to the
unpartitioned case, as well as the native image running without
SGX. Figure 9 shows the results obtained.

For each shard, the leftmost bar shows the run time without SGX,
themiddle bar for the unpartitioned native image running inside the
enclave, and the rightmost bar for the partitioned application. We
show the total times to calculate the PageRank values of the graph
nodes, as well as the portion of the total time spent in sharding and
in the engine.

After partitioning, the FastSharder is transferred to the un-
trusted runtime, relieving the enclave of all expensive I/O related
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Figure 9: Execution time for partitioned PageRank.
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Figure 10: Partitioned and unpartitioned PalDBnative

images vs. PalDB in SCONE+JVM.

work done by the sharder, thereby improving enclave latency. We
can observe on the graph that the latency due to sharding after
partitioning is approximately the same as the native case (no SGX),
which is explained by the fact that the FastSharder now operates
in the untrusted runtime and there is no extra overhead due to
MEE encryption/decryption operations in the enclave. This leads
to a performance gain of about 1.2× on average as compared to the
unpartitioned case. We observe similar performance improvements
for the different graph sizes.

6.6 Comparing JVM-based applications in

enclaves

(Answer to Q3) To understand how partitioned and unpartitioned
native images compare to the JVM-based counterparts running in
enclaves, we compared SGX-based native images to the applica-
tions running on a JVM in a SCONE container. The JVM is run
with maximum heap size of 2 GB (-Xmx2G). We are not particularly
concerned with the performance of applications running on a JVM
out of enclaves. However we included results for the latter to get
a clearer picture of the performance variations using the different
approaches.

Partitioned native images vs. JVM-based applications in en-

claves. For this experiment we compared the partitioned versions
of PalDB and GraphChi, using the same partitioning schemes, to
their unpartitioned counterparts running on a JVM in a SCONE con-
tainer. Figures 10 and 11 show the results for PalDB and GraphChi
respectively.

From the results, we observe that RTWU and RUWT are respec-
tively 6.6× and 2.8× faster on average when compared to PalDB
running on a JVM in SCONE. As for GraphChi, the partitioned
GraphChi native image is 2.2× faster on average when compared
to GraphChi running on a JVM in SCONE. The poor performance
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of the applications with the JVM in SCONE can be justified by two
reasons: (1) the JVM spends some time for class loading, bytecode
interpretation and dynamic compilation; these operations are ab-
sent in native images, (2) the in-enclave JVM increases the number
objects in the enclave heap, which leads to more data exchange
between the EPC and CPU, hence more expensive MEE encryp-
tion/decryption of CPU cache lines when compared to the native
images in the enclaves.

Unpartitioned native images in enclaves vs. JVM-based ap-

plications in enclaves. Here we compare the performance of un-
partitioned native images in enclaves to their JVM-based coun-
terparts. We present results for PalDB (Figure 10) and GraphChi
(Figure 11), as well as 6 SPECjvm2008 [49] micro-benchmarks (Fig-
ure 12) using their default workloads.

The unpartitioned PalDB and GraphChi native images in the en-
clave are respectively 2.6× and 1.7× faster when compared to their
JVM counterparts in a SCONE container. For the SPECjvm2008
micro-benchmarks, Table 1 summarises the comparisons of the
native images vs. their JVM counterparts, all running within en-
claves. We observe comparatively lower performance for the JVM
counterparts in a SCONE container except for the Monte_Carlo
micro-benchmark. We explain this to garbage collection cycles trig-
gered in the native image. Recent studies [28] suggest the GC in
GraalVM native-image performs poorly when compared to Open-
JDK HotSpot JVM’s garbage collectors. The poorer in-enclave JVM
results for the rest can be justified by the two reasons mentioned
previously.

6.7 Additional use-case scenarios

Montsalvat can be used for a wide variety of security applications.
Examples include secure key/value stores and blockchain applica-
tions. The classes/business logic for storing and retrieving key/value
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Benchmark name Latency gain over SCONE+JVM

Mpegaudio 2.12×
FFT 2.66×
Monte_Carlo 0.25×
SOR 1.42×
LU 1.46×
Sparse 1.38×
Table 1: Ratio between unpartitioned SPECjvm2008

native images in enclaves (SGX-NI in Figure 12) against

their on-JVM counterparts in SCONE (SCONE+JVM).

pairs, and business logic for smart contracts can be secured in the
enclave, while classes for network-related functionality are kept
out of the enclave. The partitioned components then interact in
accordance with our design.

7 CONCLUSION AND FUTUREWORK

This paper presented Montsalvat, a tool for automatically par-
titioning Java applications destined for secure enclave environ-
ments.Montsalvat leverages source code annotations and byte-
code transformations to partition application classes into trusted
and untrusted versions. Montsalvat provides an RMI-like mech-
anism to enable object communication between the partitioned
components, as well as a garbage collection extension to ensure
consistent garbage collection across the trusted and untrusted ap-
plication heaps. We implemented Montsalvat atop GraalVM
native-image, and our extensive evaluations show Montsalvat
can provide strong security guarantees while improving applica-
tion performance as compared to systems that execute complete
applications together with the associated runtime in an enclave.
We intend to extend this work along the following directions. First,
we will improve Montsalvat’s RMI system with transition-less
cross-enclave calls for expensive RMIs, similar to [51], especially
useful for applications performing several enclave transitions. Sec-
ond, we plan to extend our proxy-mirror system to permit creation
and interaction of proxy-mirror object pairs across multiple isolates
in both the trusted and untrusted runtimes.
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