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This report contains the proceedings of the
Second International Workshop on Persis-
tence and Java. The workshop was held on
August 13-15th, 1997 at the Half Moon Bay
Lodge in the San Francisco Bay Area and
attended by approximately 45 people, com-
prising paper authors and invited participants.
The workshop also hosted a parallel meeting
of the Object Database Management Group to
facilitate exchange of ideas and informal com-
munication.

A year is a long time in the evolution of the
Java platform and this was borne out by the
submitted papers and the makeup of the partic-
ipants. Along with the major academic
research groups, practically all of the object
database vendors were represented.

In contrast to the first workshop, which was
mostly focused on debating the appropriate
form of persistence mechanisms for Java, with
little in the way of actual implementations,
many of the papers in this workshop were con-
cerned with discussing actual implementa-
tions. Several papers contained experimental
measurements of the systems, although these
tended to be for small standard benchmarks,
notably OO1. We look forward in the future to
more comprehensive and comparative mea-
surements, that will enable the costs and bene-
fits of the different approaches to persistence
to be analyzed.

The workshop schedule contained a demon-
stration segment. Several groups, both aca-
demic and commercial, gave demonstrations
of their systems in action.

Although we must admit to some bias, the
workshop offered some evidence that the
notion of orthogonal persistence is becoming
accepted as the appropriate choice for object
persistence in Java. Indeed, one invited partici-
pant mistakenly concluded that the workshop
was specifically for the orthogonal persistence

community! Evidently we need to increase
participation from the relational and object-
relational communities.

As last year, we polled the participants on
whether we should hold a third workshop in
1998, particularly since the Eighth Persistent
Object Systems workshop (POS8) will occur,
and many of the participant overlap. The con-
clusion was that we should jointly hold the two
workshops at the same location, with a short-
ened PJW3 immediately following POS8.

We would like to thank all the participants and
the program committee for their contributions
to a successful workshop. We owe a special
vote of thanks for Linda Browning of SunLabs
who handled all the administrative details and
local arrangements. Finally, we would like to
thank Bert Sutherland, SunLabs director, for
his continued support of the workshop series.

Mick Jordan and Malcolm Atkinson
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Abstract

We introduce JUB (Java Universal Binding), a software tool that stores Java objects in relational and
object-oriented databases. JUB supports the object-oriented DBMS O2, the relational DBMS Oracle and
Sybase, and all the relational databases which can be accessed via JDBC.

In the context of O2, Java objects stored in the database are first-class database objects: they can be
accessed by all the clients of O2 (O2 supports application programs written in C, C++, Smalltalk, and
O2C).

We describe JUB from the application programmer’s point of view. We discuss the architecture of
JUB, and the way in which Java classes and objects are translated into O2 types and objects. We describe
the current status and the performance of the product.

1 Introduction

Many different approaches have been proposed to allow Java programmers and applications to take profit
from database technology. These approaches can be divided into two main groups: those proposing an
extension to the Java language or virtual machine, and those taking the language as it is and defining a
persistence service layer on top of the Java language and of an existing database system.

The first group aims at defining a persistent version of Java that requires a nonstandard compiler and/or
virtual machine. For example, the systems described in [2, 1, 6] belong to this group.

The second group can be further divided, according to the level of integration between the database
system and Java, into database drivers (JDBC) and language bindings (ODMG).

JDBC drivers [7] provide access to existing databases through an API that reflects the underlying
database model. Applications must map the native structures of the database (in the relational model, rows
and columns) into corresponding Java objects and attributes. Many JDBC drivers are currently available or
under development. A ODBC/JDBC bridge is also available.

Language bindings provide transparency to persistence in that the mapping between Java objects and the
underlying database structures is performed automatically by the runtime system. Applications manipulate
persistent objects as if they were ordinary (transient) Java objects. Persistence is requested either explicitly
or indirectly, through the attachment to a persistent root.



The ODMG Java binding is defined in version 2.0 of the standard. Most object database vendors have
announced Java bindings to their systems.

JRB (Java Relational Binding) [9] is a Java binding to relational databases. It was initially defined on
top of Oracle and Sybase databases, and was later extended to run on top of a JDBC driver. JRB provides
an API that allows applications to manage database entities (bases, transactions, queries) and to store and
retrieve Java objects into/from the underlying database.

The work described in this paper is built on top of JRB. Here, we do not describe the way in which Java
objects are stored in a relational database (this issue has been treated in [9], where a complete description
of JRB is given). Instead, we describe a general architecture featuring a common runtime running on top of
different DBMS. This architecture is called the Java Universal Binding (JUB). A common API running on
top of JUB allows applications to access relational and O2 databases undistinguishably and in a transparent
way.

O2 Java is a specific component of the JUB architecture providing access to O2 DBMS [3]. It is analogous
to JRB, but this time the target database system is the O2 DBMS.

JUB uses the same algorithm as JRB to store Java objects in a relational database. No other aspects of
JUB are inherited from JRB. Most notably, the structure of the product is novel: a well-defined interface
has been introduced between the higher-level part of the product, which is independent on the DBMS being
used, and the lower-level part, which is DBMS-specific.

The paper is organized as follows. Section 2 describes JUB as seen from the user’s point of view. Section
3 describes the structure of the product. Section 4 describes the way in which we translate Java classes and
objects into the corresponding O2 types and objects. Section 5 describes the current status of the project.
Performance is discussed in Section 6.

2 Using JUB

This section introduces the key properties of JUB, as seen from the application programmer’s point of view.
JUB is a Java database binding,i.e.a tool that makes it possible to store Java objects in a database. With

JUB, the application programmer is aware of the fact that there is a database involved and that some objects are
persistent and are stored in the database, whereas others are not. He/she invokes database synchronization
primitives like transaction() , commit() or abort() , and knows that these invocations affect
persistent objects. The user may explicitly take database locks (although this is usually unnecessary, because
JUB automatically takes the appropriate locks whenever an object is read or written).

Our approach is different from the one used in Persistent Java [2], where every attempt is made to give
to the system the appearance of an ordinary (non-persistent) Java runtime system.

2.1 Persistence-capable types

When JUB is used, the application programmer has access to two kinds of Java objects: ordinary ortransient
objects, which behave as if JUB did not exist, andpersistentobjects, which are managed by JUB, and are
stored in a database. In order to be persistent, an object must belong to apersistence-capabletype.

A class or an interface is persistence-capable iff it satisfies two conditions. First, it must implement
or extend the interfacePersistentObject from the package associated with JUB (namely, package
jub.api ). This interface contains all the methods necessary to manage persistence-related properties of
objects. Second, the class must have beenimportedby JUB. The import operation creates in the underlying
database the data structures necessary for storing objects of a given class: in a relational database, appropriate
relations are created [9]; inO2, a type is created that corresponds to the Java class (see Section 4).



An array type is persistence-capable iff an array of this type can be referenced to by an attribute of
a persistence-capable class and the type of the elements of the array is persistence-capable. The import
operation detects these conditions and creates the necessary structures in the database.

2.2 Making objects persistent

Two models have been proposed for choosing which objects should be made persistent: explicit persistence
and persistence by attachment.

With explicit persistence, the application programmer explicitly requests objects to be added to or deleted
from the database,i.e. to be made persistent or to be made transient again.

With persistence by attachment, a fixed set of objects is made explicitly persistent. These objects are
stored in the database and are directly accessible to the application programmer. They are calledroots of
persistence. For all other objects, the following rule is applied recursively: if a persistent objecta contains
a pointer to an objectb, thenb is also persistent. This rule can be equivalently expressed in a non-recursive
form: an object is persistent if it isreachable, i.e. if and application program can reach it by starting from a
root of persistence, and by following pointers from one object to another.

With persistence by attachment, objects that are persistent, but are no longer reachable, are deleted from
the database by a garbage collector.

JUB implements both kinds of persistence. In both cases, the static members of persistence-capable
classes can be accessed directly (i.e. without the need to first obtain a pointer to the object) by application
programs. Static members are made persistent at import time, except if the user requests otherwise.

The user can request JUB to maintainclass extents—collections containing all the objects of a given
class. When class extents exist, they are directly accessible to application programs.

With persistence by attachment, the static members and the class extents are roots of persistence.

2.3 Using a persistent object

The usage of persistent objects involves three specific issues. First, the user program must notify JUB
of reads and writes performed on persistent objects. Second, under certain circumstances, persistent Java
objects aredetachedfrom the database: changes made to detached objects will not be written into the
database. And finally, the application program may label certain fields astransient. Such fields will not be
stored in the database, although they exist in the in-memory version of the object.

2.3.1 Access notifications

Before accessing a persistent object, a Java program must inform JUB of its intention. This is done by
invoking the methodaccess for the object in question. This invocation causes the object to be actually
loaded in the address space of the program. Until then, it may be the case that the real object is only stored
in the database, and what appears to be the object in the address space of the Java program is in reality a
shadow object: a placeholder object that has the appropriate type, but whose contents are meaningless.

The methodaccess() is defined for all persistence-capable types.1 access has no effect when
invoked for a non-shadow object, either persistent or transient. Invokingaccess many times in a row for
the same object is equivalent to invoking it once. Therefore, there is no harm in callingaccess too many
times, or in calling it for a transient object. This simplifies the use ofaccess : application code can invoke
the method before every access to an object that belongs to a persistence-capable class, without knowing

1For array types, it is impossible to define methods. Therefore, ift is an array,t.access() is not defined; instead, we use
the static methodaccess in classjub.Database , like this: Database.access(t) . The same remark holds for the method
markModify , mentioned below.



whether the call is redundant or whether the object is actually persistent. Application code can therefore by
instrumented so as to callaccess in a systematic way, before every access to a persistence-capable object.
The instrumentation relieves the programmer from the necessity to add calls toaccess by hand. It is done
automatically, by a postprocessor of Java bytecode.

2.3.2 Write notifications

When a persistent object is modified by a Java program, this fact must be notified to JUB, so that when the
current transaction commits, JUB will propagate the modification to the database. The notification takes the
form of a call to the methodmarkModify .

markModify is only intended to be used with persistent objects.markModify is similar toaccess
in that it can harmlessly be invoked outside of its intended scope of use (namely, for transient objects) or be
invoked many times, instead of just once. It is therefore possible to instrument application code so that every
modification of a persistence-capable object is followed by a call tomarkModify . The instrumentation is
done automatically, by the same postprocessor which adds calls toaccess .

2.3.3 Invalidating persistent objects

JUB caninvalidatea persistent object,i.e. put the object in a state in which it can no longer be used. All
objects are invalidated when the current transaction commits. This is necessary, because at commit time all
locks are released, and therefore the state of the persistent objects, as represented in the address space of the
Java program, is no longer guaranteed to correctly represent the real contents of the objects.

Additionally, the application program can request the invalidation of individual objects. This is useful
(and sometimes necessary) in order to release the resources used by objects that have been accessed at some
point, but are unlikely to be accessed again.

The application program must not use invalidated objects. It is recommended that the program destroys
all the references to such objects, so that the Java garbage collector can destroy them.

2.3.4 Transient fields

Fields in persistence-capable classes can be labeled astransient . Such fields are never stored in the
database. Therefore, when a persistent object is brought from the database to the address space of a
Java program, transient fields need to be properly initialized. This can be accomplished by the method
activate() : if this method is defined for the object, it will be invoked every time the object is brought
to the address space. The rôle of this method is limited to initialization of transient fields of the object. In
particular, it is not allowed to modify any persistent attribute or otherwise manipulate a persistent object.
The system enforces this rule.

2.4 Storing Java bytecode in the database

It is possible to store Java bytecode in the database. The bytecode of the classes stored in this way can
be loaded into the execution environment by means of the classDatabaseClassLoader . This class
extends the classClassLoader and provides the mechanism to load the bytecode, pass it to the Java
runtime making it possible for the program to manipulate objects belonging to the loaded class. The user
may explicitly use the classDatabaseClassLoader to load a particular class. But the most interesting
use of stored bytecode is when the database contains objects of a class which is not available to the program
from theCLASSPATH. If the program accesses such an object, the JUB loads the implementation of the
class from the database, allowing the object to be properly used.
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Figure 1: The runtime system of JUB.

Let’s give an example of the utility of this feature. A classCwhich implements the interfaceRunnable
is stored in the database and an object belonging to the class is created. TheRunnable interface defines
a methodrun() and the implementation of this method inC performs some action. An external program
needs to know only theRunnable interface; it accesses the stored object and calls itsrun() method and
the proper action is performed.

3 The architecture of the runtime system

The runtime system of JUB is divided into acommon runtimeandsystem-specific components(Figure 1). The
common runtime is accessed by application programs through an API (application programmer’s interface).
There are two system-specific components: one for relational databases, and one for O2. The component
specific to relational databases contains three sub-components, which access, respectively, Oracle, Sybase,
and JDBC. Access to Oracle and to Sybase is done via their respective native SQL interfaces (incidentally,
one can also access Oracle and Sybase through a JDBC interface, but this is less efficient).

Both system-specific components have the same interface, through which they are used by the common
runtime. They allow the common runtime to connect to a database, to manage transactions (perform
operations likecommit() or abort() ), and to create, read and modify persistent objects in the database.
All these operations are performed without the common runtime knowing whether the database is object-
oriented or relational: the common runtime always views the database as a repository of objects.

The system is designed so that more system-specific components, accessible through the same interface,



can be added, and can be used by the common runtime.
The common runtime is based on two data structures: theobject tableand themetadata classes. Let us

describe these structures briefly.

3.1 The object table

The object table is a transient data structure, internal to the common runtime. It contains information about
the persistent objects that exist in the local address space. For every such object, it memorizes the object’s
address in the address space, its type, its state, and itscache identifier.

The cache identifier is used to identify the object when communicating with a system-specific component;
from the common runtime’s point of view, it plays the rôle of the object’s address in the database. The cache
identifiers of objects are computed by the system-specific component, in a way that allows for easy mapping
between the cache identifier and the information necessary to find the object in the database.

The state of the object is eithershadow, accessed, modified, or new. Shadowis the state of shadow
objects,i.e.of objects that are present in the database and are referenced from within the local address space,
but have not been properly copied into this space (see Section 2.3.1).Accessedis the state of objects that
are present both in the database and in the local address space.Modified is the state of objects that are
present both in the database and in the local address space, and for whichmarkModify() has been called.
Modified objects are written to the database at commit time.New is the state of the objects which have
been made persistent by the local application program, during the current transaction, and have not yet been
added to the database.Newobjects are added to the database at commit time.

3.2 Metadata classes

The metadata classes contain information about persistence-capable classes. There is one metadata class per
persistence-capable class. Information stored about each persistence-capable class includes its name, the
name of the parent class (if any), the names and types of the attributes of this class and those of the static
attributes of the class.

Metadata classes are generated by the import tool. If the bytecode of a persistence-capable class is stored
in the database, then the bytecode of the metadata class is stored there, too.

To use a metadata class, the common runtime creates an object belonging to this class (the object is
transient), then accesses the object through theClassMetaData interface. The methods of this interface
return information about the persistence-capable class corresponding to the object in question. All metadata
classes implement the interfaceClassMetaData .

The common runtime contains ametadata manager—a module capable of finding (or, if necessary, for
creating) metadata objects corresponding to any given class name. When the manager needs to create a
metadata object whose class is not present in the execution environment, the class bytecode is loaded from
the database, as described in Section 2.4.

4 The mapping of Java classes into O2 types

The mapping from Java classes into O2 data structures benefits from the similitudes between between the
Java type system and the O2 data model. Incompatibilities also exist, and we discuss the ways they are
handled.

Table 1 shows in detail the mapping between Java types and O2 types.



Classes, interfaces and objects Java classes and interfaces are translated by the import tool into O2 classes
(an O2 class corresponding with a Java interface contains no attributes). When a class or an interface is
imported, all the interfaces and classes from which it inherits (i.e. which it extends or implements) are also
imported. The inheritance structure is entirely preserved by the translation process. This is possible due to
the multiple inheritance mechanism of O2, whose semantics englobes that of Java.

When a subclass defines an attribute with the same name as an attribute in a superclass, O2 considers
that the attribute is overloaded, whereas Java considers it completely distinct from the superclass’ attribute.
To overcome this problem, in case of a conflict we create the attribute with a unique name and then rename
it to the original name. This causes O2 to consider the two attributes as different attributes. The runtime
system keeps track of renamings so as to load the corresponding Java attributes accordingly.

Scalar types short s andint s are translated intointeger s. float s anddouble s are translated into
real s. If there is an overflow in the process of this conversions, an exception is thrown.

Java 64-bit long values are mapped into pairs of 32-bit integer O2 integer attributes. The runtime system
performs the appropriate data conversion when long values are loaded from the database into long variables.

String, Integer, Float,... Objects belonging toString and to classes of simple types (likeInteger ,
Float , etc) do not retain their identity in the database. In this respect, our system changes the semantics
of Java language, but we considered that having these objects retain their identity would be too expensive
in terms of performance. Furthermore, the values encapsulated in these objects are immutable, which limits
the non-transparency to the only case of reference comparison.

Unicode characters inString s are converted and stored in the database as ASCII. It is possible to
specify in the configuration file that they are to be stored as Unicode. Unicode strings are stored always as
UTF strings; the conversion is performed by Java JNI (Java Native Interface) runtime.

Arrays A Java arrays is mapped into an O2 class encapsulating a list. When a new array is created in the
database, the whole corresponding list is filled with nulls. When a list is read in as an array, the size of the
list determines the size of the array to create.

Arrays in Java follow the same hierarchy structure as the types of their elements. This structure is closely
followed by the corresponding O2 classes which implement arrays. Such classes are of type list, and the
model of O2 allows inheritance between lists to follow the inheritance between their elements. From this
point of view, the O2 model matches exactly the Java model.

Arrays of Javalong values are implemented using lists of 32-bit integers, considering two consecutive
elements as a single 64-bit integer.

Static variables Static variables are mapped into O2 names, thus becoming persistent roots of the database.

5 Current Status of the Implementation

An early version of JUB exists today and has been tested. This version has some restrictions. Only explicit
persistence is implemented. Persistence by attachment is not available today, although the major difficulties
connected to it have been solved: a garbage collector for O2 exists [8], and persistence by attachment is
available in all language bindings to O2 except Java.

The application programmer must instrument Java code with calls toaccess and tomarkModify by
hand. The postprocessor of Java bytecode, which will perform this task automatically, is under development.



Java type O2 type

Builtin types and corresponding classes
boolean, Boolean boolean
char, Character (16 bit, UNICODE) char (8bit ASCII), or integer (16 bit,

UNICODE)
byte, Byte (8 bit) char (8 bit)
short, Short (16 bit) integer (32 bit)
int, Integer (32 bit) integer (32 bit)
long, Long (64 bit) two attributes of type integer, whose names

are suffixed by hi and lo
float, Float real
double, Double real
String (UNICODE) string (UTF coding, as defined in Java JNI)

Classes, interfaces, arrays
interface I {... } class I (no data)
interface J extends I {... } class J inherit I (no data)
class C {... } class C public type tuple(...)
class C extends S implements I {... } class C inherit S, I public type tuple(...)
JavaType[] class o2list O2Typepublic type list(O2Type)
JavaType[], where classJavaTypeextends S
implements I ...

class o2list O2Type inherit o2 list S,
o2 list I public type list(O2Type)

JavaType[][] class o2list o2 list O2Type public type
list(o2 list O2Type)

Special cases
long[], Long[] like int[], with two successive elements cod-

ing the low and high part of a long
byte[], Byte[] class ByteArray type public bits
char[], Character[] class ByteArray type public bits
java.lang.Vector o2 list Object, of type list(Object)

Static variables
in class, staticJavaType att name o2var class: tuple (att : O2Type... )

Table 1: The mapping of Java types to O2 types.



Collection classes in the style of those defined in the ODMG Java Binding [5] (sets, bags and lists) are
being currently implemented and should be soon available in JUB. At short term, JUB API should evolve
towards an ODMG compliant interface.

Today, it is possible to launch OQL or SQL queries in the underlying database. We are in the process of
investigating the possibility of the execution of Java methods from an OQL query.

6 Performance measurements

We present preliminary performance measurements of our prototype using the O2 system. We investigate
the impact of the differences between JUB and the C++ binding to O2, as well as the scalability of JUB.

6.1 The benchmark

Our measurements are based on the OO1 benchmark [4]. We used OO1’s database schema and two
operations: traversal and creation. We did not include the lookup operation and the reverse traversal
operation of OO1 benchmark because we felt that performing these operations would not add significant
information to our measurements.

We implemented a simple benchmark because our goal is to measure the impact of the language binding
and not the performance of the database system itself.

We use a database composed of objects calledparts. Each part contains an identifier, a date, a part type
and two coordinates:x andy . Each part points to three other parts. It also contains a list of parts from
which it is referenced—the reverse links. For each reference to a part there is a type and a length. The type
fields are strings of ten characters, the date is a 64-bit integer. The identifier, the coordinates and the length
fields are 32-bit integers. A global hash table contains all parts, hashed by the part identifier.

Two database sizes were tested: onesmall database containing 20000 objects and onelarge database
with 200000 objects. The fields of each object data occupy about 100 bytes and if we include the space
overhead of other structures, this gives databases of about 4 Mb and 40 Mb respectively.

The database is constructed in two phases. First, the parts are created with links set to null. The
identifiers of the parts are set in increasing order, from 1 to the total number of parts, while the other fields
are set to random values. In the second phase, we link each part to three other parts; the reverse links are
updated as appropriate. The parts to link are chosen so as to obtain some locality of reference: 90% of them
are randomly selected among the 1% of the parts that are “closest”, and the remaining 10% are randomly
selected from all parts. The parts are said to be close if their identifiers are numerically close. The global
hash table is used to find a part, given its identifier.

