High-performance R with FastR OR ACl_€®

Adam Welc, Oracle Labs
adam.welc@oracle.com

FastR project

* FastRis an alternative R execution engine, developed under GPL v2
* Drop-in, fully compatible replacement for R’s reference implementation GNU R
* Focused on improving performance of long-running R code
* QOpen-source: https://github.com/graalvm/fastr
* Implemented on top of Truffle framework, utilizing Graal native compiler
* FastR team at Oracle Labs:
* Mick Jordan, St&pan Sindelaf, Zbynek Slajchtr, Lukas Stadler, Adam Welc
e Status
* Implemented all important language features, including lazy evaluation, calls Graal Compiler
to C/Fortran, as well as S3 and S4 object models
* FastR can load over 2000 unmodified CRAN packages and run selected
production applications in parallel Java Virtual Machine
* Missing features include portions of the native interface and selected builtins

Truffle and Graal

. . . . SOURCE “FROZEN" AST NATIVE
e Truffle is an open-source framework for implementing programming language
runtimes
* Based on Java Virtual Machine (JVM) technolo
| e VM) &Y ax(b+c) movl b
* Reuses highly optimized JVM services (e.g. memory management)
* Graal compiler eventually compiles “hot” paths (e.g. loops) to machine code addl c
A program in a Truffle-based language is represented as Abstract Syntax Tree (AST) mull a
 AST encodes both program behavior (e.g. two numbers are being added), JRLY T X
and language semantics (e.g. how the addition operator works) . Prl m Itlve()

 Execution of a program in Truffle-based language == AST traversal
e Truffle transforms an R program:
* Analyzes running program to gather additional information (e.g. argument
vectors have certain length, or + and x operators are primitive functions)
* Speculates that observed conditions will hold in the future
 “Freezes” the AST and with the help of Graal compiler generates (guarded)
native code

High performance through speculation

* FastR optimizes R language execution via three different facets of speculation: assumptions, caching, and specialization
 These three techniques permeate the entire FastR implementation, with the following being selected examples of FastR optimizations

ASSUMPTIONS CACHING SPECIALIZATION
* Assumptions are natively supported by Truffle * Implementation of caches simplified via Truffle DSL * Truffle DSL helps building specialized nodes
 Cheap to check if condition holds e Example use — caching of argument signatures Example use — vector length
* Expensive to handle invalid assumptions _
* Example use — eager evaluation of promises f <- functlon(a, b, carg, ..., d=6) VEC <- C(1v 2,3, 4)
I S list(a, b, carg, ..1, .2, d) for (i in 2:length(vec)
var <- 42 associate Truffle assumption with var o | | | VeC[I-1] <- VeC[I] + VeC[I-1]
(no change to var until needed in fun) first invocation: run argument matching algorithm and
cache argument signagure <‘b’, NULL, ‘c’”, NULL, NULL> Truffle can speculate on vector length being
fun(var) evaluate var eagerly on call to fun constant and create specialized inlined code
f(b=2, 1, c=3, 4, 5)
- | | | vec[1] <- vec|2] + vec|1]
inside fun, truffle can speculate that assumption on second invocation Truffle can speculate that the new
holds and have the compiler eliminate both promise argument signature matches the cache and use the same vec[2] <- VeC[3] T VeC[Z]
and related code argument permutation for the function call vec|3] <- vec|4] + vec|3]
Results
. Two benchmark suites SHOOTOUT (http://benchmarksgame.alioth.debian.org) B25 (http://r.research.att.com/benchmarks)
» Shootout] 8 reun fes02 7 5 G ngC
e B25 1e+02 - W FASTR 16401 — m FASTR

* Five runtime configurations reror
* GNUR “base”
e GNUR “BC” (b-code

1e+00 4---[1-- M - WF1-- |- . i
“compiler”) 16-01 —

16400 —----

1e-01 —

speedup over GNU R "base"
speedup over GNU R "base"

]
—
:|

1e-02 —

* Renjin and TERR ¢ x £ x £ 3 F 2 g 3 E W 0z T2 2 I % 7T o9 %2 309 oY yo9 o z
. e 8 & & ® £ g £ ¥ § g 2 & 5 3 8§ § §8 £ £ g ¢ ¢ ¢ & & & & g 4
(alternate R runtimes) > 5 s ¢ € < =& & g g §H 3 g g ¢ B B § £ %5 § % % 3 ¥ oR 2 ow oo
s 2 g 2 g S 8 8 T B d % % £ & I @I @I 5 & 8 ¢ ¢ g 4 T o
* FastR = e % ¥ 8 8 8 8 8§ & & & &
Pllotted. F;ealf perflormance * Small applications consisting mostly of R code * Matrix calculations + simple R computation tasks
on a logarithmic scale * FastR’s avg. speedup over GNU R “base”: ~208.7 (geomean: ~30.8) + FastR’s avg. speedup over GNU R “base”: ~15.7 (seomean: ~ 2.4)