Our first experiment is a traversal in the graph of parts. Starting from a random part, we visit all parts
connected to it in a depth-first order, up to a depth of 7 levels. In total this makes 3280 parts, with possible
duplicates. For each part visited we read the values of all attributes. This experiment is executed in read-only
transactional mode.

The second experiment is similar to the first one, with the difference that for each part visited, the field
x is incremented. The time measured includes the time to commit the changes to the database.

The third experiment inserts new parts into the database. A new part is created and is linked to other
parts following the same rules used to construct the database. We create 100 parts with increasing part
identifiers and report the time needed to create the parts and to commit the transaction.

We measure execution times of our tests in two different runs: a cold run, when there is no data cached
in the database server or in the client, and a warm run, where cached data are present. Practically, we run
the tests 15 times and consider the first run as a cold run and the last 7 times as warm runs.
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Figure 2: Traversal time depending on the number of distinct objects visited

6.2 System configuration

For our benchmark, we used a Sun UltraSparc 1 workstation with 128 Mb of random access memory, 192
Mb of swap space and two 4 Gb disks connected to two different fast-wide SCSI controllers. One disk
contained only the database files and the other contained all the system files and database software. During
the measures, the system was used exclusively by our benchmark.

Both the server and the client processes ran in the same machine. The server was configured with 4 Mb
of cache and the client had 4Mb of cache too. We used O2 version 5.0.2.A.4 and the Java Virtual Machine
included in Sun’s JDK 1.1F.

6.3 The results

Figures 2 and 3 show the results of the traversal and modification experiments in the small database, the
warm run.Objects accessedis a count of distinct objects visited during the traversal.

We observe significant differences in the number of objects accessed in each run, as well as a difference
in the time measured. The time is almost proportional to the number of distinct objects accessed. This
suggests that the first access to an object is time-consuming while further accesses are much faster. This
is an expected result. In the case of Java, the first visit to an object causes the object fields to be loaded
from the database and shadow objects to be created for the three pointed-to objects. A subsequent visit only
causes the system to query the object table about the state of the object. In C++ things are much the same:
during the first visit the object itself is created and its fields are filled in; subsequent visits just test a bit in
C++’s reference variable (d Ref ).

Given this behavior, we decided to present in our results the execution time divided by the number of
distinct objects accessed. For the insert experiment, we divided the time by the number of objects inserted
(100).

Table 2 shows the results we obtained in our experiments on the small database and table 3 shows the
results for the large database.
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Figure 3: Modify time depending on the number of distinct objects visited

Time Percent
Java C++ slower

cold traverse 4.95 2.22 123%
warm traverse 2.14 1.35 59%
cold modify 7.13 3.78 88%
warm modify 5.51 2.86 93%
cold insert 23.39 18.05 30%
warm insert 16.81 12.49 35%

Table 2: Small database results

Time Percent
Java C++ slower

cold traverse 6.57 3.03 117%
warm traverse 3.30 1.41 133%
cold modify 12.09 4.56 165%
warm modify 15.64 3.83 308%
cold insert 46.67 40.79 14%
warm insert 50.50 40.41 25%

Table 3: Large database results
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Figure 4: Small database results
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Figure 5: Large database results

The numbers presented in these tables are shown in a graphic form in figures 4 and 5, respectively for
the small and for the large database.

The first thing to notice in these results is that Java is slower than C++. This is normal, given that
we used a interpreting Java Virtual Machine. We expect that using a Just In Time Java environment will
significantly reduce the differences.

An interpreted Java program is generally 5 to 10 times slower than the same program written in C++. Our
measurements show execution times slower by 30% to 150% in most cases. This means that a substantial
part of the time is spent in the database server and in the client libraries, and the work done in Java is
relatively short.

The difference between cold and warm times is due to caching which improves the performances in the
warm case. It is interesting to note the behavior of Java in the modify and insert experiments, in the large
database case: the warm times are greater than the cold times. We do not have a valid interpretation for this
case and we continue to investigate.



When comparing times of the small versus the large database, we notice a general increase of execution
times. In the large database there is less locality than in the small database, which causes more pages to be
read from disk. The modify time in Java has increased more than the modify time for C++ when going from
the small database to the large database. This is a point which merits further investigation.

We are in the process of making performance measurements for comparing the JUB using O2 versus
JUB using a relational database.

7 Conclusion

We presented the main features of the Java Universal Binding, currently under development at O2 Technology.
We briefly discussed some implementation issues and presented performance results.
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Abstract

In a previous paper [9] we described our goals and plans for an approach to seamlessly integrat-
ing persistence, interoperability and naming capabilities with Java. Having now completed a prototype
implementation of our JSPIN approach, we have begun the process ofassessingit, and some other alter-
native approaches, from a variety of perspectives. In particular, we have begun to measureperformance
by adapting a standard benchmark for use with our prototype and some representative alternatives. We
have also started to make some qualitative assessments of our approach and some of its competitors
based on severalusability factors, particularly those that were among the goals enunciated in our previ-
ous paper. In this paper we outline our JSPINapproach and its implementation, describe the performance
benchmark and present initial data resulting from its application, discuss our preliminary observations
concerning usability factors, and sketch our plans for further development, assessment and use of JSPIN.

1 Introduction

At the First International Workshop on Persistence and Java we described an approach to seamlessly
integrating persistence, interoperability and naming capabilities with Java. Our paper in that workshop [9]
identified three main objectives for our work, namely:

� To produce a seamlessly extended version of Java having valuable capabilities beyond those provided
in the basic Java language but with minimal barriers to adoption;

� To complement similar extensions to C++ and CLOS, thereby providing a convenient basis for ex-
tending our work on polylingual interoperability [13]; and

TM Java is a Trademark of Sun Microsystems, Inc.



� To demonstrate the usefulness and generality of our previously-developed approaches to providing
persistence, interoperability and name management.

Having now completed and begun to experiment with a prototype implementation of the approach described
in that paper, we are in a position to begin assessing our success at meeting these objectives, as well as some
more specific goals derived from them.

To that end, we are presently engaged in assessing not only the current prototype realization of our
approach, which we call JSPIN, but also some other alternative approaches, from a variety of perspectives.
As a starting point for quantitative measurement ofperformancewe have adapted a standard benchmark
for object-oriented database systems – the OO1 benchmark [5] – for use with our JSPIN prototype and
some representative alternatives. In this paper we describe the adapted benchmark and report initial results
obtained from applying it to JSPIN and the selected alternatives. We have also begun to make some more
qualitative assessments of JSPIN and a few of its competitors based on severalusability factors, particularly
those implied by the goals and objectives we adopted at the outset of this project. We discuss the preliminary
results of these assessments here as well.

It is our hope that the work reported here will contribute to research on persistence for Java in at least
three ways:

� By describing, and providing some initial assessment of, one particular approach to extending Java
with persistence (and other) capabilities;

� By helping to establish a basis for systematic assessment and comparison of alternative approaches
to persistence for Java through presentation of a performance benchmark and some candidate criteria
for use in quantitative and qualitative assessment, respectively; and

� By taking a first, albeit quite preliminary, step toward establishing a collection of data useful for
assessing and comparing various aspects of various approaches.

Our overall aim is to facilitate ongoing development of approaches to persistence for Java, both our own and
others.

The remainder of this paper is organized as follows. In Section 2 we briefly outline the goals and
foundations underlying our JSPIN approach. Section 3 describes the JSPIN approach itself, in terms of
the APIs provided to JSPIN users and the current implementation of JSPIN. In Section 4 we discuss the
OO1 benchmark and how we have adapted it for use in measuring performance of some approaches to
providing persistence for Java. Section 5 contains the performance data produced by applying the adapted
OO1 benchmark to JSPIN and a few alternative approaches. In Section 6 we discuss some criteria for
qualitative assessment of approaches to persistence for Java, and our observations about JSPIN and other
approaches based on these criteria. Section 7 summarizes our results and contributions and sketches some
future directions for this work.

2 Background

There are many compelling reasons for providing orthogonal persistence capabilities for Java [2], and
several efforts are currently aimed at doing so (e.g., [2, 15, 17, 6]). Our own approach to producing a



seamless integration of persistence, interoperability and naming with Java, which we now call JSPIN, was
outlined in [9]. The foundations for JSPIN are the SPIN framework, the interface to the kernel of the
TI/DARPA Open Object-Oriented Database (Open OODB) [22] and Java itself.

The SPIN (Support for Persistence, Interoperability and Naming) framework [8] was developed as a
unifying conceptual foundation for integrating extended features in software systems. SPIN has previously
been used as a basis for seamlessly integrating persistence, interoperability and naming capabilities in ex-
tended versions of the C++ and CLOS APIs of the Open OODB [10, 13]. The SPIN framework itself evolved
out of our earlier work on persistence [20, 23, 19], interoperability [24] and name management [11, 12], all
of which aimed at minimizing the impact of the extended capability on software developers or pre-existing
code. When extended with automated support for polylingual persistence [13], we refer to the framework
as PolySPIN.

Our JSPIN approach is motivated by the objectives enumerated in Section 1, which in turn imply several
more specific goals. Among those goals are:

Seamless Extension of Java:Our highest priority has been to provide a set of extensions to Java in the
most seamless manner possible. Seamlessness implies that our extensions should be compatible with
Java and the programming style that it defines, including its type safety and security properties. The
specific extensions included in the JSPIN approach are:

Persistence: JSPINcurrently provides orthogonal, reachability-based (transitive) persistence for Java.
The particular style of the JSPIN persistence capability is similar to that provided for C++ and
CLOS by the Open OODB.

Enhanced name management:JSPIN will provide a set of extended name management capabilities,
based on the Piccolo model [12] and therefore suitable for use with Conch-style tools [10]. These
capabilities will be independent of (that is, orthogonal to) persistence. As a result, this enhanced
approach to name management will be uniformly applicable to C++, CLOS, and Java objects.

Basis for polylingual interoperability among C++, CLOS, and Java: The extensions provided by
JSPIN transparently incorporate the necessary information into Java objects to support polylin-
gual interoperability among C++, CLOS, and Java [13].

Minimal Barriers to Adoption: Our next highest priority is to make it as easy as possible for Java users
to adopt our extensions. In keeping with the philosophy underlying SPIN, we seek to minimize the
impact of the extensions on programmers, especially those who might not be (direct) users of the
extended capabilities. Hence, this goal is closely related to seamlessness. The specific ways in which
we have attempted to minimize barriers to adoption are:

No language extensions:JSPIN does not introduce any modifications in the syntax (including key-
words) of Java, nor does it require the use of an additional or separate specification language.

No virtual machine modifications: By making it possible to run JSPIN programs on the standard
Java Virtual Machine, we hope to encourage the use of JSPIN from web browsers and in other
settings where adoption of a modified virtual machine may be unlikely.



No core class modifications:JSPIN does not make any changes to the core classes, allowing existing
code to run unchanged.

No native method calls: The goal is to have no native method calls as part of the JSPIN kernel. As
discussed later this turns out to be impossible in the current prototype, but will be possible once
we move to JDK 1.1.

Maximal Opportunities for Interoperability: A unique feature of the JSPIN approach is that it will di-
rectly facilitate interoperation among C++, CLOS, and Java programs. This is because JSPIN:

� Shares the SPIN (and eventually PolySPIN) conceptual base with the C++ and CLOS APIs of
Open OODB 1.0.

� Shares use of the Open OODB kernel with the other Open OODB APIs.

Suitable Basis for Future Research:We intend to use JSPIN as a foundation for various experiments and
extensions. To that end, we have endeavored to make the system well modularized, with an open
architecture and clean, well-defined interfaces.

In succeeding sections we describe our current prototype realization of JSPIN and present some pre-
liminary assessment of our approach. The qualitative facets of that assessment are closely related to the
above-mentioned goals.

3 The JSPIN Approach

In this section we discuss the approach taken in implementing JSPIN. We describe the API, the platform,
the implementation strategy, the JSPIN packages, the required compiler changes, and the known limitations.

3.1 API

There is currently one API for JSPIN. It provides basic, Open OODB-style persistence to Java users.
The API includes methods added to each class processed by JSPIN, together with several JSPIN-specific
classes (in a package namedEDU.umass.cs.ccsl.JSPIN ).

The appearance is that most methods are added to theObject class and inherited from it by every
other class. In reality this is not exactly the case because of return-type restrictions. Specifically, thefetch
method of a class is required to return an object of that class and thus must be specific to the class.1

The basic API adds the following methods to each class:

public void persist([String name]) When invoked on any object, this method results in that
object, and all objects reachable from it, becoming persistent. The optionalname parameter can be
used to assign a name to the persistent object, by which name it can later be retrieved. If no name is
assigned, the object can only be retrieved if it is referenced from some other object.

1We could inherit thefetch method but then it would have to returnObject and the programmer would be required to cast
the returnedObject to an object of the desired class. This remains type-safe, but is slightly unpleasant.



public static class fetch(String name) When invoked, this method returns the persistent
instance of the class corresponding to the name given by thename parameter. If there is no such
instance in the persistent store, theUnknownPersistentName exception is thrown.

These methods are convenience methods. There are related methods in thePersistentStore class
which provide similar functionality which these methods invoke.

We have chosen not to include anunpersist method as being inconsistent with the spirit of Java,
which has no explicit operator to free heap objects. We do intend to provide an operator to unbind a name
from a persistent object. It is possible that an object unbound in such a way would no longer be refer-
enced and would need to be garbage-collected. We recognize that garbage collection in the persistent store
is necessary but feel that it is a part of the implementation of the persistent store and not a part of the
implementation of a persistent programming language.

The basic API also defines thePersistentStore abstract class (in theJSPIN package). All of the
methods of this class, abstract or not, may potentially throw aPersistentStoreException , which
we have chosen to omit from these brief descriptions:

public abstract class PersistentStore {
public void beginTransaction();
public void commitTransaction();
public void abortTransaction();

public void persist(Object obj, String name);
public void persist(Object obj);
public Object fetch(String name);

}

3.2 Platform

We chose to implement JSPIN on top of the Java Developers Kit (JDK) version 1.0.2 since it was the
latest version to which we had source-code access. We provide interfaces for use of TI/DARPA Open
OODB version 1.0 [21] and for Mneme version 5.0.10 [18, 14]. Importantly, JSPIN runs on an unmodified
Java Virtual Machine (1.0.2). These decisions have informed some of the implementation choices stated
below.

3.3 Implementation Strategy

In this section we discuss the implementation of JSPIN. The interfaces described in this section are not
meant for the use of a user of JSPIN. They are for the use of programmers extending JSPIN to work on new
persistent stores, and for better understanding of the system.

A major goal of our implementation was to allow the use of our persistence approach in applets running
on unmodified hosts. Thus we sought to avoid changes in the Java Virtual Machine, changes to the Java



core API, and native methods.2 Native methods must, of course, be used in interfacing with local persistent
stores, but we intend to produce an implementation that communicates with a server using pure Java code.
Such an implementation would not require any native method calls in the client.

Our implementation strategy for JSPIN involves exploiting the data abstraction and object-orientation
features of Java to seamlessly add the SPIN extensions. As described in the preceding subsection, the
extensions are presented to the Java programmer in the form of additional methods for each class and some
additional JSPIN-specific classes. We implemented the addition of the methods to each class by modifying
the JDK 1.0.2 compiler. Implementation of the added methods themselves, those added to each class and
those in the JSPIN-specific classes, is primarily done by calls to the underlying persistent storage manager.

To support orthogonal persistence by reachability requires a small set of basic functionality. The per-
sistence system must be able to identify those objects which are to persist, and must be able to move them
between memory and the persistent store. Objects in the store cannot be represented in the same way as
objects in memory because addresses do not have the same meaning; consequently the persistence system
must do the appropriate address translations.3 We chose to use a uniform representation of objects in the
persistent store. Each object is represented as an array of bytes and an array ofhandles. The byte array
holds a serialized form of the primitive fields of the object, while each handle holds a store-unique form of
reference to other objects. In addition each object holds a handle to the name of the class of which it is a
direct instance.

Our current JSPIN prototype is implemented via changes to the Java compiler and creation of several
runtime packages. These are detailed in the subsections that follow.

3.4 TheJSPIN Package

The JSPIN package is the kernel of the JSPIN system. It provides the APIs that programmers using
JSPIN see and it maintains all of the mapping and indexing data that are required.

The heart of JSPIN is thePersistentStore class. This is a partially abstract class that provides all
of the required mapping mechanisms and which contains all of the intelligence on transitive persistence. For
each persistent object store which is to host JSPIN a subclass ofPersistentStore is created.

A central item in the JSPIN kernel is thePersistenceProxy interface which realizes the concept
of a persistence proxy. Every object that is persistent (and possibly some that aren’t) has a proxy. This
proxy carries persistence data about the related object, and has methods to manipulate the object in the ways
required by the kernel. The kernel maintains mappings between objects and their proxies.

ThePersistentObject class (see below) implements thePersistenceProxy interface, so in-
stances of classes that inherit fromPersistentObject can act as their own proxies. Classes compiled
by the JSPIN compiler will generally inherit fromPersistentObject . Unfortunately, objects of core
classes, such as theInteger wrapper class, cannot be changed and have not been compiled by our com-
piler. To deal with this issue we provide, or will provide, special proxy classes for all of the Java core

2The goal was to use no native methods. The reality is that we did have to use one native method, as is discussed later.
3Aka swizzling.



classes.4 In addition we provide special proxy classes for arrays of primitive types and arrays ofObject .
Arrays are relatively hard for JSPIN to process because they are instances of classes that have no source.

Classes do not persist in our model, but we do perform some type-checking to ensure that type-safety is
not violated. Whenever an object of a given class is made persistent we ensure that some data about the class
is also made persistent. When the first object of a given class is fetched we ensure that the saved data about
the class is valid. The validity checking is currently skeletal. When a class is first fetched we get its name
and attempt to load the class. If necessary any superclasses or interfaces are fetched and checked. Fetching
and loading is done on the basis of fully-qualified class names. The signature of the class, i.e. its fields and
methods, is not currently checked. If any checks fail aPersistentStoreException is thrown. As
noted earlier,fetch returns objects as instances of the correct class, so no casting of fetched objects is
required.

3.5 Compiler Changes

Every class processed by the modified compiler has the following changes made to it:

� If it originally extendedObject it is logically modified to extendPersistentObject . This
allows us to insert all of the persistence proxy data into the object itself, and allows us to have a single
persist method.

� It is decorated with a set of methods to extract and insert bytes and handles. These methods are
used for swizzling and unswizzling objects. These methods provide functionality similar to that of
the Serialization and Reflection interfaces. These two interfaces were not available when we were
implementing JSPIN and neither of them fully provides the functionality that we needed.

� Every non-static method of the object has a residency check inserted as its first statement. This is to
support fetch-on-demand. When an object is first fetched only an empty shell of the object is created.
It is not until the first reference to the object that the shell is actually filled in, at which time empty
shells are created for all of the objects it references.

� Get and Set methods are added for every non-static field in the class. These methods perform residency
checks on the object prior to returning or setting the field. Every reference to a field is turned into a
method call unless the compiler can verify that the reference is from a method of the same object. We
note that this transformation of direct field access to method calls is similar to the definition of some
other object-oriented languages, e.g. Dylan.[1]

� A new class is created to act as a creation proxy for the given class. This proxy implements the
CreationProxy interface, and is necessary when a class is notpublic . In such a case it may not
be possible for JSPIN to create an instance of the class. The creation proxy class is created in the same
package as the base class. It is a public class that exports a public creator for the base class. JSPIN

can then use this creation proxy to create an instance of the base class.

4At present we have created proxies for all of thejava.lang classes, but have not provided proxies for thejava.util
classes.



� All synthetic methods and fields, with the exception of thefetch and persist methods, have
names that include the ‘$’ character. This is to ensure that they do not conflict with user-defined
names.

3.6 Persistent Store Interfaces

The kernel has a set of interfaces to underlying persistent stores. Two such interfaces are currently imple-
mented, theOpenOODBInterface and theLocalMnemeInterface . The kernel contains an abstract
class,PersistentStore , which the interfaces extend. Another abstract class,ObjectHandle , repre-
sents a store-specific handle to an object.

Implementations of thePersistentStore class provide the means for establishing connection to a
specific persistent store. They also provide rudimentary transaction capabilities, mirroring those provided
by the Open OODB APIs. An implementation of this class must provide implementations for the following
abstract methods:

void beginStoreTransaction();
void abortStoreTransaction();
void commitStoreTransaction();

void getStoreHandle(String name, ObjectHandle handle);
void bindStoreName(String name, ObjectHandle handle);

void createStoreObject(ObjectHandle classHandle, int numBytes,
int numHandles, ObjectHandle handle);

void writeStoreObject(ObjectHandle handle, byte[] bytes,
ObjectHandle[] handles);

void readStoreObject(ObjectHandle handle, byte[] bytes,
ObjectHandle[] handles);

ObjectHandle newObjectHandle();
ObjectHandle[] newObjectHandles(int num);

They must also provide appropriate constructors. We currently supply two implementations of the
PersistentStore class: OpenOODBInterface , which allows us to use an existing Open OODB
database as our persistent store, andLocalMnemeInterface , which allows us to create and use local,
single-user, Mneme [18, 14] persistent stores. Users satisfied with one of these supplied interfaces need
not concern themselves further with implementation of the above abstract methods. This design, however,
greatly facilitates porting of JSPIN to any of a number of different underlying persistent stores.

3.6.1 Open OODB Interface

The Open OODB interface uses the C++ interface to the Open OODB. Object handles contain pointers
to buffered versions of the underlying C++ object. This interface uses native methods to call out to C and
C++ code.



Basing our implementation on (re)use of the Open OODB kernel and our existing (C++-implemented)
interoperability code has several advantages. It clearly simplifies the implementation task by leveraging
existing, reasonably robust, code. It also lays the groundwork for interoperability by having not just common
specifications but largely common implementations of the persistence, naming and interoperability features
of JSPIN and the Persistent C++ and Persistent CLOS APIs of the Open OODB.

3.6.2 Mneme Interface

The Mneme[18, 14] interface uses native methods to communicate with Mneme. The current imple-
mentation only supports local, i.e. single-user, Mneme. We intend to extend this support to multi-user
Mneme.

3.7 Limitations

We are aware of two limitations of our implementation.

� The JSPIN kernel runs on an unmodified Java VM and requires no changes to the core classes. Un-
fortunately, it does require one native method. There is no way, in JDK 1.0.2, to allocate an array
of objects of a class known at runtime but not at compile-time. TheArray class introduced as part
of the Reflection package in JDK 1.1 has this capability, and we have simulated it via a single native
method call in our 1.0.2 environment. This limitation will be removed when we port to JDK 1.1.

� Objects that are made persistent, either explicitly or implicitly, are never garbage-collected. Once an
object becomes persistent JSPIN needs to be able to find it in memory, and JSPIN maintains a map to
do so. This map constitutes a reference, and thus the object is never unreferenced. This limitation is
going to be with us until we find some form of weak reference.

4 Adapting the OO1 Benchmark

As a basis for assessing JSPIN and comparing it with some of the other alternative approaches to persis-
tence in Java, we implemented the Object Operations Benchmark (OO1) developed at Sun Microsystems[5].
The OO1 benchmark is an attempt to measure the performance of a database system by repeatedly perform-
ing common operations, such as retrieving and inserting records and traversing links through the database.
It is a logical decision to use the benchmark to compare persistence implementations, as the tests are a
good measure of the performance of any storage system. In addition, comparing code from the benchmark
implementations can also bring to light differences in the style and method used to make objects persistent.

Briefly, the benchmark (as we used it to compare different implementations of persistence) performs
three tests on a persistent store that holds two different types of objects:

A part object contains an integer that acts as a unique identifier, a pair of integer fields that hold random
data, a field that holds a random date, and a string that contains a randomly selected part type.



A connection consists of two integer fields that hold the identifiers of the parts the object connects, a string
that holds a randomly selected connection type, and an integer length field that is also filled randomly.
There are three connections going from each part to other parts in the store. Ninety percent of the
connections in the store go from one part to another randomly selected part within the one percent of
parts closest (by part identifier) to the originating part. The remaining ten percent of the connections
go to randomly selected parts in the store.

The benchmark tests are run on two different sizes of database. Thesmalldatabase contains 20,000 parts
and thelargedatabase contains 200,000 parts. These databases contain, respectively, about 2 megabytes and
20 megabytes of attribute data.

The benchmark tests are:

The lookup test chooses 1,000 parts randomly and fetches them from the persistent store. An empty pro-
cedure is called with several parameters filled with data from the part.

The traversal test follows all connections of a part, then the connections of those parts, and so on down
the tree for seven hops. Again, an empty procedure is called with data from each visited part. This
traversal will touch 3280 parts, possibly with repeats. There is also a reverse traversal test, which is
looked upon as less important because the number of parts touched can be widely varying.

The insert test creates 100 parts and three connections from each part to some random part in the store,
calling an empty procedure in the process.

Each test is run ten times successively in order to examine the results with different levels of caching.
The results of the first run are reported ascold results and those of the last run are reported aswarmresults.
Between tests the file system buffers are flushed.

The OO1 benchmark is no longer considered the “standard” benchmark for object-oriented benchmark-
ing. We used it for two reasons: because we already had a C version available and because it is simpler than
OO7[4]. We believe that the results will nevertheless be of use in early assessment of the performance of
persistence mechanisms for Java.

5 Applying the OO1 Benchmark

We applied the OO1 benchmark to several systems: JSPIN, with each of its persistent store interfaces,
the Orthogonal Persistent Java implementation, an SQL database server using the JDBC interface, and two
versions of a C implementation that used the Mneme persistent object store. JSPIN has been described
earlier in this document and OPJ is described elsewhere[2]. We also ran a strictly transient Java version to
give a baseline for the Java versions.

Both versions of JSPIN were run with a maximum garbage-collected heap size of 32 megabytes. JSPIN

ran on top of version 5.0.10 of Mneme, and version 1.0 of OpenOODB. We used version 0.2.6 of OPJ with
default settings except that buffer size was set to 16 megabytes.

For the SQL database we used version 3.20.24a of MySQL, a freeware SQL server, and version 0.92
of the GWE MySQL JDBC driver, also freeware. The GWE driver does not support prepared statements



(precompiled SQL statements), and this probably detracted from its performance. The Java interpreter was
started up with a 32 megabyte maximum heap size.

The C/Mneme implementations were included as a baseline against which to measure the other imple-
mentations. These are written in C and make direct calls to the Mneme persistent object store. The two
implementations differ only in that one of them used a single-user version of Mneme while the other used
a multi-user version. We expected these implementation to be faster than any of the Java versions and were
not disappointed. These versions limited themselves to 5 megabytes of heap space.

The transient Java version was run with a 16MB maximum heap and a 4MB initial heap.
All of the benchmarks were run on a SPARCstation 10 running Solaris 2.5. The machine had 160MB

of main memory. All data resided on a single external hard drive, but executables and class files resided
on network file systems. The benchmarks were run one at a time with only one user on the machine. We
interleaved tests on different systems in order to clear out the system file cache between runs.

We had to use a larger memory size than is specified in the OO1 benchmark to make OO1 work on any
of the Java systems.

We were unable to run thelarge database tests as loading times would have been excessive. We hope to
run these tests at some future time. Instead we ran tests on atiny database, one with only 2,000 parts, and
thesmalldatabase. Table 1 shows the results we obtained on a tiny database, while Table 2 shows the results
obtained on a small database.

Table 1: Benchmark Results for Tiny Database
Transient JSPIN C with Mneme

Measure Cache Java Mneme O3DB OPJ JDBC Local Remote
DB Size(kBytes) 488 2400 972 N/A 392
Load 9:24 44:33 145:63 18:98 100:06 2:28
Reverse Traverse cold :007 :755 :475 :009 67:615 :163 :344
Lookup cold :240 8:979 31:119 :285 26:650 :077 :120

warm :238 1:146 1:608 :285 26:443 :064 :062
Traversal cold :068 3:326 16:257 :088 49:347 :165 :333

warm :065 :812 2:877 :084 52:184 :080 :055
Insert cold :454 3:894 13:221 :967 5:255 :284 1:565

warm :455 4:217 N/A :900 4:980 :316 2:441
Total cold :762 16:199 34:155 1:340 81:252 :526 2:018

warm :758 6:175 N/A 1:269 93:607 :460 2:558
All results are in seconds except for the Database size, which is measured in kilobytes.

It should be noted that the reverse traversal benchmark runs are incomparable, as the random nature
of the choice of starting part means that each of the above benchmark runs accessed a different number of
objects.

In analyzing the results of these benchmark runs we note that the Mneme/C local version is by far the
fastest. This was in line with our expectations and reasonable as compared with the systems measured



Table 2: Benchmark Results for Small Database
Transient JSPIN C with Mneme

Measure Cache Java Mneme O3DB OPJ JDBC Local Remote
DB Size(kBytes) 4296 28240 7160 4755 3208
Load 135:70 667:82 3981:13 245:71 1086:28 21:541
Reverse Traverse cold 2:033 :641 110:681 :134 22:590 :800 2:917
Lookup cold :309 20:043 62:397 2:237 26:743 1:398 1:428

warm :310 10:428 166:506 :630 26:712 :144 :090
Traversal cold :092 25:837 92:140 4:360 51:939 1:073 3:070

warm :088 5:974 N/A :607 49:926 :065 :064
Insert cold :498 11:159 26:704 1:440 7:939 :668 7:939

warm :515 8:548 N/A 1:073 5:282 :516 6:141
Total cold :899 57:039 181:241 8:037 86:621 3:139 12:437

warm :913 24:950 N/A 2:310 81:920 :725 6:295
All results are in seconds except for the Database size, which is measured in kilobytes.

in the original OO1 work[5]. The remote results indicate that the multi-user Mneme system needs some
improvement, but this is outside of our purview.

OPJ was about three times slower than the Mneme/C combination, and we tentatively attribute that to
the difference in the sizes of their stores. (As the purely transient Java results show the interpretation time
was not a major factor in the overall time.) The only problem with OPJ is that it did not scale well. We
could not load the entire small database as a single transaction, but had to divide it up into one transaction
to create the parts and eight separate transactions to create the connections between parts.

The JSPIN results with OpenOODB strongly suggest that there is a bug in our OpenOODB interface
that needs to be fixed. The size of the resulting store and the number of crashes in running the benchmarks
indicate trouble. We will be looking into this in the near future.

The JSPIN results with Mneme fared somewhat worse than we had expected. We knew that it was
unlikely that JSPIN would be as fast as OPJ but it turned out to be a factor of seven times slower. We intend
to find out why.

The JDBC results were interesting. The time taken to create the database scaled linearly in the size
of the database. The time taken for the other benchmarks was essentially independent of the size of the
database. This is not the case for other implementations, and it is our guess that the time taken to parse the
SQL requests and generate the queries far outweighed the time to actually execute them. JDBC would not
seem to be a good choice for an object-oriented application such as those that OO1 is meant to model.

Figure 1 shows the code for the traversal benchmark, and figures 2, 3, and 5 show the implementation
classes for the different systems.5 The OpenOODB and Mneme implementations are both extensions of the
JSPIN implementation, which is shown in Figure 4. We hope that this will give some insight into the ease of

5Complete code for the benchmark is available atftp://ccsl.cs.umass.edu/pub/java-oo1 .



use of these systems. The differences lie in the methods of connecting to the persistent store and performing
operations.

import java.util.Enumeration;

public class TraversalTest {
private static Implementation impl;

public static void main(String[] argv) throws Throwable {
Options opt = new Options(argv);
RandomWrap rand = new RandomWrap();
Implementation impl = opt.implementation;
impl.initiate(opt);

Database d = impl.fetchDatabase();

for (int run = 0; run < 10; run++) {
opt.timer.start();
int basePartId = rand.nextInt(d.minPartId, d.maxPartId);
Part basePart = impl.fetchPart(basePartId);
traversePart(basePart, 7);
opt.timer.stop();
System.out.println("Run "+run+" took "+opt.timer.get()+" msecs");

}
impl.terminate();

}
static void traversePart(Part base, int hops) throws Exception {

nullProcedure(base.x, base.y, base.partType);
if (hops <= 0) return;
for (PartConnection c = base.leftHead; c != null; c = c.leftNext)

traversePart(c.rightOwner, hops-1);
}
public static void nullProcedure(int x, int y, String type) { }

}

Figure 1: Code for Traversal Benchmark

6 Qualitative Assessment

In this section we offer some preliminary assessments of several qualitative aspects of the approaches to
persistence for Java whose performance we have examined in previous sections. As well as presenting the
specific assessments, this section serves to identify and describe a set of qualitative aspects that we consider
relevant to the assessment of persistence approaches. These qualitative aspects are largely motivated by
the objectives and goals established at the outset of our work on integrating SPIN capabilities with Java.
We recognize that both our choice of aspects and our assessments themselves are obviously somewhat



import EDU.umass.cs.ccsl.JSPIN.OpenOODBInterface.*;

public class OpenOODBImplementation extends JSPINImplementation
{

public OpenOODBImplementation() throws Exception { }

public void create(Options opt) throws Exception {
initiate(opt); }

public void initiate(Options opt) throws Exception {
ps = new OpenOODBStore(opt.name);
ps.beginTransaction(); }

}

Figure 2: Implementation for the JSPIN/OpenOODB benchmark.

subjective. We hope, however, that they are indicative and may inspire others to offer their own candidate
qualitative aspects and assessments.

6.1 Seamlessness

For the quality of seamlessness, the key aspects of a persistence approach concern its compatibility with
the Java language and programming style. Generally speaking, both JSPIN and OPJ do well in terms of
seamlessness, while the JDBC approach does not. More specifically, we consider the following aspects:

Code modifications Our OO1 benchmarking exercise does not involve taking an existing, non-persistent
application and adding persistence. Nevertheless, we can still assess the extent to which persistence
introduces additional code or modifications to code that would be used to do similar tasks without
persistence.

For both JSPIN and OPJ, there is very little additional code and essentially no modifications. More-
over the two approaches are virtually identical in this regard, since both require the addition of calls to
fetch() andpersist() or their equivalents. OPJ does have a slight edge in that it makes trans-
action begin and end implicit, while JSPIN requires that explicit calls be added for transaction control.
On the other hand, JSPIN has a slight advantage in that it avoids explicit casts that are required by
OPJ.

JDBC, on the other hand, introduces a great deal of additional code and modifications. Most notably,
JDBC requires the use of a distinct type system and a completely different interface to persistent
objects.

Support tools Another aspect of seamlessness is the extent to which users of support tools such as debug-
gers or browsers will be made aware of differences between non-persistent and persistent code. OPJ
has an advantage over JSPIN here, since the JSPIN approach of invisibly modifying the inheritance
hierarchy by introducing thePersistentObject class will be apparent through a debugger or



import EDU.umass.cs.ccsl.JSPIN.MnemeInterface.LocalMnemeStore;

// Base class for an implementation.
public class LocalMnemeImplementation extends JSPINImplementation
{

public LocalMnemeImplementation() throws Exception { }

public void create(Options opt) throws Exception {
ps = LocalMnemeStore.createMnemeStore(opt.name);
ps.beginTransaction(); }

public void initiate(Options opt) throws Exception {
ps = new LocalMnemeStore(opt.name);
ps.beginTransaction(); }

}

Figure 3: Implementation fragments for the JSPIN/Mneme benchmark.

import EDU.umass.cs.ccsl.JSPIN.PersistentStore;

abstract public class JSPINImplementation extends Implementation
{

PersistentStore ps;

public void terminate() throws Throwable {
ps.commitTransaction();
ps.finalize(); }

public void makeDatabasePersist(Database d) throws Exception {
d.persist("Database"); }

public Database fetchDatabase() throws Exception {
return Database.fetch("Database"); }

public void makePartPersist(Part part) throws Exception {
part.persist(Integer.toString(part.partId)); }

public Part fetchPart(int id) throws Exception {
return Part.fetch(Integer.toString(id)); }

public void stabilize() throws Exception {
ps.commitTransaction();
ps.beginTransaction(); }

}

Figure 4: Common implementation for both JSPIN benchmarks.



import UK.ac.gla.dcs.opj.store.*;

public class OPJImplementation extends Implementation
{

private PJStore ps;
private BalancedBinaryTree parts;

public OPJImplementation() throws Exception { }

public void create(Options opt) throws Exception {
ps = new PJStoreImpl();
parts = new BalancedBinaryTree();
ps.newPRoot("Parts", parts); }

public void initiate(Options opt) throws Exception {
ps = PJStoreImpl.getStore();
parts = (BalancedBinaryTree)(ps.getPRoot("Parts")); }

public void terminate() { }

public void makeDatabasePersist(Database d) throws Exception {
ps.newPRoot("Database", d); }

public Database fetchDatabase() throws Exception {
return (Database)ps.getPRoot("Database"); }

public void makePartPersist(Part part) throws Exception {
parts.insert(part.partId, part);}

public Part fetchPart(int id) throws Exception {
return (Part)(parts.fetch(id)); }

public void stabilize() throws Exception {
ps.stabilizeAll(); }

}

Figure 5: Implementation for the OPJ benchmark.



browser. JDBC, of course, fares substantially worse in this aspect, since it introduces non-Java types
and a visible boundary between the manipulation of non-persistent and persistent data.

6.2 Barriers to Adoption

Some key aspects related to the ease with which Java users can adopt a persistence approach are con-
sidered below. The basic issue here is the impact of the persistence approach on programmers, particularly
those who might not be (direct) users of persistence. We believe that OPJ and JSPIN have different strengths
and weaknesses in this regard, but that both impose substantially less impact on programmers than does
JDBC.

Language extensionsNeither OPJ nor JSPIN introduces any modifications to Java syntax nor demands
use of a separate specification language. Both add (roughly equivalent) classes that make available
their persistence capabilities, but these have no impact on programmers not using persistence. JDBC,
however, requires the use of a separate specification language (SQL).

Compiler modifications OPJ and JDBC both work with any Java compiler, while JSPIN depends upon
compiler modifications.

Virtual machine modifications Both JSPIN and JDBC run on any standard Java virtual machine, while
OPJ depends upon virtual machine modifications.

Operating system dependenciesJSPIN can be run on any Unix operating system that supports Java, while
OPJ (currently) requires Solaris.

6.3 Interoperability

We consider two kinds of interoperability and assess how the various approaches measure up on the
corresponding aspects.

With pre-existing Java classesOne aspect of interoperability concerns how easily code incorporating us-
age of a persistence approach can be integrated with other Java classes that do not (explicitly) make
use of the approach. OPJ has an advantage here, since it can be used with any Java class. With OPJ it
is even possible to make instances of existing classes persistent, with no modifications or recompila-
tions required. Integration of code that uses the JSPIN approach with other, pre-existing classes does
not require modifications or re-compilation so long as no instances of those classes need to become
persistent. If instances do need to become persistent, the classes would need to be (re-)compiled with
the JSPIN compiler. Integration of code using the JDBC approach with other, pre-existing classes is
more problematic. Unlike in the OPJ and JSPIN cases, the pre-existing classes would not necessarily
be able to manipulate objects without being aware of their persistence attributes. Moreover, if in-
stances of a pre-existing class needed to become persistent, the class would need to be redefined using
SQL, not merely recompiled.



With code and data from other languagesOPJ does not provide for sharing of persistent Java objects
across language boundaries. JSPIN, on the other hand, is designed to take advantage of the common
SPIN framework that it shares with the C++ and CLOS APIs of the OpenOODB and hence will offer
transparent polylingual interoperability. JDBC, due to the application-language neutrality of SQL,
offers the potential for access from non-Java applications to persistent objects created and stored by a
Java program, e.g. using ODBC. Such access, however, will be far from transparent.

7 Conclusion

In this paper, we have presented our JSPIN approach to supporting persistence for Java and outlined its
current prototype implementation. We have also described our adaptation of the OO1 performance bench-
mark for application to JSPIN and some alternative approaches. Finally, we have reported on the preliminary
data resulting from application of the adapted benchmark to the various approaches and discussed our pre-
liminary observations concerning usability factors and JSPIN.

It is our hope that the work reported here will contribute to research on persistence for Java in at least
three ways:

� By describing, and providing some initial assessment of, one particular approach to extending Java
with persistence (and other) capabilities. At this early point in the development of persistence ap-
proaches for Java we believe that there is inherent value in exploring a range of alternative approaches;

� By helping to establish a basis for systematic assessment and comparison of alternative approaches to
persistence for Java. We see the potential for routine use of our adaptation of the OO1 benchmark as
one component in a standard suite of measurements used in assessing and comparing approaches, and
our candidate criteria for qualitative assessment serving a similar function;

� By taking a first, albeit quite preliminary, step toward establishing a collection of data useful for
assessing and comparing various aspects of various approaches. We find this initial data interesting
and suggestive, but we believe that much more data should be gathered and analyzed in order to
support more detailed and complete comparisons.

Our overall aim is to facilitate ongoing development of approaches to persistence for Java, both our own and
others.

Since we find the results of our initial experiences with JSPIN quite encouraging, we plan to continue
development, use and assessment of JSPIN along a number of directions. Some of the immediate directions
involve improvements in the prototype JSPIN implementation. We intend to migrate to JDK 1.1 and use
the Serialization and Reflection interfaces to reduce our dependence on compiler modification. We do not,
however, expect to abandon our compiler changes entirely because without them we have no way of tracking
the cleanliness of resident objects. We will soon add the Name Management API that was discussed in [9]
to JSPIN, and we will port the Open OODB interface to Open OODB 1.1. We hope also to improve this
interface by calling the Open OODB kernel directly rather than pretending that our objects are C++ objects.
Other intended enhancements to JSPIN include support for unbinding names from objects, richer and more
flexible transaction functionality, and distributed and multi-user versions.



We also plan to continue and expand our assessment and comparison activities. We would like to apply
our adaptation of the OO1 benchmark to additional alternative approaches to persistence for Java, and to
gradually bring our use of this benchmark closer to the intentions for usage described in the original OO1
report [5]. In addition, we are interested in carrying out other assessments. For example, we hope to exper-
iment with the OO7 benchmark [4] and possibly others for application to Java persistence approaches. The
experiments that Jordan carried out with an early version of OPJ [7], although less suited for use with ap-
proaches such as JDBC, are also candidates for inclusion in a standard repertoire of assessment benchmarks,
so we intend to try applying some or all of them to JSPIN and perhaps other alternative approaches.

Finally, a primary objective of our JSPIN development is to complement similar extensions to C++ and
CLOS, thereby providing a convenient basis for extending our work on polylingual interoperability [13,
3]. Support for interoperation between JSPIN and the Persistent C++ and Persistent CLOS APIs of the
Open OODB is expected be extremely valuable. It will, for example, facilitate interoperation between Java
programs and existing software written in C++ or CLOS. It also represents a simple route to an object
querying capability, since Open OODB provides an OQL for C++ which will be directly usable from, and
on, Java programs and objects via our polylingual interoperability mechanism.

In sum, we find our JSPIN approach to persistence for Java and its current prototype implementation
to be a useful and practical utility, a basis for interesting assessment and comparison activities and a solid
foundation for further development and research.
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Abstract

The main-memory management of an object cache that provides an orthogonally persistent platform

for Java is described. Features of the architecture include: two levels of bu�ering between the disk and

virtual machine, a consistent representation of transient and active objects, an e�cient residency checking

algorithm in the presence of multiple threads of execution, and well developed object-cache management

technology.

We present some of the challenges of providing persistence for the Java virtual machine, which may

be typical of any attempt at an industrial-strength orthogonally persistent programming system. Some

of these might have been avoided by sacri�cing persistence independence, but that is far too valuable to

sacri�ce.

We report on some detailed investigations of pinning and cache replacement techniques applicable in

this context. The information available for eviction-victim selection is inevitably limited by imprecise

information about the state of the machine and the cost of collection. The question is raised whether we

can do better than random eviction with real rather than synthetic loads given these limits.

1 Introduction

Orthogonally persistent programming languages provide the illusion of a very large space of objects and give

seamless access to objects independently of their lifetimes, be they transient or persistent. Supporting this

abstraction with limited main-memory resources requires special memory-management techniques to provide

executing application programs with in-memory access to persistent objects.

This paper reports on the design and implementation of main-memory management for an orthogonally

persistent system for Javatm [17] developed at the University of Glasgow in collaboration with Sun Microsys-

tems Laboratories1. It describes the main-memory management used for the �rst prototype of orthogonal

persistence for Java, PJama0, with a focus on object faulting and replacement mechanisms. It also describes

how Sun's Java Virtual Machine (JVM) [25], as implemented by the Java Development Kit (JDK), was

modi�ed to incorporate this new form of main-memory management2.

We had to reconsider the design of the object cache and the algorithms for faulting objects in and

evicting them from it as our original design did not recycle a su�cient proportion of the space allocated

within the object cache. We also found that discovering which objects should be pinned and which could

be evicted more complex than we expected. In overcoming these di�culties, we believe we have developed

new techniques that are useful for space management during long-running transactions. These depend on

�Visiting professor at Sun Microsystem Laboratories, Mountain View, CA
1Sun, Java and JDK are registered trademarks of Sun Microsystems Inc. in the USA and other countries.
2The appendix holds a table of de�nitions of the acronyms and some terms used in this paper.



extracting information about the state and operations of the abstract machine. We present details of the

mechanisms developed as we are not aware of them being described elsewhere and we believe they may be

useful to other implementors of persistent languages and OODB bindings.

As stated previously [6, 4], our overall strategy was to devise an architecture which made objects that

have been faulted in, and their house-keeping data structures, look very similar to the representations used

by the unmodi�ed JVM to avoid making extensive changes to the JVM.

Like many persistent object systems, PJama0 uses a two levels of bu�ering. A small Page Bu�er Pool

(PBP) is used as a staging area for the Persistent Object Store (POS) pages. The objects needed by the

JVM are copied on-demand from the PBP to an Object Cache (OC), and translated to a format expected by

the JVM. All memory areas: garbage collected heap, bu�er pool and object cache, are shared by all threads.

The state diagram in �gure 1 shows a simpli�ed summary of the object life-cycle in the dual, no-steal,

bu�er architecture considered in this paper. Transient objects are objects whose life never goes beyond the

initial \heap allocated" state. Objects promoted to persistence are destined for a longer life which may

involve an arbitrary number of cycles of state transitions depending on how applications operate on them.

In order to be manipulated by applications, a persistent object must go through two transitions (1 and

3), corresponding to the two levels of bu�ering. The �rst update to a clean object changes the state of that

object such that it cannot be evicted (transition 6). This constraint is the consequence of the no-steal policy.

A stabilization brings the object back to an evictable state (transition 7), from which eviction is possible.

Eviction of an object changes that object's state to either \in PBP" (transition 4), or \on disk" (transition

5), depending on whether the page where that object resides is cached in the PBP.

This paper focuses on the support for transitions 1 to 5, but our technology is constrained by the need

to implement all of the transitions shown consistently and e�ciently.
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Figure 1: A simpli�ed persistent object life cycle.

The rest of this paper is organized as follows. The programming model of PJama is briey described in

section 2. Section 3 outlines the modi�cation made to the JVM and the architecture of the resulting virtual

machine (OPJVM). It then describes the state transitions 1 to 3. Section 4 discusses more extensively the



interface between the JVM and the OC that implements state transition 3. Section 5 contrasts OC man-

agement with garbage collection and concludes that garbage collection is not appropriate for implementing

state transitions 4 and 5. It then presents in some technical detail several solutions that implement pinning,

victim selection and safe OC space reclamation. Section 6 reviews some other OC management research

and other implementations of orthogonal persistence for Java. Section 7 concludes with a summary and

directions of further work.

2 Programming model

The PJama3 system is intended to provide an alternative platform for the Java language with provision

of orthogonal persistence for data, meta data (classes) and code (methods). Persistence is added to the

Java language with no perturbation to Java's semantics. All Java classes can be re-used in persistent

applications and made persistent as well as their instances without any alteration to either their source

or their compiled form. This careful provision of persistence independence is important in enabling code,

available either as source Java or compiled class �les, prepared for other environments, to be re-used in the

PJama context without any transformation. An extensive discussion of orthogonal persistence is given in [7]

and its application to the language Java is described in [4, 6].

Using PJama, the bulk of an application suite consists of Java classes and methods written exactly

as they would have been written if the application was transient, using only main memory for its data

structures. Each program, typically the class containing the main method, requires a few lines of code to

initiate its binding with the persistent store, and the roots of preserved data structures before calling that

standard, main-memory style code. Typically, only a few (< 20) lines of code using the PJStore interface

enable thousands of lines of unmodi�ed Java using an unrestricted4 range of classes to operate on a mixture

of transient and persistent data. This localised, persistence-aware code typically identi�es the roots of

persistence, binds these root objects to the application's variables, calls the application, and when it returns,

triggers the stabilization5 of all updates onto the persistent store.

3 An orthogonally persistent Java Virtual Machine

The primary objective of PJama is to demonstrate the feasibility of orthogonal persistence in an industrial-

strength programming language such as Java. Our �rst goal was to develop in six months a virtual machine

for Java that supported a prototype, PJama0, with reasonable performance. This OPJVM had to be derived

from Sun's JDK. We chose to minimize the changes to the JDK to make it feasible to use successive JDK

versions.

To construct our prototype quickly, aspects related to fault-tolerance were consigned to a third-party

software. RVM, a Recoverable Virtual Memory system from CMU [30], was choosen for its availability. It

manages storage as an unstructured address space; no object abstraction is supported. This left us complete

freedom to design the structure of the persistent storage. RVM is also very exible with respect to access

to persistent data. RVM applications are left responsible for deciding when and how much data should

be loaded into or ushed from virtual memory, as well as where in virtual memory these data should be

loaded. These advantages are tempered by one major constraint: RVM imposes a no-steal policy [18], which

means that memory-resident regions with uncommitted updates cannot be ushed to persistent storage.

This constraint and the decision to stay close to JDK's implementation of the JVM signi�cantly inuenced

the architecture of OPJVM.

The rest of this section presents that architecture and discusses the rationale behind it. Aspects of

JDK1.0.2 that impacted the design decisions are described �rst. Where di�erences between JDK1.0.2 and

3Originally this was called \PJava", but that name has been taken by Sun for Personal Java a product for PDA devices.
4There is at present one restriction, it is not yet possible to make instances of the class Thread persist because of the

complexities of capturing information from a thread's C stacks.
5PJama parlance for atomic propagation of updates onto the POS including promotion of objects, classes and methods newly

reachable or needed by promoted objects.



JDK1.1 are signi�cant we note how we have adapted to them.

3.1 Crucial features of JDK1.0.2

Two features of JDK1.0.2 make it di�cult to reliably locate and adjust pointers, and therefore had a major

impact on the design of OPJVM: its memory and thread models.

3.1.1 JDK1.0.2's existing memory model

The right-hand part of �gure 2 depicts the memory model of JDK. It uses a garbage collected heap (GC

heap) for allocating class instances and arrays. Class objects (i.e., instances of the class java.lang.Class),

and the related information such as constant pool, �eld and method blocks, bytecodes (these are byte arrays

that each hold a sequence of byte codes generated by a Java compiler from processing one method), and the

stacks for each Java thread, are allocated outside of the GC heap.

Objects in the GC heap and class objects are given a handle for their (transient) lifetime6. Each handle

contains the location of the object it references and a pointer to its method table (see 4.1 for details). Objects

reference each other via their handles, and the Java stack of each thread references objects via their handles.

The locations of references from objects to handles, henceforth simply \references", may be discovered from

class objects. In contrast, the locations of references on both native and Java stacks are not recorded. Class

objects are often directly referenced using their address in virtual memory, e.g. by the directory of loaded

classes, constant pools, method tables, method blocks and �eld blocks7.

Handles are dereferenced in order to manipulate the contents of an object (see 4.2 for the mechanism).

Dereferencing causes the address of objects to be temporarily stored in machine registers or on native thread

stacks. Native methods also tend to reduce the number of dereferences by keeping direct pointers obtained

from handle on their native stack for the duration of multiple accesses to the objects, often for most of a

native method's execution. Because of this, and because of the di�culties of locating all references described

above, the JDK's garbage collector uses a conservative approach [34].

The GC heap is organized as two contiguous areas: a pool of handles and a pool of objects. Both objects

and handles are 8-byte aligned. Each allocated chunk of the heap is pre�xed with a 4-byte header reserved

for memory management (the rest of the JVM ignores the existence of this pre�x). Headers contain the size

of the chunk and a couple of bits. The garbage collector, which operates on both the handle pool and the

GC heap, is invoked when the allocator cannot satisfy a request8 and uses a stop-the-world mark-and-sweep

strategy.

Being conservative means that the garbage collector can easily move an object immediately reachable

only from its handle, but it dares not move any object referenced directly from elsewhere (to attempt to

�x up the direct pointers might modify a scalar value that coincidentally looked like a direct pointer). It

di�erentiates between these two cases by whether the object as well as its handle has been marked. The

result is a fragmented heap with immovable islands, even after compaction.

3.1.2 Thread model and implementation

JDK uses its own threads package, called Green Threads, to implement Java threads. The Green Threads

package implements a pre-emptive model with priorities9. Each thread is provided with its own native stack,

native register values, and Java execution context which includes a Java stack, and other information such

as the last exception thrown. A native stack is used for the execution of the JVM and native methods while

a Java stack is used for the local variables of methods. All of the threads share the same GC heap.

6Versions of the JVM which operate without handles have been developed. At present we are not exploring how to work

with such JVMs.
7JDK1.1 now uses handles for these references, as a consequence of moving class objects into the GC heap but the constant

pool of classes may still contain direct pointers to class objects.
8It may also run in the background.
9Time-sliced scheduling is allowed as a command line option in JDK 1.1. It is implemented using a hidden daemon thread

with a priority higher than any thread in the system.



Threads are either yielded explicitly by the application, or pre-empted by an asynchronous event, such as

timeout or I/O. In the latter case, the running thread is immediately pre-empted irrespective of its location

in the JVM code. This means that a thread may be suspended in the middle of the execution of a virtual

machine instruction or a native method execution. In either case, a thread may be suspended while holding

direct pointers to some Java objects10.

This lack of coordination between direct pointer usage and thread pre-emption has a considerable impact

on the design of main-memory management to support persistence.

3.2 Adding a Dual Bu�er to the JVM

A dual bu�er, shared by all threads was chosen for OPJVM's initial prototype. Figure 2 illustrates how the

JDK has been extended to incorporate dual bu�ering of persistent objects: class instances, arrays, classes

and bytecodes. The JVM now interfaces with an object cache (OC) shared by all threads to gain access to

persistent objects. Objects in the OC have exactly the same layout as objects in the GC heap which is the

format expected by the JVM: they are 8-byte aligned, and pre�xed with a 4-byte header. Memory-resident

persistent objects are referenced via handles that look like the handles of the GC heap (see 4.1)

The OC itself sits on top of a store abstraction which encapsulates all manipulations of persistent storage.

This architecture has met the requirement to minimise changes to the JDK, permitted the rapid implemen-

tation we needed and �tted within the constraints imposed by RVM. Interposing an object cache between

the JVM and the store layer has simpli�ed the overall system and made it more reliable.

� It reduced interdependencies between the JVM and RVM.

� It simpli�ed the tracking of updates and their propagation to the persistent object store (POS). To

have updated objects while they were in the PBP would have required either running the JVM within

an RVM transaction, notifying it of every update or starting an RVM transaction at each stabilization

and recording the undo images of each object modi�ed. Both solutions were rejected because of their

ine�ciency and development cost.

� It relieved the PBP manager from having to track direct pointers from the JVM to its bu�er, which

improves the reliability and performance of the store layer by reducing the number pages pinned and

by eliminating the cost of tracking direct pointers (see section 5.2).

� It minimized the time that pages hold updated but uncommitted data and hence the time pages need to

be pinned. This in turn reduces the average number of dirty PBP pages which both improves caching

and reduces risk of the OC becoming full of pinned pages so that progress is blocked.

� It simpli�ed memory management for objects larger than one page. Such objects are copied in their

entirety onto the OC. This does not cope well with very large objects and may incur punitive eviction

and copying costs, but it su�ces for our initial prototype. More sophisticated techniques would have

required too many changes to the JVM.

The detrimental aspects of this architecture that every object has to be copied, might be ameliorated by an

adaptive mechanism that copies objects from the PBP to the OC if their page is about to be evicted and

it is expected that they will be used again. This is similar to an adaptive mechanism proposed by Kemper

and Kossmann [22] which also uses the term \dual-bu�er management" as we do11, to indicate objects

may be either in an object cache or a page pool when in main-memory. They conclude that \lazy object

copying combined with an eager relocation strategy is almost always superior and signi�cantly outperforms

page-based bu�ering in most applications". Whether there is an actual saving, depends on several factors:

� the relative size of the page and the most active objects;

10Such situations will become even more common in JDK 1.1 when it is used with the time-slice option.
11The term was coined originally in [24] with this meaning, though the degree of dynamic adaptability between the space

available for object bu�ering and that for page bu�ering varies between papers.



� how often the move can be avoided because the page remains resident long enough;

� how much of the object needs to be read and written before it is prepared for use by the JVM12;

� what proportion of the objects are mutated and therefore need copying back agaian; and

� how good the heuristics are at choosing which objects to copy.

Because of the complexities of the JVM and hence the challenge of making the object cache operate correctly,

which we describe in this paper, it has not yet been possible to investigate such adaptive strategies in PJama.

However, our cache architecture is designed to make them possible.

3.2.1 The store layer and its use of RVM

The store layer includes the PBP, realizes logging, recovery and disk IO and thereby encapsulates access to

the POS. It provides a simple interface for executing the following actions atomically:

� obtaining copies of persistent objects from the POS;

� propagating updates on a set of objects to the POS;

� extending the size of the POS with a set of new objects, and

� creating, opening and closing stores.

It uses a slightly modi�ed version of RVM 3.1 (RVM had to be changed to support extension of segments

with mapped regions) which provides primitives to map and unmap arbitrary regions of persistent segments

into arbitrary regions of virtual memory of the same size. Regions can be mapped to only one place at a

time, they must not overlap, and their size must be a multiple of the page size used by RVM.

Mapping of regions in RVM consists of making ranges of virtual memory addresses coincide with ranges of

segment o�sets, and e�ectively fetches the segment region to the speci�ed virtual memory locations. Access

to regions of a segment has to be detected �rst by OPJVM which then invokes the mapping primitive to

load the missing region into the PBP. This may be contrasted with the memory-mapping facilities used by

operating systems where access detection and loading are automatic.

RVM has been used in a rather unusual way to implement the PBP manager (which supports the object

state transitions 1 and 2 described in Figure 1). The bu�er manager detects page faults when requests for

persistent objects are made. If the page containing a requested object is not in the PBP, a page-fault is

raised. Page-faults are processed by allocating a bu�er and calling RVM's map primitive to load the missing

page to that bu�er. The object is then copied to the location speci�ed by the request with the bu�er

being pinned for the duration of that copy. Page-fault detection and resolution are synchronized to prevent

multiple threads from processing the same page fault.

Pages are evacuated from their bu�er as necessary. A classic two-hand clock algorithm [31] is used for

selecting victims for replacement in the bu�er pool. The evacuation itself is performed using RVM's unmap

primitive. Because of RVM's no-steal policy, the victim pages must not contain uncommitted updates.

Stabilizations are implemented using RVM transactions. An RVM transaction is started during a sta-

bilization and used to propagate the updates from the object copies in the OC to the POS. The modi�ed

objects are �rst copied directly to pages loaded in PBP (page-faults may occur to fault in pages on which

modi�ed objects reside). These updates are recorded to the log by using the rvm set range procedure and

atomically propagated to the store by committing the RVM transaction. The contents of updated bu�ers

need not be forced to disk before transaction commit, as RVM supports no-force commit.

12Normally, all the pointer �elds need to be read and written, but if the scalar formats also change, e.g. the store is in

big-endian format, but this execution is on a little-endian machine, then a copy does not incraese the number of memory cycles

required, nor the disruption of the hardware cahes.



This contrasts with reported use of RVM where entire RVM segments are mapped to main memory

[33, 16], thus avoiding issues such as on-demand fetching and automatic eviction of mapped regions at the

price of scalability because of the main-memory residency assumption13.

3.2.2 The Object Cache

The OC implements an object-faulting mechanism to load on-demand (transition 3) any objects required

by the JVM. This process is illustrated in �gure 2. Upon an object-fault, the OC manager asks the store

layer for a copy of the missing object. Once the object has been copied into the OC, inter-object references

are translated from a persistent-identi�er (PID) format to a virtual-memory address: this is called pointer

swizzling.
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The use of handles by JDK to access objects naturally leads to the use of indirect swizzling [23, 7] for the

OC. Indirect swizzling means that pointer �elds in the object being swizzled containing PIDs are overwritten

with pointers to handles. An eager indirect swizzling strategy is used for class instances, and a lazy indirect

swizzling strategy is used for arrays of objects. Eager swizzling means that all persistent identi�ers within

an object are overwritten with pointers to handles at object-fault-time. Lazy swizzling means that references

are swizzled upon the �rst use of a reference, which is advantageous for large arrays of objects when only

a few references are actually used, but requires a relative expensive read barrier so it does not pay o� for

small arrays or those that are scanned in their entirity. At present we cannot predict the size and arrage

usage so conservatively we use lazy swizzling for all arrays.

13In many cases this is actually a mapping to virtual memory, which is often restricted in size per application by the operating

system, and which will often perform poorly compared with object caching.



A resident object table (ROT), hashed on PIDs, is used to �nd handles corresponding to PIDs. The

handles in the ROT, called ROThandles, correspond to all the objects in the OC, objects referenced from

resident objects but representing non-resident objects, and unreclaimed handles referring to evicted objects.

When pointer swizzling, an attempt is made to �nd a handle for the PID in the ROT, and if this fails a new

ROThandle is allocated.

The OC also manages several house-keeping data structures including a memory-resident copy of the

persistent class directory (PCD). This is a mapping from the names of all the classes in the POS to their

class descriptors (instances of ClassClass). When a class is required by name, a look up determines if it has

already been made persistent, in which case it will be loaded from the POS. Consequently, special faulting

mechanisms are used for classes and bytecodes. Whenever a class is required by name (Java's dynamic

binding) the OPJVM �rst attempts to �nd it in the PCD, and uses the size and reference in the returned

descriptor to fetch it into the OC. If it is not found in the PCD the normal JVM class loader mechanisms

are used. A class object may also be faulted in because a reference to it is dereferenced.

New objects are allocated on the GC heap exactly as in Java. The object allocator is called with a class

descriptor which may have been loaded by the JVM or may be persistent. If the class is persistent then the

method table reference will be a pointer to the method table in virtual memory constructed by the OC at

class-fault time; otherwise it will be a pointer to the method table in memory allocated by the JVM when

it loaded the class. A pointer to the method table is stored in the handle returned by the object allocator

(see 4.1). Figure 2 illustrates the possible combinations:

� a transient instance of a transient class (object c, instance of C),

� a transient instance of a persistent class (object b2, instance of B),

� a persistent instance of a persistent class (object b1, instance of B).

Note that in the case of class B, the method table is shared by all of B's instances, persistent and transient.

Overall, the original JVM was left intact except for additions in the bytecode interpreter, the native

methods of the core classes, and the class loader and resolver (see [25] for details about these components) to

support persistence-related functions such as residency checks and update tracking. The garbage collector

was modi�ed to retain objects referenced from the OC.

4 Object Faulting

This section considers the implementation of the state transition 3 in Figure 1. The main issues are how to

perform: residency checking, object faulting and swizzling.

4.1 Handle and Object formats

These operations depend on four formats for handles which are shown in �gure 3. We partition handles into

Jhandles and ROThandles, each of which have two possible formats. Jhandles are allocated in the GC heap,

whereas ROThandles are allocated in the OC and populate the ROT. Jhandles are created by the bytecode

interpreter, upon the execution of a new instruction, while ROThandles are created by the OC during the

OPJVM bootstrap, by swizzling operations (both eager and lazy), or during object promotion.

The �rst three of the four handle formats described here are said to be in indirection format as they hold

the main-memory address of the denoted object.

Standard Jhandles These are exactly the handle format used in the JDK JVM and consist of two pointers,

one to a method table (a struct methodtable), and one to the corresponding object in the GC heap.

The method table has a pointer to its class descriptor (a ClassClass structure), and an array of

pointers to methodblocks. The method table and the class descriptor, as well as all the descriptors

reachable from them (e.g., �eld and method blocks, etc.), are allocated using the JVM's machine

dependent allocator sysMalloc.



SysMalloc
Allocators

Object Cache
Garbage Collected Heap

P

-
PID

M
Class

P

M
Class

P

Class
M

P

Java Handle to a transient instance of a transient class

Java Handle to a transient instance of a persistent class

ROT Handle to a cache-resident persistent object

ROT Handle to a non-resident persistent object

Figure 3: Handle Formats

Jhandles for instances of a persistent class These are constructed when a new instruction is executed

for a persistent class. Both the handle and the new instance are allocated on the GC heap as before,

but the handle's method table and class are OC-resident.

swizzled ROThandles The object �eld of this kind of ROThandle contains the address of the object in

the OC. The method table and corresponding persistent class are both OC-resident. Thus ROT's

indirection handles are strictly equivalent to the JVM's handles, excluding a hidden post�x used to

hold ROT's house-keeping information.

fault-blocks Swizzling of PID to non-resident objects results in a fault-block creation. A fault-block is a

ROThandle where the object address is its PID so that dereferencing it will cause an object-fault. The

method table �eld will be �lled in at that time.

The OC pre�xes the cache-resident image of each object with a 4-byte word which holds two pieces of

information: the lower three bits are used to keep track of updates, while the upper bits contain an index

into the ROT to enable its handle to be found. The objects in the JVM's GC heap are also pre�xed with a

4-byte word of house-keeping information. The only components of the JVM that access these pre�xes are

the GC heap garbage collector for objects on the GC heap and the OC manager for objects in the OC.

4.2 Residency Checks

Every time a handle is dereferenced, a software residency check must be performed to check whether the

referenced object is present in main-memory14. The problem is twofold: (1) how to perform these checks

e�ciently without changing the implementation of the Jhandles and (2) how to synchronize object-faulting

in the presence of multiple threads of control.

The JVM's class instances and handles are 8-byte aligned. We have arranged that all other objects, e.g.

classes and methods are also 8-byte aligned. A memory address therefore has its least signi�cant three bits

set to zero. We arrange that all PIDs have at least one of these bits set15. A null reference is stored on disk

as a NULLPID value, which is actually the same value as the JVM's null value, that is 0. This avoids any

swizzling work for null references.

14Optimizations avoiding redundant residency checks are planned for PJama1 [12].
15They contain an RVM segment number | allowing up to 7 segments of up to 232 bytes each in an OPJVM POS, as we

use 8-byte alignment within segments.



A residency check, testing whether the least signi�cant three bits of the object address �eld are zero,

indicates whether the handle is a fault-block or an indirection. Thus a dereference consists of the following

line of pseudo-C code:

p = (h->obj & 7) ? h->obj : object_fault(h)

where h is a pointer to a handle and p is the �nal location of the object in virtual memory.

Unfortunately, this residency check does not take into account the fact that multiple concurrent threads of

control operate over the OC. Both the residency checks and the object-fault processing have to be indivisible

to prevent the same object-fault being processed by more than one thread. Taking a mutual exclusion lock

on every residency check is illadvised for performance reasons. It is essential to optimize the case where the

residency check succeeds, as this includes all objects on the GC heap and most other objects if the execution

load has reasonable locality.

The double-checking solution described in [14] is directly applicable here: the �rst check is performed

without mutual exclusion on the assumption that the object is already resident. The OC guarantees that

objects are removed in an indivisible manner with respect to residency checks (see section 5.5). For the

moment, assume that the OC's content is never replaced. If the �rst check succeeds, then the object is

guaranteed to be in memory and there is no need to synchronize a concurrent object-fault.

If the �rst residency check fails (which is a rare event), an object-fault has potentially been detected. In

this case, a mutual exclusion is taken on the handle that raised the object-fault to double check the initial

diagnosis safely.

If the second check, protected by the mutual exclusion lock, also diagnoses an object-fault, then the
mutual exclusion lock is held until the object fault has been processed. Otherwise, if the second check
�nds the object resident in memory, the thread T that performed the check has been trapped in a phantom
object-fault which means that another thread has sneaked in just between the �rst check and the acquisition
of the mutual exclusion lock by T and has performed the object-fault. In this case, T just releases the lock
and continues with the dereference. Phantom object-faults are likely to be exceptionally rare. Thus the �nal
multi-threaded residency check looks like this in pseudo-C:

register OBJECT *p;

if ( (p = h->obj) & 7 ){ /* initial residency checks */

/* got a potential object-fault here */

mutex_lock(h); /* Get the object-fault lock for this object. */

if ( (p = h->obj) & 7) /* double-checks for phantom object-fault */

p = object_fault(h) /* this fault is a true one */

mutex_unlock(h); /* release object-fault lock for this object. */

}

p; /* memory-resident address */

In most cases (i.e., when the object is already in memory), object dereferencing will only consist of the �rst

two lines, which implement exactly the single-threaded residency check.

A similar double-checking strategy is deployed to check residency of bytecodes on method invocation.

Residency-check mechanisms for class objects involve a few extra wrinkles because the contents of classes

may be directly addressed from an arbitrary number of resolved constant pool entries in other classes (see

section 3.1.1).

4.3 Faulting

Object-faulting, irrespectively of the kind of the object, is a three-step process. The �rst step �nds the size

of the faulting object in order to allocate space in the OC. The second step invokes the store layer to obtain

a copy of the object in the space just allocated. The third step prepares the copy of the object for use by

the JVM.

All persistent objects are pre�xed with a 4-byte word which denotes the type of the object and allows

their size to be found. The store layer provides an interface for obtaining the pre�x of any object given its

PID.



The pre�x of an instance of class Class contains the PID of its PCD entry object. PCD entry objects

contain the PID of the class they refer to along with their size, which includes the size of the Class instance

as well as the size of all its inner structures such as the constant pool, �eld and method blocks. This

conglomeration we call the class object.

The pre�xes of all other class instances contain the PID of the PCD entry for their class which also

contains their size. This PID can be used to locate a memory-resident copy of the object's class (potentially

involving faults for the PCD entry and the class object).

The pre�xes of bytecodes and arrays encode their size.

5 Cache Space Management

We have to recycle the content of the main memory in order to support the orthogonal persistence abstraction

within the inevitable constraints of limited main-memory resources. For example, a server written in PJama

may operate continuously on an inde�nitely large population of objects with unpredictably repeated accesses.

The PBP, the OC and the GC heap all perform memory allocation and recycling and we therefore need to

ensure that they operate synergistically and need to balance resources between them as well as within them.

GC heap and OC share similar requirements, namely, low allocation cost, and good locality. In both cases,

these may be achieved via linear allocation and re-organization of space to reduce fragmentation.

One primary task of a main-memory manager is to recycle the space taken by objects. An object may

be vulnerable to having its space reclaimed either because it is no longer reachable from the executing

threads or because there is no expectation that its re-use is imminent and it can be recovered from the POS.

Consequently the OC manager must attempt to satisfy the following (conicting) goals:

� provide space in the OC for every allocation request (these mainly arise from object-faults, promotion

and house-keeping);

� retain in the OC as many of the currently resident objects as possible, particularly those that will be

used in the near future;

� support rapid allocation, e.g. preserve linear allocation and minimize fragmentation; and

� optimize the locality of objects in the OC, e.g. by reclustering.

So far we have investigated two issues in PJama0: selection of victims for eviction from the OC; and

prevention of dangling pointers as a result of object evictions. As explained in section 3.1.2, threads may

be suspended while holding direct pointers to objects. Therefore, dangling pointers may be created if such

objects are evicted from the OC. The pre-emptive thread model used by Java makes this event likely since

low-priority threads may be suspended for long enough that objects that they were using appear disused and

therefore become vulnerable to eviction.

Two strategies were considered: (1) extend the garbage collector to recover OC space, and (2) develop

explicit OC eviction algorithms. There were several di�culties with the �rst option. The existing JDK

garbage collector was unsuitable, as it was insu�ciently incremental and (in JDK1.02 at least) incapable

of handling classes and methods. More fundamentally, garbage collection algorithms are maladapted to

reclaiming cache space, as it may be necessary to reclaim space that is still reachable. Based on these

considerations, we chose to explore automatic but explicit OC eviction algorithms.

5.1 Partitioning Object Cache into Specialized Management Regions

The OC is divided into two areas, a static area and dynamic one. The static area holds space permanently

allocated to some house-keeping functions of the OC (e.g., the static parts of the ROT), and a bootstrap

region. The bootstrap region contains the JDK core classes used in the operation of the OPJVM and others



activated during the run of OPJVM that initialized the store16. It is pinned in the OC and stays memory

resident for the entire execution of the OPJVM. The bootstrap region is transferred directly from disk to

the OC without stepping through the bu�er manager, and is immediatly translated into memory-resident

format during start up.

The dynamic area is used not only for caching copies of persistent objects, but also as the storage

for dynamically allocated OC house-keeping structures, such as ROThandles. Instead of intermixing very

di�erent populations of objects, the dynamic area is divided into homogeneous regions populated with objects

of the same kind, i.e., we use \separate cages for incompatible animals". The most prominent kinds of region

are designated for: persistent class instances and arrays, for persistent bytecodes, for persistent class objects

and for ROThandles.

Each \cage" is provided with its own \keeper", called a region manager, each of which is adapted to

the characteristics of its own kind of object and can negotiate with the overall OC manager about its

share of resources. This division into homogeneous regions with specialized region management o�ers more

opportunities to optimize OC space management than a single global scheme would. It also partitions the

OC code into more tractable modules.

For instance, handles and objects have conicting requirements. Handles need to retain their address for

their lifetime because references to them are not easily located (see 3.1.1). Hence, interleaving the two kinds

of object would make OC space reclamation more expensive and linear allocation much harder to achieve,

because of the fragmentation caused by immovable handles. An object, on the other hand, can be moved or

evicted at almost any time, and incrementally, by a single assignment to its handle whereas, reclamation of

handles has to be done via pure garbage collection techniques. Similar disparities can be illustrated between

the objects in each of the regions.

Another reason for distributing OC management into specialized managers is exibility and extensibility.

In the long term, our aim is to experiment with di�erent policies for each category of object, and to specialize

the management for more categories of objects, e.g. large objects, multimedia stream objects, and legacy

data. The goal is to allow new specialized region managers to be dynamically added as plug-ins.

Figure 4 describes the architecture of the OC manager, which controls the usage of regions: it allocates

regions on demand to region managers, and requests them to give up regions when OC resources are scarce.

The OC manager maintains a map of the composition of the OC, which allows it to �nd quickly, given a

virtual memory address, the relevant region-control block.
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Figure 4: Object cache management.

Each region manager applies its own policy for allocating objects and for reclaiming space within the regions

for which it is responsible. The OC manager dispatches requests for allocating space for a given category of

16There will be additional classes and other objects based on reachability at the time of the �rst stabilize.



objects to the region manager specialized in the management of such objects. We next discuss the following

issues for implementing OC replacement:

1. e�cient identi�cation of objects that are directly addressed by application threads, to prevent their

eviction/relocation;

2. selection of appropriate victims for eviction; and

3. mechanisms for reclaiming OC space, independently of any given victim selection policy.

5.2 Low-cost object pinning

A major problem is to detect the presence of direct pointers into the OC to avoid creating dangling pointers

when evicting objects. As explained in section 3.1.2, threads may be suspended with some direct pointers

to (possibly persistent) objects. Dangling pointers will be created if such objects are ushed from the OC.

A putative solution is to bracket the use of direct pointers with explicit operations to signal the pinning

and unpinning of objects. Though explicit pinning may save some residency checks, it is extremely expensive

to use because of the per-object storage required for recording the number of pins. Moreover, to be bene�cial,

a pin/unpin strategy requires compiler support to plant pin and unpin operations17. Without compiler

support, it is extremely hard to bracket safely more than one JVM instruction with pin/unpin calls.

Another solution is to scan the native stack to detect direct pointers to persistent objects every time the

cache manager needs to recover some storage. The tracing would conservatively mark each object in the OC

reachable from the native stack of every thread. A similar solution is used by JDK's garbage collector to

prevent moving directly addressed objects during compaction. In that case, the cost of scanning the native

stacks is unavoidable because of the need to mark handles that are only reachable from native stacks.

Scanning all native stacks is a method of identifying directly addressed objects which does not require

explicit action by application threads. Although scanning may be tolerable for garbage collection, it is too

expensive for object replacement. This is because garbage collection reclaims as much space as possible at

each invocation, reducing the need for further garbage collection. In contrast, cache replacement tries to

replace as few objects as possible in order to reduce the number of subsequent cache misses so that cache

replacement occurs frequently, thereby making the cumulative cost of scanning prohibitively expensive.

The solution devised for OPJVM consists of recording where on the native stacks there is a variable that

may contain a pointer to a cached object's handle. Recording the location of the handle variables rather

than the location of the direct pointers themselves is important for performance reasons, because direct

pointers are short-lived and much more numerous than the handles from which they are obtained. This

is partly because the JVM frequently uses local blocks of code that each declare local variables to store

temporary pointers obtained from dereferenced handles. Furthermore, the heavy use of macro-de�nitions in

the JDK JVM makes discovering direct pointer locations intractable. Recording the location of handles is

more conservative than recording direct pointers but much more e�cient.

For example, the main loop of the JDK bytecode interpreter uses only two handle variables, which are

used as \virtual registers" to store the handle of the objects used by the current JVM instructions. The

locations of these two variables need only be recorded once before running an instance of the interpreter

loop, requiring only two handle-location recording operations per invocation of the interpreter loop. The

alternative, if direct pointers themselves were tracked, would have been to bracket every JVM instruction

that manipulates the contents of an object with code to register and de-register these direct pointers. The

native methods of the core classes as well as the rest of the JVM have been changed correspondingly to

record the location of all of their handle variables.

Figure 5 shows how directly accessed objects are identi�ed. Each thread maintains a stack of handle-

variable locations18. Each stack item is made of an array of handle-variable locations, the address of the

17This compiler must operate on classes after they have been loaded, in order not to violate persistence independence.
18The stack of locations is actually threaded onto the native stack to simplify memory management.
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native function that recorded these locations, and the address of the JVM program counter, if that native

function is the bytecode interpreter.

Every time the OC manager needs to pin objects accessed directly by threads, it scans the queue of

threads, and for each thread, it scans its stack of handle locations. For each handle location found, the OC

manager checks if the handle refers to an object in the OC and if it does it pins that object. In addition, if

the function that recorded the handle locations is an interpreter loop, the OC manager inspects the current

JVM instruction to see if it manipulates an object. If it doesn't, then there is no need to pin the object since

the content of these \virtual registers" is reloaded systematically at the start of JVM instructions that use

them.

Overall, very few objects are ever pinned and most of the regions of the OC are left unpinned. We believe

that the cost of pinning is negligible compared with that of explicit pin/unpin or conservative marking

strategies.

5.3 Victim selection

The e�ciency of cache replacement heavily depends on the correct selection of objects to reduce the number

of cache misses. A common heuristic is to replace least recently used (or LRU) objects, on the premise that

an object not recently used is unlikely to be used in the near future. LRU as well as other policies based on

the notion of recent usage, require the ability to trap every access to the unit of replacement. A classi�cation

of the victim selection techniques is shown in �gure 6.

Some persistent object-based programming systems bene�t from strict encapsulation. If strict encapsulation

is enforced, method invocations can be equated to object accesses, and cache replacement information can

be obtained at method invocation time (see [13] for instance)19. Java does not enforce strict encapsulation.

Indeed, it tends to promote direct accesses between instances of classes de�ned in the same package. As a

result, victim selection cannot rely solely on method invocation; an application may traverse a dense graph of

objects without invoking a single method. If method invocation were equated to access the traversed objects

would appear unused and be (incorrectly) selected for eviction. On the other hand, trapping every object

19However, optimising compilers may use in-lining in such a way as to remove this encapsulation at the byte-code level.
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access to optimize victim selection is prohibitive, particularly as studying the past does not yield oracular

foresight.

A possible solution is to provide the ability to turn on the recording of accesses to OC-resident objects.

The trick is to make the application threads pay for this only when such monitoring is necessary. Another

solution is to periodically estimate object usage based on execution context analysis.

Another parameter to consider when selecting victims is the granularity of eviction. Evicting individual

objects is not e�cient because it leads to fragmentation of the OC space. A better solution is to recover a

whole region, perhaps at the price of movingm (within main memory) some of the region's objects to avoid

OC misses. The victim selection must therefore identify the best candidate region for recycling as well as

which objects in that region must be retained. Ideally, the OC manager will look for quiescent regions, i.e.,

regions without any objects to be retained, in order to avoid any copying cost for recycling a region.

We report two methods to maintain information e�ciently for victim selection within the constraints just

described. The �rst allows us to record individual accesses to OC-resident objects. The second periodically

estimates current and future accesses to OC-resident objects. The former is more precise but more expensive,

while the latter may be less accurate but cheaper.

5.3.1 Switchable detection of accesses to OC-resident objects

Detecting accesses to main-memory resident objects is the basis for all object-replacement policies based on

past use of objects. Access to OC-resident objects may be easily and e�ciently detected using a slightly

modi�ed version of the object-faulting mechanism described in section 4. The idea is to turn on false failures

of the OC-residency check and to record the accesses to these objects in the resultant minor-object-fault

trap. There are no extra costs when these traps are switched o�, nor after the �rst access.

To provoke a failure of the residency check for an OC-resident object, the OC manager hides that object.

Hiding only applies to ROThandles which have an extra �eld in their pre�x holding the PID and consists

of exchanging, within such a handle, the object's address in the OC with this PID, which makes a hidden

object look like a non-resident object, so that the next residency check will fail. It also eases the resurrection

of hidden objects upon a minor-object-fault, since the actual location of a hidden object in the OC is still

contained in its handle. Thus handling a minor-object-fault just requires acquisition of the latch of this

handle, and re-exchange of two �elds in the handle, hence the quali�cation \minor". The various formats of



a ROThandle, as well as the transitions from one format to another, are illustrated in �gure 7.
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Figure 7: Formats for handle to persistent objects, and transition between the various format.

Object hiding and minor-object-faults can be used to identify the set of objects used within a given time

frame, and ultimately to obtain a good estimation of the LRU objects. The idea is to hide all OC-resident

objects and to record, within minor-object-fault traps, information concerning the faulted object. The

recording method depends on storage and processing trade-o�s for a given victim selection policy. The delay

between hiding all of the objects and the moment when information about resurrected objects is processed

is called the usage window. It may be expressed as a time interval or as some volume measure of objects

resurrected.

One way to estimate LRU objects is to wait until only a small fraction of objects are still hidden. The

recording method in this case consists of keeping track of the volume of objects resurrected until the desired

fraction of objects remain hidden. These remaining objects de�ne a good approximation of LRU objects. A

time-out is needed to deal with the case when the set of completely disused objects is larger than the target

fraction.

Another possibility is to identify most recently used objects (MRU) to inhibit their eviction. These are

detected by using a short usage window. Too frequent application of object hiding incurs unacceptable

minor-object-fault processing costs.

5.3.2 Periodic estimation of object usage

Detecting access to individual objects may become too expensive. An alternative is to use a background

thread to estimate periodically the age of the population of resident objects. The age of a unit of memory,

be it an object, a page or a whole region, de�nes how recently that unit has been used. Aging is the activity

of updating periodically the age of these units according to whether these units have been accessed during

the last aging cycle.

Given that it is known which access units have been accessed at the end of each period, aging can be

implemented e�ciently using a small counter [31] associated with each unit of memory. This is illustrated

in �gure 8. The smaller the counter value, the less recently used is its unit. Each time an aging period ends,

the counter of every unit is right-shifted by 1 and the higher bit of the counter is set to 1 if the corresponding

unit has been accessed during the period.

Treating objects as the unit of aging is too expensive. A more appropriate unit is the region. The main

problem is then to detect which regions have been accessed during an aging cycle. This could be done using

the technique described in the previous section, but it may be prohibitive to hide all of the objects each

cycle. Another solution would be to use virtual memory protection to trap the �rst access to each region,

but it was not investigated because of the complexity of handling signals in the JDK JVM and because on
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many stock operating systems, signal handling and system calls for changing access right to ranges of virtual

memory have prooved to be too prohibitive (see [20] for instance) to be used at a small granularity.

5.3.3 Access prediction

The execution context of each thread may be analysed to predict future accesses to objects to assess their

eviction vulnerability and hence that of their containing regions. Access prediction may rely on:

� the direct pointers from native stacks. Direct pointers are the most precise indicator of which objects

have been or will be manipulated by threads. However, it is hard to estimate when their further use

will take place. They may never be used again, e.g. the code has �nished with a variable but has not

yet retracted the stack.

� the content of the Java stack frames. Java stack frames may be used to predict the future accesses to

the OC by threads but cannot be as precise as direct pointers for two reasons. The location within

Java stack frames is not available so conservative methods are required. Handle values may be used

only as a left value for an assignment and their referends never accessed. They also su�er from the

same unpredictability of re-use as variables do.

� the position of threads in the scheduler's queue. OC access predictions for a given thread should provide

an estimate of the next time this thread will be executed.

Direct pointers on native stacks or putative handles on Java stacks may suggest either retention or eviction

depending on their location. Locations close to the top of a stack suggest retention, while locations near

the bottom of stacks may suggest eviction. Similarly, objects referenced only from the stacks of a suspended

thread well down the process list may be deemed vulnerable to eviction. These are only heuristics, code

may be about to retract the stack, a thread may be about to die. Their e�cacy can only be established by

comparing their performance under real loads, synthetic loads may have a misleading usage patterns.

When comparisons are made among these various mechanisms for selecting eviction victims, it is impor-

tant to compare performance with random eviction which has no data collection costs.

5.4 OC space reclamation

The unit of OC space reclamation is the region and region managers are required to return whole regions

on demand. OC space reclamation is started asynchronously when the free space reaches the low-water

mark, and stopped as soon as the amount of free space hits the high-water mark. OC space reclamation is

independent of the victim selection policy used. The only requirement is that regions must be sorted with

respect to their object populations. Regions are classi�ed as follows:

� pinned regions: regions that contain pinned objects, i.e. objects that appear to be directly referenced;

� dirty regions: regions that contain updated, uncommitted objects which cannot be reclaimed because

of the no-steal policy;



� active regions: regions that contain \clean" objects that should not be evicted, i.e. the victim-selection

algorithm has identi�ed recent or expected activity on objects; and

� quiescent regions: regions that contain only objects that are candidates for eviction.

Pinned regions cannot be reclaimed; to do so would create dangling pointers. In extremis, if all regions are

pinned and some space must be recycled because the OC is full, then the boundaries of some regions may be

re-de�ned so that one of the rede�ned regions has no pinned objects. The �rst step in reclaiming an active

region is to move its active objects to another region. To minimize copying costs, active regions with the

minimum population of active objects are primary candidates for eviction after quiescent regions.

Selection of victim regions and their reclaimation is done in single-thread mode to avoid any resurrection

of objects during that process. Objects in non-pinned regions are guaranted not to be operated on at all

by any thread. In particular, no objects of non-pinned regions can be involved in residency checks or an

object-fault trap. Hence, no particular precaution is required to reclaim or compact non-pinned regions.

Figure 9 illustrates how quiescent and non-quiescent (i.e. dirty or recently used) regions are recycled.

Evicting an object from the OC just consists of changing its handle into a fault-block format. Thus, reclaiming

a quiescent region just consists of scanning the region linearly. For each object of the region, the handle of

that object is changed to a fault-block.
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Figure 9: Cache space compaction.

Though reclaiming an active region is more expensive than reclaiming a quiescent one because of the

copying costs, it may be useful to improve the locality and avoid expensive OC misses. One can decide to

do compaction rather than evict a quiescent region: each region may be tagged with a timestamp of the last

time that region has been recycled (the timestamp is essentially a count of the number of OC replacements).

Non-quiescent regions with a high timestamp and a small active object population would be chosen �rst.

When a non-quiescent region is reclaimed, refugee objects are moved to other regions used for compaction.

By default, only mutated objects become refugees but the victim selection may identify additional refugees.

A possible extension of this scheme is to save families of refugees by including objects that are reachable

from the identi�ed refugees if they are also OC-resident.



5.5 Cache replacement strategies

All OC-replacement strategies comply with the following principles:

� OC replacement is performed asynchronously, ahead of OC overow;

� current allocation regions are exempt from OC replacement;

� the space-reclamation algorithm, described in section 5.1, is used for all replacement of object regions;

and

� all policies use the same mechanism to identify pinned and dirty regions (A region is pinned if there

are some objects in that region that may be directly used by at least one thread (see 5.2). Similarly a

region is dirty if if it holds an updated object.).

5.5.1 Random eviction

Random eviction is the simplest policy and imposes no overhead on applications. It works as follows. When

the low-water mark for free space is reached, the OC manager identi�es the pinned regions. The OC manager

then chooses randomly from just the quiescent regions or, in the hope of attaining better locality, from both

the quiescent and dirty regions.

5.5.2 MRU eviction avoidance

MRU eviction avoidance tries to improve over random selection by not evicting objects used within a short

interval after the request for OC-space reclamation, on the premise that if they have been used in that

interval then they will soon be used again. When the object-region manager is asked to free some space, it

initiates the detection of MRU objects by hiding all of the objects in its regions (except the current allocation

regions) and waits for a short delay which is long enough for the running application threads to resurrect

the working set of objects. When the delay expires, the object-region manager classi�es the regions as for

the random strategy, except that now, the space used by MRU objects will not be reclaimed. If a region

with MRU objects, i.e. with handles in indirection format, is selected for eviction, they become refugees.

6 Related work

Many object-oriented DBMS and persistent programming languages are based on the dual bu�er architecture

in which an object bu�er functions on top of a page bu�er. Commercial examples of this architecture are

Itasca, Ontos and Versant. Dual bu�ering is advocated to improve space utilization by �ltering out useless

objects from the page bu�er, thus limiting the dependence of performance on good clustering. This is

signi�cant because a large proportion of objects are very much smaller than a page.

However, the di�cult issues of discovering all of the direct pointers to bu�ered objects and realizing

e�cient object replacement algorithms, such as LRU, at an object granularity have lead many implementors

of dual-bu�er architecture to cache objects in virtual memory without object replacement, and to leave

the responsibility of memory management and swap I/O to the underlying operating systems. That is, all

objects are kept in memory until a transaction completes. Example of such design includes Objectivity/DB,

Versant, Mneme [26], all versions of Exodus EPVM [32], and Shore [10].

Performance when accessing objects in the dual bu�er architecture primarily depends on the object bu�er

hit ratio. Consequently, given the ush-at-end-of-transaction strategy chosen by many systems, researchers

have concentrated on e�cient object prefetching to improve object access performance [1]. Exodus EPVM

2.0., ENCORE [19] have adopted an eager prefetching strategy where all objects of a bu�ered page are copied

into the object bu�er upon the �rst occurence of an object fault against that page. More sophisticated

prefetching policies, based either on semantic knowledge about the structure and operation on complex

object structures [11], or on pro�ling information [28], have also been reported.



Flushing the entire object cache at the end of a transaction, even augmented with good prefetching

policies, is not applicable to PJama for two reasons. First, because all threads concurrently access the object

cache and their execution contexts may include several direct pointers to OC-resident objects. Such direct

pointers must be maintained across stabilizations. This problem will be exacerbated in future versions of

PJama which will incorporate the ability to execute an arbitrary number of concurrent, potentially multi-

threaded, transactions. Then, objects shared between several transactions cannot be ushed because one of

these transaction completes.

Second, PJama intends to support long-lived, uninterruptible servers which will access, over a relatively

long period of time, a volume of objects well in excess of the available virtual memory. Even when the

volume of accessed objects remains within the capacity of the virtual memory, �lling the virtual memory

beyond the capacity of physical memory will degrade performance signi�cantly. Page-thrashing is expected

to be high compared with an object cache's tra�c because the unit of transfer is so much larger than the

unit of use (the objects) and there is no way to collect just the objects that are used without the clutter

of others on each page. With the ability for active objects to gather into a region as refugees (described

above) and with the ability to evict inactive objects, the density of useful data should be maintained, so

that object-thrashing is much less probable.

A possible solution to recover some OC space is to extend the existing garbage collector so that it reclaims

space in the OC. This solution has been adopted in persistent systems using a local heap architecture. Local

heap di�ers from dual bu�er architecture in that new objects are intermingled with cached persistent objects.

That is, the local heap is used for allocating space for both new objects and copies of persistent object

obtained from the page bu�er pool.

PS-algol used a modi�cation of the Lockwood Morris algorithm to evict immutable objects such as strings

[9]. Napier88's garbage collector forced a stabilization and eviction of stabilized and then transient objects

if it was unable to �nd su�cient space [8, 2, 27].

The major disadvantage of garbage collection techniques is that they rely only on unreachability to

identify recoverable cache space. If a pure garbage collector were used to free OC space, the OC would block

permanently when all cached objects were reachable. This is likely to happen in a persistent system as the

�rst cached object is the root of all persistent objects and is usually referenced from an e�ectively global

variable causing all persistent objects to remain live. Hence, if no mutation of the graph of cached objects

occurs, the cache will be full of reachable objects, but the application may be attempting a traversal of the

whole persistent graph. Extensions to garbage collection techniques may be devised such that reachability

is interrupted to circumvent this impasse. Finding appropriate points at which to make these cuts may well

be closely related to the problem of victim selection and susceptable to similar techniques. We review the

only work we are aware of on combining such heuristics with garbage collection below.

LOOM [21] extend the original garbage collector of the language Smalltalk to recover space in the

object cache. LOOM's garbage collector combines reference counting with object contraction: objects are

contracted into surrogates called leaves when no accesses to these objects have been detected during some

period. To detect accesses to an object, LOOM uses a standard clock algorithm: each resident object is

given an \untouched" bit. Everytime a �eld of a resident objects is accessed, the untouched bit is cleared,

denoting an access. Whenever some space is needed, the memory is swept and the untouched bit of every

object is set. Any object found with an untouched bit still set in an entire pass through memory is a

candidate for contraction. Space taken by leaves is recovered using reference counting garbage collection. This

scheme makes cache-space compaction very di�cult and leads to fragmentation and hence poor allocation

performance. Furthermore, the straightforward application of the clock algorithm at the object granularity

has a high cost per object access and was rejected in PJama for this reason.

A combination of garbage collection and object shrinking very similar to LOOM has been used for Thor's

object cache [13]. This combination is dictated by the Thor's use of direct swizzling: eviction of objects

requires that they be shrunk into smaller surrogates in order to prevent the creation of a dangling pointer.

Pure shrinking would lead to a cache becoming blocked because of the high degree of fragmentation it gen-

erates. Garbage collection is therefore needed to relocate surrogates, �x up pointers to relocated surrogates,

and compact the cache to reduce fragmentation. The behavior achieved by this shrink and garbage collect

strategy is similar to that which we would have obtained by intermixing ROThandles and objects in PJama's



OC. Separating these two categories as we did avoided having to resort to expensive garbage collections for

recycling object space.

The selection of objects to shrink is driven by some victim selection policy. Day compares a random

victim selection policy to a LRU one and concludes that LRU is superior. However, his implementation of

LRU assumed that method invocations can be equated with object accesses and this allowed him to pay the

overhead of timestamping objects at method invocation only. This approach is of little use for Java because

of the lack of strict encapsulation. Furthermore, his study assumes a single thread of control, whereas the

object cache is shared by all threads in PJama.

Our work can be compared with the two other research attempts to make Java orthogonally persistent.

TJava [16] also provides orthogonal persistence but it di�ers signi�cantly from PJama in that it targets

main-memory resident database applications only and hence does not face a cache management problem.

TJava also used RVM for recovery purposes, but it also relies on it to implement persistence. Basically, the

entire database is mapped in one go into virtual memory at bootstrap time. This has to be contrasted with

our use of RVM, where pages are mapped on demand in a bu�er, and unmapped when the PBP runs out of

space. The decision by the TJava team to change the Java language means that code re-use and persistence

independence have e�ectively been abandoned.

Dearle's group has used its orthogonally persistent operating system, Grasshopper, to provide a plat-

form for Java [15]. Grasshopper does not presume any language support while providing non-intrusive

support for persistence, i.e., persistent data may be manipulated without any addition to the original code

that manipulated them. This model generalizes PJama's persistence independence principle to arbitrary

programming languages. In order to achieve this level of independence, persistence is implemented at the

operating system level using standard stock hardware support for virtual memory. Because of this reliance

on the virtual-memory hardware, Grasshopper realizes persistence at the page granularity. Accesses and

updates to memory resident persistent pages are detected by the virtual memory hardware, and standard

operating system techniques can be used to realize page faulting and replacement policies. Though elegant

and promising in terms of performance, this approach does not address the crucial need for orthogonal

persistence on stock operating systems and therefore does not meet Java's goal of platform independence.

7 Conclusion and future work

We've reported on the integration of a shared, no-steal, dual-bu�er technology into a Java Virtual Machine

in order to support orthogonal persistence. The advantages of the resulting architecture are:

� separation of the persistent store manager from the details of the Java Virtual machine (JVM);

� provision of a computational space of objects that looks the same to the JVM as the standard space

of objects on the GC heap; and

� improved working-set behaviour because the average Java object is much less than a page size or disk

transfer unit as it is between 40 and 100 bytes (the mode is even smaller) for typical applications.

The disadvantage of this architecture is the cost of copying between the OC and PBP. The architecture

has been implemented and is in use as part of the orthogonally persistent JVM of PJama0. Experience

has shown this operating reasonably well for a variety of applications and synthesized loads. For example,

one application performed 2000 stabilizations, each adding about 200 objects with an average size of 60

bytes, and performing updates to sumchecks, counts, etc. This was followed in the same execution by three

complete traversals of the data (360 MBs) doing various computations, involving accesses to 6 million objects

at each pass. This ran on a 16 MBs cache with a 4 MB bu�er pool.

A cache observer component has permitted the various behaviours of the cache population to be visualized

and studied. One demonstration we have allows: map drawing, interruptable pi calculations, multi-threaded

simulations of concurrent bibliographic search, and 007 benchmarks, to be run simultaneously or in succession



on the same object cache. The cache observer reveals the redistribution of partitions to di�erent regimes as

the balance of this load varies.

We expect to have measurements of some of the alternatives at the workshop and the important results

will be included in the �nal paper.

A major challenge in building this system has been understanding and coping with the complexities of a

JVM which was not designed or implemented with persistence in mind. These are presented in the paper for

two reasons: as an aid for anyone who has to tread a similar path, and as a record of what we consider to

be an almost inevitable part of retrospectively engineering an orthogonally persistent store for an industrial

strength language implementation. Some of the solutions to detailed problems that are presented may be

speci�c to the JVM we used but suggest strategies for overcoming similar problems. The generic solutions,

such as the double-check residency algorithm and the compromise of tracking handle variables will certainly

be useful in other contexts.

A particular interest in the paper are the techniques that may be used for victim selection in the OC

and hence of victim pages in the PBP. A variety of techniques, including random selection, approximations

to LRU and analysis of the JVM state to estimate future referends have all been presented. In most cases

there are a number of parameters and variants to consider. Our future work will include analysis and

measurement to better understand this design space which we consider important for continuous operation

and long-running transactions.

Our work will include extensions to yield acceptable behaviour during bulk loading (where most objects

are not revisited) and during continuous running.

In the longer term we expect to operate with a di�erent persistent object store [29] which will free us from

the yoke of the no-steal policy, use di�erent promotion algorithms and have multiple management regimes.

We will investigate whether the disadvantage of copying between the PBP and the OC can be ameliorated by

a hybrid cache management strategy, such as that sketched earlier. We will then investigate the interaction

between more general transaction management schemes and the cache management. We will probably have

to deal with signi�cantly changed JVMs by that time, including handle-less JVMs, but perhaps with better

information about pointers. We also hope to deploy code-optimization techniques in conjunction with this

architecture [12].
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Abstract

This paper presents the design of a new store layer for
PJama. PJama is a platform that provides orthogonal
persistence for Java1. Based on experience with a pro-
totype, PJama0, a new architecture has been devised
to permit incremental store management and to allow
a number of object management regimes to co-exist in
one store. It uses a plug-in model for composing a Java
Virtual Machine (JVM) with the persistent store and a
descriptor abstraction to limit the impact of changes in
JVMs on store management. Its anticipated advantages
over the current scheme include flexibility, adaptability,
scalability, and maintainability.

1 Introduction

The PJama project is a collaboration between Malcolm
Atkinson’s team at the University of Glasgow and
Mick Jordan’s team at Sun Microsystems Laboratories
and is attempting to demonstrate the benefits of an
industrial-strength, orthogonally persistent program-
ming language [7]. Opportunistically and for technical
reasons we have chosen to build an execution platform
and additional class libraries that provide orthogonal
persistence for Java [1, 14].

�Malcolm Atkinson is currently on leave as a visiting professor at
Sun Microsystems Laboratories, Mountain View, CA, USA.

1Sun, Java, and PJava are registered trademarks of Sun Microsys-
tems Inc. in the USA and other countries.

The initial design of this platform has been reported
[4, 6] and some early experiences with the first proto-
type, PJama0, have been described [17]. Further ex-
perience with building and operating this prototype has
suggested a refinement of the store architecture. The
pressures for change are given here:

� A succession of ports of our technology between
different versions of the JVM [20], an activity that
will not diminish, has shown the need for better
insulation between the store management code and
the JVM.

� At present, parts of our code are highly inter-
related which makes maintenance and experimen-
tation difficult. The same problem was discovered
in PS-algol [3] and this led to a more modular de-
sign for its successor, Napier88 [21].

� A sophisticated model of cache management, with
the potential for a variety of complementary man-
agement regimes in different regions, is now op-
erational [13]. However, at present the persistent
object store (POS) layer only operates one regime
and so it is difficult to exploit this potential. The
availability of multiple POS management regimes
will allow tailored support for special objects, such
as those required by multi-media applications.

� The recovery technology of our existing POS pre-
vents us re-cycling cache space that contains up-
dated objects [13]. This limits the amount of data
that can be modified within one transaction.



� The present monolithic POS is not convenient for
incremental algorithms, such as garbage collection
or archiving. This places an upper limit on the size
of the stores over which PJama0 can operate.

For these reasons, and with some data from a year
of operation, we set out to design a new architecture
for our orthogonally persistent Java virtual machine
(OPJVM) as a prelude to implementing the next
version of PJama2, PJama1. This paper reports on
the design of one part of that OPJVM, thePJama
Store Layer(PJSL). This interfaces with the object-
caching technology [13] and has descriptors to tell
it the representations used by the supported JVM.
The infinite variety of types of object that a POS
may be asked to preserve are reduced to a small
number ofkinds. The objects are stored inpartitions
to allow incremental POS-management operations
and each partition is under the control of a particular
regime. The operations that the OPJVM uses to ex-
ecute against a store are specialised by kind and regime.

All the issues presented in this paper are discussed in
greater detail in a techinical report [25].

1.1 Design Goals

The primary aim of PJSL is to support the operation
of PJama1 when running real workloads. The typical
workload makes long-running and complex use of
highly structured data, such as that concerned with
software construction [18]. Ultimately, we want
concurrent access to the store to be organised as long
running and flexible transactions. It is hoped that the
design of PJSL is sufficiently general that it will service
a wide range of applications and will be used to support
various language implementations. Its flexibility should
allow for a series of store implementation experiments.

The specific and immediate goals are:

� to support complete orthogonality, so thatany
object type can be accommodated, including in-
stances of all classes and arrays whatever their
size3;

2PJama was formerly known as PJava, but that epithet has been
trademarked by Sun to denote Personal Java.

3For engineering reasons the current upper bound for arrays is2
27

bytes.
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Figure 1: PJama Architecture.

� to accommodate at least 10GB of highly struc-
tured data, typically dominated by large numbers
of small objects;

� to be capable of continuous operation with in-
cremental algorithms for disk garbage collection,
archiving, etc.;

� to be capable of running on a file system or on raw
disk, with a minimum amount of operating-system
dependent code; and

� to be appropriate for our planned developments,
which are flexible and long-running transactions,
schema evolution, archiving, and distribution.

The implementation will be biased towards complex
computations that make repeated traversals over a sub-
graph of the objects that includes a moderate proportion
of the total population. However, the system must sur-
vive both total traversals and large bulk-loading oper-
ations. This must be achieved without requiring guid-
ance from application programmers, otherwise persis-
tence independence [7] will be lost.

1.2 PJama Architecture

This section briefly presents the current architecture
of PJama0, which is based on the JVM developed
by Sun Microsystems4. In Figure 1, the darker of
the shaded regions, which comprises the core of the

4Currently, the release of PJama0 is based on JDK1.0.2. However,
the port to JDK1.1.2 is close to completion.



interpreterand theheap, represents the original JVM.
The interpreter allocates, modifies, and reads objects in
from the heap.

In order for the JVM to support persistence, three new
components were added to it. Thestoreis kept on disk.
It contains the persistent data and it is cached at the
page level in thebuffer pool. All persistent objects,
before they can be accessed by the interpreter, are
copied from the buffer pool into theobject poolin a
format similar to those in the heap. Because of this, the
code used to operate over objects in the heap, can also
operate over objects in the object pool with minimal
changes.

New objects are still allocated in the heap. However,
if they become persistent (by being rendered reach-
able from other persistent objects, according to the
definition of persistence by reachability[7]), they are
migrated to the object pool and are also copied to the
store via the buffer pool. The operation which migrates
them is calledpromotion. Finally, any updates to
persistent objects are propagated from the object pool
to the store, again via the buffer pool.

This paper will concentrate on the components bounded
by the lighter of the shaded regions in Figure 1, namely
the store and the buffer pool, which will be referred to
as the PJama Store Layer or PJSL.

1.3 Paper Overview

Section 2 introduces partitions, kinds, and regimes and
shows how the appropriate method of an operation is
selected. Section 3 describes the internal layout of par-
titions, the format of persistent identifiers (PIDs), and
the use of descriptors. Section 4 contains our initial
views on disk and object space management. Finally,
Sections 5 and 6 present, respectively, related work and
conclusions.

2 Store Organisation

It has been decided that PJSL will adopt aPartitioning
Scheme[32]. This means that the store will be split
into smaller parts (partitions) so that each of them can
be garbage collected independently5. This partitioning

5Other algorithms, such as class evolution reformatting, archiving,
statistics gathering, etc. will also exploit this partition structure.

Operation

P
ar

tit
io

n 
R

eg
im

e

Object Kind
Operation

P
ar

tit
io

n 
R

eg
im

e

Operations
on Partitions on Objects

Figure 2: Operation Matrices.

scheme is considered to be the most efficient way
to incrementally garbage collect large spaces, such
as persistent object stores [11, 12, 23]. This view is
also supported by recent experiments conducted by
Printezis on garbage collecting small stores [24]. These
experiments showed that the time needed to garbage
collect stores of sizes between 27MB and 30MB varied
from 3 secs to 43 secs, depending on the object kinds
included and the degree of connectivity. It is obvious
that, if these times were extrapolated to apply to a
10GB store (which is roughly 300 times larger than the
sizes mentioned), the garbage collector will require a
prohibitively long pause to process the entire store in a
single operation.

Managing free-space inside a partition can be achieved
in many ways: compaction, free-lists, etc. The com-
bination of the free-space management scheme, along
with some additional organisation parameters, will
be referred to as thePartition Regime. Partitions of
the same regime will have the same internal structure
and will usually contain similar (in structure, size,
behaviour, etc.) objects. One regime can be more
appropriate than another for certain kinds of objects,
therefore several regimes can co-exist in the same store,
applied to different partitions. Based on this, operations
on partitions can be organised in a two-dimensional
array, indexed by the regime and operation (see Fig-
ure 2). This is similar to the single dispatch operation
used in object-oriented languages to invoke a method
on a given object [16].

Currently, objects in PJama can be divided into four dif-
ferent categories: class objects, instances, arrays, and
bytecodes6, each of which has a different internal struc-

6These are the byte arrays holding the results of compiling meth-
ods to byte-coded instruction sequences.



ture. These categories will be referred to asObject
Kinds or just Kinds. There are several operations de-
fined on objects, some being the same for all kinds (e.g.
move) and others requiring a different implementation
for each kind (pointer identification, faulting-in, etc.).
Further, it may be the case that some of these operations
are regime-specific. So, in a similar manner to opera-
tions on partitions, operations on objects can be organ-
ised in a three-dimensional array, indexed by the object
kind, regime, and operation (see Figure 2). Again, from
an object-oriented point of view, this is a simple imple-
mentation of a double-dispatch operation [16].

2.1 Partition Regimes

Six regimes will be implemented in the first version of
PJSL. Notice that heresmallobjects are those which are
small enough to fit into a singleTransfer Unit(TU)7. In
the same way,large objects are those which are larger
than a single TU. Theinitial six regimes are listed here.

Small Arrays : scalar and object arrays.

Small Instances : instances of classes.

Class Objects & Bytecodes: all instances of class
Class 8, i.e. all class objects and their bytecodes.
Clustering bytecodes with their classes minimizes
accesses to other partitions during class faulting.

Large Instances : instances of classes spanning TU
boundaries9.

Large Scalar Arrays : scalar arrays spanning TU
boundaries.

Large Object Arrays : arrays of instances or arrays
spanning TU boundaries.

Some of the reasons why partitions are organised in this
way, which relate to the store organisation on which
they are based (see Section 3), are presented below.

7A TU is the unit of transfer of data from the disk store to main
memory. It is a similar concept to a page, however it is named differ-
ently to avoid confusion, since its size might not be the same as the
page. In fact, different regimes might use TUs of different sizes.

8Strictly java.lang.Class but we omit thejava.lang.
where we believe it is easily understood.

9Assuming that the minimum TU size is 8KB, a large class in-
stance would have over 1,000 non-static fields, which is extremely
unusual. However, automatic generation of Java code (by program
translators, user-interface builders, etc.) occasionally results in such
classes.

Regime Tag

Operation

Operations on Partitions

Partition

Figure 3: Invoking an Operation on a Partition.

� Separating small objects from large ones avoids
many boundary checks upon object-faulting as
they are unnecessary for small objects since they
are guaranteed not to span multiple TUs.

� When partitions only contain arrays, they do not
need to include descriptors and their manage-
ment structures (see Section 3.6), as arrays have
a compressed-type encoding in their header.

� Partitions containing only large scalar arrays10

can be very large, since they do not need to be
scanned to identify intra-partition references dur-
ing garbage collection. Their reference counts (see
Section 3.3) determine whether they are garbage.

It is worth mentioning here that the Mneme object store
[22] established a notion similar to regimes. In Mneme,
they are referred to aspoolsand can be managed inde-
pendently, allowing object formats to vary implement-
ing different buffer management. They even provide
greater flexibility since it is up to the pool implementor
to define their internal structure. This is not the case for
the partition regimes of PJSL, which have to conform
to the structure described in Section 3.2. This decision
was taken as a compromise between flexibility and ease
of implementing new regimes.

2.2 Invoking Operations on Partitions

Figure 3 shows how an operation on a partition is in-
voked. Each partition contains (in its header) a tag
which determines its regime. This tag serves as an index
into the two-dimensional operations matrix and, along
with the operation index, yields the code for the desired
operation. Then the code is executed, accepting as ar-
gument the partition ID.

10Commonly images, sound samples, and numeric data.



2.3 Object Kinds

The minimum set of object kinds required by PJama are
as follows.

Class Objects : instances of classClass [14]. These
require special implementations for the OPJVM
bootstrap and for swizzling [13]. Each of them
is an image of theClassjava lang Class
C structure and of the other C structures that it
points to: constantpool , methodblock s,
fieldblock s, etc. [20].

Instances of any class, apart fromClass .

Bytecodespointed to from themethodblock s of the
class objects [20]. These could have been repre-
sented as byte arrays, but they need to be handled
differently.

Scalar Arrays : arrays of any scalar type.

Object Arrays : arrays of objects (either of instances
or other arrays).

Descriptors : a kind defined for internal use by PJSL
(see Section 3.6).

Scalar and object arrays are separated since the pointer
identification operation on them is fundamentally
different (returning either none or all of the array
entries, respectively).

It is easy to introduce new object kinds and new opera-
tion implementations appropriate for them. This makes
it possible to optimise the handling of some objects. Ex-
amples are presented below.

Strings : strings in Java (i.e. instances of the class
String ) are made up of two separate objects
[14]. Since the space-overhead of an object in
PJSL is 16 bytes (see the technical report [25] for
more information on this), it might be more space-
efficient to transform small strings into single ob-
jects when they are written to the PJSL and trans-
form them back into Java memory format when
they are faulted-in.

Compressed Objects: large scalar arrays might be
compressed when moved onto disk to save transfer
time and disk space. Examples are images, sound
samples, etc.

Object Kind Tag

Regime Tag

Object
Operation

Operations on Objects

Partition

Figure 4: Invoking an Operation on an Object.

Stacks : stack objects which will be used when threads
(i.e. instances of classThread [14]) are allowed
to be persistent.

Distribution Proxies will be needed to denote refer-
ences to objects in remote stores [27].

2.4 Invoking Operations on Objects

Operations on objects are invoked in a similar fashion to
operations on partitions. The regime tag and operation
index are still needed, only this time a kind tag is also
required. This is contained in the object’s header and
will serve as the third index in the three-dimensional
operations matrix (see Figure 4). Once the code has
been retrieved, it is executed with the partition and ob-
ject IDs as arguments11.

2.5 Clustering Considerations

It might seem that grouping objects in different par-
titions according to their kind, as mentioned above,
would cause a high degree of declustering and hence a
decrease in the performance of PJSL. However, this is
not necessarily the case. Large data structures which
typically need to be clustered together (linked lists,
trees, etc.) tend to be constructed from only a few
distinct types of object, usually instances of a few
classes and arrays. Hence, even though the instances
and arrays will be written to different partitions, as
long as they are clustered close to each other within
these partitions, the overall impact on performance
will be low. It has also been observed that such data
structures are usually larger in persistent systems than

11The PID of the object encodes or refers to all of this information
(see Section 3.4) so it would suffice as the only argument, though then
some decoding would be repeated.
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in traditional ones [5].

A concrete example is given here. Consider the tree
structure seen in Figure 5 and the way it will be copied
to the store. According to scheme A, all objects are
clustered in the same partition, irrespective of their
kind. This keeps them close together and minimises
disk accesses when the tree is traversed. However,
object management within the partition is harder
and less efficient, since it has to deal with objects of
different structure, size, and behaviour.

Alternatively, according to scheme B, instances are
separated from arrays, when copied to the store.
However, objects of both kinds will be clustered close
to each other within each partition. Object management
within the partition is now more efficient because it
only has to deal with objects of the same kind. Initially,
when the tree is traversed, TUs from both partitions
have to be read, making the startup cost more expensive
than in scheme A. However, assuming that the entire
tree structure is big enough not to fit in a single TU, this
cost will be absorbed as the rest of the tree is traversed
and more TUs are accessed.

In the example in Figure 5, when the first node of
the tree, containing objectsa, b, and c, is accessed,
scheme A will touch one TU and scheme B two TUs.
However, when the next node, containing objectsd,
e, andf , is accessed, scheme A will touch a new TU

Translation

VMVM

Store Layer

VM

Scheme A

Store Layer Store Layer

Dataflow between VM and Store
Scheme B Scheme C

Figure 6: Dataflow between the Virtual Machine and
the Store Layer.

whereas scheme B will touch the same two TUs it
previously touched, which are very likely to still be in
the cache. Therefore, the initial cost of touching two
TUs has already been absorbed. Obviously, this is a
very specific example and the performance impact of
either scheme is very application dependent. However,
there will always be pathological cases for both of them.

As far as class objects are concerned, keeping them
close to instances is not very important since they are
typically faulted-in once per execution (assuming that
they are not evicted from the object cache). Also, there
will usually be a large number of instances of a given
class and it will be impossible to cluster all of them
close to the class object. It is more important to cluster
the bytecodes close to their corresponding class object,
since they are very likely to be faulted-in shortly after
it. PJSL will in fact do this, as explained in Section 2.1.

2.6 Optimising Dataflow

There are several ways to arrange the flow of data be-
tween the store layer and the virtual machine. Figure 6
illustrates three of them:

� Scheme A assumes that the store has been written
specifically for the given virtual machine, there-
fore the virtual machine talks to it directly. This of-
fers the highestpotentialperformance. However,
the store code is not generic and it is very prone
to change when the specification of the virtual ma-
chine changes.
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� In scheme B, the store layer is general-purpose and
totally independent of the virtual machine. How-
ever, since it is very likely that the object format it
supports is different from the one the virtual ma-
chine uses, an extra translation layer is introduced
to cope with this. This has a negative impact on
the performance of the system. However, the store
layer code is totally independent from the layer
above it and can be easily re-used with only the
translation layer having to be re-written.

� Scheme C is the one which will be adopted in
PJSL and has been proposed as a compromise be-
tween schemes A and B. The core of the store
layer is generic, with only a set of well-specified
operations (which define, among other things, the
object format) having to be implemented specifi-
cally for the given virtual machine or application
which uses the store directly. This way no trans-
lation layer intervenes to impact performance and
the store can be adapted to and optimised for par-
ticular situations. However, the use of the store is
not trivial, since the persistent programming lan-
guage implementor has to write the plug-in oper-
ations contained in the two operation matrices de-
scribed in Sections 2.2 and 2.4.

3 Partition Organisation

This section presents a brief discussion on how the par-
titions are going to be organised in PJSL. It is included
here to give a feel for how the store will operate, what
facilities will provide to the higher-levels, and what in-
formation will require from them. The contents of this
section are discussed in greater detail in the technical
report [25].
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Figure 8: Organisation of the Indirectory.

3.1 Partition Identifiers

When a partition is created, it will be allocated an ID
which will stay attached to that partition, until it be-
comes empty and is reclaimed (if this ever happens).
This ID will be independent of the position of the par-
tition within the store. This way, it is possible to eas-
ily move, resize, and garbage collect a partition without
changing its ID and, therefore, any PIDs in objects in
other partitions which point to it (see Section 3.4).

3.2 Partition Layout

Figure 7 illustrates how the three main components of a
partition will be laid-out in the store.

Header : where the information describing a partition
is stored.

Object Space : where objects are allocated. As its size
increases, the object space grows forward in the
partition.

Indirectory : where indirection entries, also contain-
ing reference counts, are stored (see Section 3.3).
As its size increases, the indirectory grows back-
wards in the partition.

Ullage : free space on disc into which both the object-
allocation front and indirectory grow.

3.3 Indirectory

An indirectory entry contains the following fields.

Object Offset : the offset of the corresponding object
inside the partition from the start of this partition
A 4-byte word is enough for this, as we believe it
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acceptable to limit the maximum partition size to
4GB.

Reference Count : the number of references to the
corresponding object from objects inother parti-
tions. A 4-byte word is sufficient for this as well,
since it is unlikely that there will be more than 4
billion cross-partition references to a single object.

The use of the indirectory is illustrated in Figure 8.
When an indirectory entry is allocated for an object, it
keeps the same position inside the indirectory during
the entire life-time of that object. If the object is moved
inside the partition (due to compaction), only the object
offset in its indirectory entry is updated.

Indirectory entries which have been freed (when their
corresponding objects have been reclaimed) are linked
together in a list called theIndirectory Free-List. The
indirectory will grow only when this list is empty. It
can also shrink, if a number of contiguous entries at its
end have been freed.

3.4 PID Format

Figure 9 illustrates the format of thePersistent Identi-
fiers (PIDs) in PJSL. The least-significant bit of a PID
is always 1 to distinguish it from a memory address. In
the current JVM, these are all 8-byte aligned, both for
objects and handles, hence their least-significant bit is
012. The remaining space is split between the partition
ID and the index of the indirectory entry corresponding
to the object.

Even though 31 bit addressing might sound inadequate,
it must be made clear that in PJSL we address objects
rather than data, since the indirectory index is used as
part of the PID rather than the position of the object
inside the partition. It turns out that 31 bits are enough

12Any JVM combined with PJSL will have to (or will be changed
to) allocate its objects and handles so they are at least 2-byte aligned.
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Figure 10: Virtual and Physical Store Views.

to address stores larger than 10GB (our target size),
even after making pessimal assumptions about object
sizes. A full proof of this is given in the technical
report [25].

It is possible for PIDs to be exhausted within a par-
tition, without the partition being full. This happens
when there have been allocated2n objects in the parti-
tion without the object space having reached the indi-
rectory space. In this case, the partition is considered
to be full and, during the next garbage collection, an at-
tempt will be made to decrease its overall size by con-
tracting the ullage. Similarly, if the disk garbage col-
lector detects that the ullage is nearly exhausted, but the
PID availability isn’t, it will attempt an overall expan-
sion to increase the ullage.

3.5 Virtual Store View

Figure 10 shows the virtual view of the store that is
presented to the layer above, typically the object-cache
manager. The object-cache manager will specify the
regime under which an object has to be stored and
any subsequent updates to that object and the store
layer will handle the rest: object allocation, reference
count management, garbage collection, partition
re-organisation, etc. These operations might occur
synchronously (triggered by events such as updates,
allocations, etc.) or (in later versions of PJSL) asyn-
chronously, by daemons running in the background.

Another important point, illustrated in Figure 10, is that
both intra-partition and cross-partition references will
go via the indirectory. It would be possible to optimise
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the intra-partition references to point directly to the ob-
ject, since i) they do not affect the reference counts and
ii) the indirectory will not need to be visited, avoiding
a potential disk access. There are two reasons why this
will not be done. The most important one is that by
pointing directly to the object, it is not easy to deduce
its PID since this requires the index of its indirectory
entry (see the PID format in Section 3.4) and there is no
efficient way to retrieve it from the offset of the object
inside the partition. The second reason is a payoff dur-
ing compaction since, if all references go via the indi-
rectory, only the indirectory entries need to be updated,
rather than all the intra-partition references in every ob-
ject. This can accelerate significantly the compacting
phase of the disk garbage collector, especially in highly
inter-connected partitions [24].

3.6 Descriptors

It is important to be able to identify efficiently all point-
ers inside an object to speed-up the pointer swizzling /
un-swizzling operations, the scanning phase of garbage
collection, etc. Some language designers optimise the
object format itself to facilitate this. For example, the
pointers in all objects of Napier88 [8, 21] are grouped
together at the beginning of the object and can be
identified efficiently and uniformly. Unfortunately,
this is not possible for PJama, since the object format
used by the JVM does not guarantee this. To keep
the implementation simple, uniform, and generic, a
new scheme needs to be adopted to deal with this
complication.

A Descriptoris a special object, introduced to abstract
over the JVM’s layout conventions, which contains
information about the structure of all objects with the
same internal structure (at least the position of pointers
in them). Not all kinds of object need a descriptor,
e.g. bytecodes and scalar arrays don’t need one (there
are no pointers in them) nor do object arrays (all their
entries are pointers). However, pointers in instances
and class objects intermingle with scalars and it is not
trivial to identify them, hence descriptors need to be
introduced for both of these object kinds. All instances
of the same class can point to the same descriptor, since
they have the same internal structure. However, class
objects will each need a different descriptor, since their
contents, i.e. number and position of their pointers,
will vary.

The use of descriptors is illustrated in Figure 11. All
instances of class A point to the descriptor of instances
of A, which describes where the pointers inside the
instances are. This descriptor points to the class object
itself. This is necessary, since instances must point to
their corresponding class objects and, since they point
to the descriptor anyway, it is more space-efficient to
make the descriptor point to it rather than introducing
a new pointer inside each instance13. Finally, the
descriptor of the class object of A, which describes
where the pointers are inside the class object itself, is
included in partition 1 and is pointed to by the class
object. Notice that the descriptor of instances of A is
replicated inside each partition which contains at least
one instance of A. This helps to keep the descriptors
close to the instances and to minimise access to other
partitions during disk garbage collection.

The introduction of descriptors, apart from contribut-
ing towards the efficient and uniform identification of
pointers inside objects, also has the following advan-
tages.

� Descriptors can facilitate schema evolution, in the
case when the object format does not change. If a
class object needs to be replaced, only the point-
ers in the descriptors need to be updated and not
pointers in all instances.

� Descriptors can also optimise the heap garbage

13When instances are faulted into main memory, this indirection is
eliminated.
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collector of PJama, if the notion of object kinds
is retained while the objects are in memory.

� The fact that instances must point to their corre-
sponding class object would normally increase the
number of cross-partition references to class ob-
jects and hence would also increase the number of
changes to their reference counts. However, the
introduction of descriptors avoids this, since all
instances of a given class would point to the de-
scriptor inside their home partition and only the
descriptors, at most one per partition, will point to
the class object, via a cross-partition reference.

� Keeping the descriptors close to the correspond-
ing objects improves locality and avoids the disk
garbage collector from having to access other par-
titions.

� On disk at least, descriptors will also include the
type of the fields of the corresponding objects so
that a store can be used on platforms with different
byte-order.

4 Free-Space Management

As mentioned in previous sections, the persistent object
store will be divided into partitions whose size will vary
and will depend on the kind of objects they contain. Be-
cause of this, two levels of free-space management are
needed: one for allocating partitions inside the store and
one for allocating objects inside a partition. The next
two sections present a discussion of the differences in
trade-offs, behaviour, and assumptions between the two
levels.

4.1 In the Store

The store will be split into fixed-size blocks, calledBa-
sic Blocks14 (BBs). Their size will be between 256KB
and 1MB and probably equal to the smallest partition
size. When a new partition needs to be allocated in the
store, a number of contiguous BBs will be reserved for
it, which of course implies that a partition size can only
be a multiple of the BB size. On the other hand, when
a partition needs to be de-allocated, the BBs it occupies
will be marked as free in order to be re-used later. The
use of BBs is illustrated in Figure 12.

Managing the free BBs and allocating space for par-
titions might seem a similar concept to managing free-
space and dynamically allocating memory for programs
[30]. Some of the properties of a good dynamic mem-
ory allocator are i) to minimise fragmentation, ii) to
adapt quickly to changes in allocation patterns, iii) to
minimise wasted space, and iv) to be fast. However,
the trade-offs in managing free BBs are very different
to managing free-space in memory, as discussed below.

Fragmentation : Since persistent stores are very long-
lived (several orders of magnitude greater than a
program heap), it is vital that fragmentation is kept
as low as possible. Otherwise, it will have a neg-
ative impact on the performance and size of the
store, as its life-time increases, and might intro-
duce indefinetely accumulating space leaks, which
are unacceptable in the context of a long-lived per-
sistent store.

Adaptation to Changes : Again, due to the store be-
ing long-lived and different applications being able
to run over it at different times (or even concur-
rently), the BB manager should be able to adapt
easily to new allocation patterns.

Wasted Space: Disks these days are large and rela-
tively cheap and, since the first two properties are
so important, the space taken up by the store can
be a small percentage (up to 10% or 15%) larger
than its real size, in order to deal with them more
efficiently.

Speed : Even though speed is vital for a dynamic mem-
ory allocator (since the programs which use it can
exhibit a very high allocation rate), it is not as

14A better name for them would beMinimum Blocks, but unfortu-
nately this is abbreviated to MBs, same as Megabytes.



important in allocating and freeing BBs. Parti-
tion allocation and de-allocation will not be ex-
tremely frequent events in PJSL and they will usu-
ally be followed by several disk accesses. There-
fore, speed can be sacrificed in order to manage
space more efficiently15.

Flexible Partition Size : Sometimes partitions might
need to grow or shrink. However, when a new
size for one is proposed, the BB allocator can be
allowed to change it within some limits. For ex-
ample, if a 2MB partition needs to grow, it prob-
ably does not matter whether it becomes 3MB or
3.5MB (but does matter if it becomes 20MB). This
can allow the BB allocator to be more efficient in
dealing with fragmentation.

Partition Mobility : Since PIDs do not depend on
the position of the partition in the store (see Sec-
tion 3.4), it is possible to move a partition, in order
to make a larger number of contiguous BBs avail-
able for a big partition. This clashes with the typi-
cal assumptions a memory allocator usually makes
(e.g. objects allocated dynamically in languages
like C or Pascal are non-migratable). The move-
ment of partitions can only be used as a very last
resort, after all other possible solutions have been
exhausted.

The decision on the algorithm to be used for the BB
management is still being researched. Ideas will be
drawn from previous work in free-space management
for file systems [15, 28] and dynamic memory manage-
ment and allocation [30].

4.2 In a Partition

Once a partition has been allocated in the store, the
free space inside it will be managed at the object level.
The object space will be reclaimed and compacted
using garbage collection [29]. Additionally, due to the
introduction of partition regimes (see Section 2.1), it is
possible for different partitions to implement different
free-space management policies, optimised for the
kinds of objects they contain.

15Of course, this does not mean that the BB manager might require
1 sec or more to allocate a partition. It just means thatsomespeed
might be sacrificed in order to achieve more efficient BB manage-
ment.

For example, compaction can be beneficial for small
objects because it can deal with the big number of small
“holes” which are created as small objects become
garbage. Also the fast allocation that it provides can
improve the performance of promotion, if a large
number of objects are allocated in the same partition.
Alternatively, free-lists might apply better to larger
objects since it is inadvisable to copy them unneces-
sarily16 and, because of their size, fewer large objects
can be accommodated inside a partition, which has the
potential to keep the free-lists short.

It is also worth pointing out that clustering objects of
similar size inside each partition has the potential to re-
duce fragmentation considerably.

5 Related Work

A large number of persistent stores have been con-
structed for a variety of systems and purposes.
Mentioning all of them would be too lengthy. There-
fore this section is selective.

ObjectStore [19] from Object Design Inc. is considered
to be the most successful commercial object store. It
uses a client-server model and was initially targetted
for C++ applications, therefore space re-use relied on
explicit deletes rather than garbage collection. Its latest
version (5.0) provides an API to store Java objects.

Object Design Inc. have also announced lately a new
product called ObjectStore PSE (Persistent Storage
Engine), which is a lightweight version of their main
product. The main difference is that it is written en-
tirely in 100% Pure Java, thus trading-off performance
for portability.

The Texas object store [26] from the University of
Texas at Austin is similar to ObjectStore in that it was
targetted for C++ and explicit deletes. It implements
pointer-swizzling at page-fault time [31] and uses a
technique similar to the descriptors (see Section 3.6) in
order to do so.

16It has been observed that the average lifetime of large objects is
usually greater than that of smaller ones [30]. This argument still
needs supporting experimental evidence in the context of persistent
stores. However, if it does hold and compaction is used, large ob-
jects will be forced to be copied unnecessarily, causing an increased
number of disk accesses.



The object store implemented for the persistent lan-
guage Napier88 [9, 10, 21], from the University of St
Andrews, Scotland, has a good model of reachability
and hence makes disk garbage collection possible.
However, the object format which it uses groups all
pointers in the beginning of the objects [8, 9, 10]. If
the application which uses it does not have a similar
object format (which is the case for PJama), expensive
translations are necessary when objects are copied to
and from the store.

Finally PJSL was influenced by the Mneme object store
[22]. As mentioned in Section 2.1, it has a similar par-
titions and regimes called pools. Each pool can be in-
dependently managed and can support different object
formats. Also, Mneme was designed with disk garbage
collection in mind. It is not known whether a garbage
collector has actually been implemented for it.

6 Conclusions and Future Work

The design of a store layer for the support of an orthog-
onally persistent platform for Java has been described.
Important features are:

� the grouping of store-objects into a small number
of kinds;

� the partitioning of disk space into partitions;

� local regimes for space and transfer management;

� the introduction of descriptors that abstract over
the store formats used by a virtual machine; and

� the use of these features at the store-layer interface.
They will be presented in a structured way for use
by the adaption code, which must be written when
a new (version of a) virtual machine is combined
with the store layer.

The first three points contribute to flexibility and will
allow experiments with regimes that are thought to
be optimal for particular categories of data. The final
two are expected to yield benefits when binding to
a new virtual machine. They can be considered a
satisfactory compromise, trading performance against
maintenance costs, between stores that are tailored to a
particular JVM and stores that incur large translation
costs because they choose a neutral format of their
own. The partition structure is also intended to allow

incremental store administration algorithms.

Construction of this new store will take place this sum-
mer and we plan to report on the extent to which the
design matches our expectations at the workshop. The
store will be integrated with a JVM and performance
measurement and tuning will quickly follow. The next
phase will involve three parallel investigations:

� exploration of disk garbage collection strategies;

� evaluation of the utility of specialized partition
regimes; and

� validation that the store will support its intended
load and planned functionalities:

– flexible and long transactions;

– concurrent archiving and disk garbage col-
lection;

– schema evolution; and

– a model of distribution [27].
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Abstract

The promise of Java as the vehicle for widely used, industrial strength orthogonally persistent sys-
tems places a renewed emphasis on implementation technologies for orthogonally persistent systems.
The implementation of such systems has been held back by a number of factors, including a breadth of
technologies spanning database and programming language research domains, and difficulty in capi-
talizing on the fruits of the mainstream database research community.

In this paper we present PSI—a practical storage abstraction that separates database and program-
ming language concerns and facilitates the adoption of mainstream transactional storage technology
within orthogonally persistent systems. We argue for PSI as the basis for persistent Java system con-
struction with particular reference to how it might be applied to PJama0 [Atkinson et al. 1996].

1 Introduction

In Carey and DeWitt’s retrospective on the past ten years in the database community [Carey and DeWitt
1996], two items are singled out for special attention as “casualties” of the past decade. These are per-
sistent programming languages and database toolkits. The work reported in this paper raises the suggestion
that Carey and DeWitt may have jumped horses a little early, as we claim that something akin to the
database toolkit approach will play an fundamental part in the realization of industrial strength, widely
used orthogonally persistent systems.

The work reported in this paper has developed in response to our desire to build efficient, robust,
scalable orthogonally persistent programming environments. It has been shaped by our attempts to
come to terms with the breadth of the technologies involved and the relative smallness of the persistence
research community. The effect of these factors has been articulated by Atkinson and Morrison in their
1995 review of orthogonally persistent object systems [Atkinson and Morrison 1995], where they say:

However, [existing systems] do not manage to provide full database facilities—that is, few can
actually demonstrate a complete repertoire of incrementality, transactions, recovery, concurrency, dis-
tribution, and scalability. (It appears that this is more a consequence of teams being unable to muster
the effort to tackle all of these issues together rather than of any fundamental limits.)

The focus on orthogonally persistent systems (i.e. systems where the persistence of data is orthogonal to
all other properties of the data [Atkinson and Morrison 1995]), stems from a desire to build systems that
elegantly unify the divergent database and programming language paradigms. While ODBMSs and
object-relational systems bring programming languages and databases closer together, they do not seek
to unify the two paradigms. The challenge of building efficient orthogonally persistent systems thus
goes beyond the pragmatic appeal of building systems for today and instead focuses on systems for the
future.

It seems clear to us that wide-spread uptake of orthogonally persistent systems will depend on the
efficient and robust delivery of database facilities such as those outlined by Atkinson and Morrison.

�The authors wish to acknowledge that this work was carried out within the Cooperative Research Center for Advanced
Computational Systems established under the Australian Government’s Cooperative Research Centers Program. We also wish to
acknowledge generous support from Fujitsu Ltd and Object Technology International.



The realization of this objective will depend on either a substantial increase in the size of the persistence
community’s research effort or a change of implementation approach.

This paper outlines a new implementation approach which can be characterized in terms of the
following attributes: separation of concerns and concentration of expertise; maximal capitalization on
the work of the database research community; and the portability and amenability to collaboration of
implementations.

The remainder of this paper is structured as follows: First we will introduce and motivate an archi-
tectural framework for store implementation. Next we will present an interface based on an abstraction
of that architecture. Finally we will discuss the practical application of PSI to persistent Java.

2 The Transactional Object Cache

The choice of the transactional object cache as the basis for a new design approach is rooted in the
authors’ experience with scalable store construction in the design of MC-Texas [Blackburn and Stanton
1996] and MC-DataSafe [Blackburn et al. 1997] and in the observation that the persistence community
has not been able to build systems with the level of efficiency, robustness and functionality found in
database products.

From the perspective of the future development of scalable persistent systems, perhaps the three
most important lessons of the MC-Texas and MC-DataSafe experiments are these [Blackburn 1997]:

� The importance and appropriateness of a transactional model of concurrent computation when
working in a distributed persistent space.

� The extent to which concurrency control and recovery fall within the mainstream of database
research—research which the most (orthogonally) persistent architectures are not suited to ex-
tensively exploiting.

� The impact of temporal and morphological grain on performance.

These lessons can be interpreted as indicating a need for an architecture for scalable (orthogonally)
persistent systems which:

1. Embodies a transactional model of concurrency control.

2. Separates database and programming language concerns in a way that facilitates the capitaliza-
tion on research by the database community, particularly in the areas of concurrency control and
recovery.

3. Offers an object-grained interface to clients which minimizes the need for copying of data.

Transactional
InterfaceCache

Object Store

Application
Program

Language
Run-time

Figure 1: The transactional object cache architecture. The architecture of the object store is transparent
to the application.

The transactional object cache architecture (figure 1) is one which satisfies all of these criteria. The
basic architecture consists of five key components: an application program; an (optional) language run-
time system (RTS); a cache; an object store; and a transactional interface. The basic model is that of the
application program operating (via direct memory access) over a cached image of the store. The validity
(in transactional terms) of the cached image seen by the application is ensured by appropriate use of the
transactional interface.



The first of the above criteria is addressed by virtue of the transactional framework in which all cache
consistency actions occur—the architecture is intrinsically transactional. Criterion two is met through
the existence of the transactional interface, which separates the store and RTS. The extent to which the
second criterion is met will be largely a function of the the interface definition. The dominance of the
transactional object cache paradigm in the ODBMS literature [Carey and DeWitt 1986; Carey et al. 1994;
Franklin 1996] has lead to mainstream database technology often being targeted at or sympathetic to
that approach. Orthogonally persistent programming systems that adopt the transactional object cache
architecture therefore stand to profit from the database community’s research outcomes in a very direct
way. The final criterion is met by virtue of the direct cache access given to the application and the object
grained nature of the interface.

2.1 The Transactional Object Cache as a Platform for Distribution

While caching has a natural role in persistent system design as a means of hiding disk latency, it is
also important to distributed systems where it is used to hide network latencies. There exists a well
established literature on the distributed cache coherency problem. Approaches to this problem fall into
two broad camps: transactional cache coherency [Franklin et al. 1997], based on the transactional notion
of isolation; and distributed shared memory [Adve and Gharachorloo 1995], based on the programming
language community’s cooperation-oriented view of concurrency. Given the transactional nature of most
orthogonally persistent systems, the first approach is of most interest here.

server

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache
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store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

server server
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Figure 2: Client-server (left) and client-peer (right) transactional object cache architectures. In both
cases the distributed nature of the underlying architecture is transparent to the run-time systems and
applications.

Although not explicitly object-based, all of the the wide range of approaches to transactional cache
coherency surveyed by Franklin et al. in [Franklin et al. 1997] are directly applicable to the transactional
object cache architecture. These approaches span almost all dimensions of the concurrency control de-
sign space and include classic optimistic and locking architectures.

A powerful property of the architecture is that its semantics are defined in strict transactional terms
and as a consequence embody the distribution-independent concurrency that flows from the isolation-
oriented transactional view of concurrency, thus opening the door to transparency of distribution in
implementations1. Approaches to transparent distribution in this context include client-server (dis-
tributed clients, single store), and client-peer [Carey et al. 1994; Blackburn and Stanton 1996; Blackburn
1997] (distributed clients, distributed store) architectures (figure 2).

3 PSI: A Transactional Storage Interface

Having identified the transactional object cache architecture and the value of a common storage inter-
face, we will now briefly describe PSI, which we have developed to fulfill this role.

An important element of the interface is the identification of core and extended functionality. The
core interface provides the client with the minimal functionality needed for basic ACID transactional

1The isolation guarantee of ACID transactions gives us this property. In the case where isolation is weakened, such as in some
advanced transaction models, concurrency and distribution become more opaque.



object caching, whereas the PSI extensions place greater demands on the PSI implementer but give
the client features such as advanced storage structures (indexes and collections) and intra-transactional
checkpointing and rollback. To keep the description of PSI brief, we will only define the core PSI func-
tionality here. A complete description of PSI appears in [Blackburn 1997].

3.1 A Semantic Framework

In order to effectively articulate the semantics of the interface, we first identify a clear abstraction of the
transactional object cache architecture.

Although the key building blocks for a transactional interface may be fairly clear (begin, commit,
abort etc.), the goal of flexibility both above and below the interface makes the identification of the pre-
cise semantics of these operations with respect to the various areas of store management more difficult.
For example, a number of questions are raised by a simple write to the cache. When is that write made
stable? When may the buffer associated with that data be freed? When will that change be made vis-
ible to other transactions? Formulating answers to these questions is made all the more difficult by a
tendency for the various concerns to be blurred in the literature. In order to help meet our objective of
flexibility in our interface design, three key concerns of a transactional object cache are separated and
identified:

� stability,
� visibility,
� and cache management.

The first two are unambiguously central to a transactional storage interface; the third is included in a
pragmatic response to the demands of efficient store construction. By establishing abstract interfaces to
each of these concerns, a store interface can be built up and described precisely in terms of its semantics
with respect to each of the separate concerns. The remainder of this section will focus on the develop-
ment of those abstract interfaces. The approach taken will be to treat the three concerns as orthogonal—
separate models of stability, visibility and cache management will be developed. Having developed
the models and abstract interfaces to them, there will be a discussion on how the three concerns come
together to form a rich abstraction of the transactional object cache architecture.

3.1.1 Stability

Stability is fundamental to most transaction models. The commit of an ACID transaction requires that
all changes made by that transaction be made durable. Durability combines stability with irrevocability.
By contrast, changes made stable (but not durable) may be subsequently rolled back.

In order to properly describe the stability semantics of a transactional object cache, it is helpful to
first develop an abstract model of stability. Stability in this context concerns the maintenance of a stable
image of a system state that corresponds in a meaningful way with the state of a dynamic system that is
otherwise volatile.

The state of such a system can be represented as a history, h of (state changing) atomic events, ei :

h= e0:e1:e2 : : :en

By identifying a durable global stability history, hsg, and a set of volatile local stability histories, HSl =
fh0;hs0i;h1;hs1i; : : : ;hn;hsnig, the atomicity and durability of a simple transactional system can be defined
by describing the changes of state associated with a given transaction t in hst (where ht;hsti 2 HSl ). In
this model, a transaction is made durable via an operation which appends hst to hsg (i.e. hs0

g = hsg:hst ,
where hsg and hs0

g denote before and after values of hsg respectively). With the addition of marker events,
m, and stability events, s, the semantics of checkpoint/rollback and intra-transactional stability can be
described respectively.

Having set in place a simple abstract model of stability capable of representing a wide range of
stability scenarios, the remainder of this section will identify a series of stability primitives in terms of
that model.

The global stability history is initially empty and there are no local stability histories (hsinitial
g = emptŷ

HSinitial
l = fg). In the following shorthand will be used to refer to simple modifications of local history,

the effects on HSl being implicit. For example, the notation

hs0

t = hst :e



Core
BeginUpdates
NotifyUpdate
AbortUpdates
MakeDurable
EvictVolatile

Logging
CheckpointUpdates

RollbackUpdates
StabilizeUpdates

Extended Trans.
DelegateUpdates

Table 1: Stability primitives. Only the semantics of core primitives are described in this paper. See
[Blackburn 1997] for a complete description of all primitives.

should be read as shorthand for:

HS0

l = fhti ;hstii 2HSl jti 6= tg[fht;hst:eijht;hsti 2HSlg

The following primitives, described in terms of the above stability model, are sufficient to describe
the stability semantics of a basic flat ACID transaction, t:

BeginUpdates(t) hst = empty ^ HS0

l = HSl [fht;hstig

NotifyUpdate(t,o) hs0

t = hst :eo, where eo is an event describing a change of state to some object, o.

AbortUpdates(t) HS0

l = fhti;hsti i 2 HSl jti 6= tg

MakeDurable(t) hs0

g = hsg:hst ^ HS0

l = fhti;hsti i 2HSl jti 6= tg

In addition to these, there needs to be a primitive with global scope that describes the eviction of all
volatile data (allowing system crash and program termination to be modeled):

EvictVolatile 8ht;hsti 2HSl hs0

t :s:Ec = hst , where Ec = ec0:ec1 : : :ecn ^ s 62 Ec

A simple ACID transaction would thus consist of BeginUpdates followed by zero or more NotifyUpdates
and then one of MakeDurable, EvictVolatile or AbortUpdates.

3.1.2 Visibility

Visibility is another issue of fundamental importance to transaction models. ACID transactions ensure
isolation by restricting visibility of changes made by uncommitted transactions. Extended transaction
models often allow the controlled relaxation of isolation. There are a wide range of approaches to im-
plementing visibility control, the design space for which spans many dimensions [Franklin et al. 1997].

Central to an understanding of visibility is the notion of transactions operating over potentially in-
valid images of the state of a store. The responsibility of the visibility control mechanism is to ensure
that no transaction that saw an invalid image of the store be allowed to commit. As outlined by Franklin
et al. [1997], there are two broad implementation alternatives: avoidance based schemes, where transac-
tions are prevented from ever being exposed to invalid images of the store; and detection based schemes,
where exposure to an invalid image of the store is detected and the transaction prevented from com-
mitting2. In either case, the visibility control mechanism must be able to determine the validity of the
image of a store seen by a given transaction. Validity is usually defined in terms of serializability—a
transaction is valid only if it can be serialized with respect to all previously validated transactions.

In order to describe visibility semantics concisely, a reference model for visibility will first be de-
scribed. Note that this model is orthogonal to the model for stability presented in the previous section.
The integration of stability, visibility and cache management semantics to fully capture the semantics of
the transactional object cache is addressed at the end of this chapter.

The visibility semantics of a transactional system can be described in terms a single history, hv, of
visibility events, ei :

hv= e0:e1:e2 : : :en

2Franklin et al. [1997] argue for a taxonomy of concurrency control approaches based on a separation into avoidance and
detection based schemes. The taxonomy specifically avoids the ambiguity of the related pessimistic/optimistic distinction.



A transaction, t, is then modeled as a sub-history of hv, hvt , and the store image seen by t is defined by
the visibility events composing hvt . T denotes the set of all transactions in hv, where all transactions are
disjoint with respect to hvand T completely covers hv:

(e2 hv)) ((9ti 2 Tj(e2 ti))^ (8t j 2 T; ti 6= t j e 62 t j )))

The notion of irrevocability, which is central to modeling transactions, is introduced by defining
irrevocable(e) to denote that e is irrevocably part of hv. More generally, immutable(t) is defined such
that hvt is a fixed sub-history of hv (i.e. membership of hvt is static) and immutable(t)) ((e2 hvt) )
irrevocable(e)). The property of immutabilty can be used to capture the notion of transaction commit—
all committed transactions are immutable while uncommitted transactions are mutable (both revocable
and appendable).

The visibility events which compose the histories must capture sufficient semantic detail such that
the validity of the store image as projected by a given sub-history can be determined. Furthermore, the
events must capture the range of visibility scenarios possible in a cached store, most notably: shared
access to an image of an object and the possibility of multiple ‘versions’ of objects existing as a result
of replication. These facets of visibility are covered by the definition of read and write begin and end
events with respect to versions, v, of objects, o, in particular workspaces, w: rov;w, r̄ow, wow, and w̄ov;w.

The concept of workspace is used here to refer to a single, potentially shared, image of an object.
Interactions and potential conflicts between transactions sharing a single image of an object (for space
efficiency reasons, for example) can thus be modeled. Object version numbers, v, monotonically increase
and are incremented as part of each w̄ov event (which corresponds to the new version of o becoming
visible in some scope). Read events, rov;w, may be with respect to any existing version, v, of o and any
workspace w.

Having constructed such a model of visibility, a number of functions are defined that will enable
a user to reason about the validity of an image of the store as seen by a particular transaction t. The
first of these is a termination function T (hvi) which tests termination on all reads and writes within a
sub-history hvi (the notation a! b is used to denote a preceding b in hv):

T (hvi) = (8ro2 hvi (9r̄o 2 hvi (ro ! r̄o))) ^ (8wo 2 hvi (9w̄o 2 hvi (wo ! w̄o)))

In addition, a workspace isolation function, W (hvi;hvj), is defined such that it is true only if no read
events composing a given sub-history hvi overlap with any write events in sub-history hvj and are with
respect to a common workspace image of an object:

W (hvi
;hvj) = (8row; r̄ow 2 hvi ( 6 9wow 2 hvj (row !wow ! r̄ow))) ^

(8wow;w̄ow 2 hvj (6 9row 2 hvi (wow ! row ! w̄ow)))

Finally, a serializability function S(hvi
;hvj

;hvk) is defined such that S(hvi
;hvj

;hvk) is true only if the store
image as seen by hvi is consistent (serializable) with respect to hvj , where hvk denotes a sub-history of all
events with which conflicts are ignored:

S(hvi
;hvj

;hvk) = 8rov 2 hvi (((9w̄ov 2 hvj) _ (9w̄ov 2 (hvi[hvk))) ^

( 6 9w̄ov0
2 hvj (w̄ov ! w̄ov0

)))

The inclusion of hvk is necessary because given a decision to ignore conflicts between events in hvi and
hvk, update events in hvk form part of the valid store image seen by hvi .

With the visibility model and the three validity functions defined, an abstract interface with respect
to visibility in a transactional object cache can now be defined. The model is sufficiently rich to allow
the user of the abstract interface to assess the transactional validity of a very wide range of visibility
scenarios. The abstract interface will be introduced in terms of core and extended functionality (as with
the stability interface) and consequently begins with the particular (i.e. basic ACID) and extends to the
general.

In the following description, a number of conventions will be used:

� Appending an event to a sub-history implies appending the event to hv: (hvt 0 = hvt
:e)) hv:e.

� Truncating a sub-history implies removal of events from hv: (hvt 0:ei = hvt)) (hv0 = hvnei), where
n denotes history difference.

� The operation hvi [hvj denotes the order-preserving merging (union) of two sub-histories.

Furthermore, by definition any manipulation of a sub-history corresponding to an immutable transac-
tion is not permitted.



Core
BeginVisibility
ReadIntention
ReadComplete
WriteIntention
WriteComplete
AbortVisibility
Terminated

Finalize
Expose

Logging
CheckpointVisibilty
RollbackVisibility

Extended Trans.
DelegateVisibility

IgnoreConflict

Table 2: Visibility primitives. Only the semantics of core primitives are described in this paper. See
[Blackburn 1997] for a complete description of all primitives.

3.2 Visibility and Core Functionality

Using the above model of visibility, the following primitives are sufficient to describe the visibility se-
mantics of a simple flat ACID transaction, t:

BeginVisibility(t) hvt = empty ^ T 0 = T [ftg

ReadIntention(t,o) hvt 0 = hvt
:ro

ReadComplete(t,o) hvt 0 = hvt
:r̄o

WriteIntention(t,o) hvt 0 = hvt
:wo

WriteComplete(t,o) hvt 0 = hvt
:w̄ov

AbortVisibility(t) (hv0 = hvnhvt) ^ (T 0 = T n ftg), where the symbol n denotes history difference and
set difference respectively (i.e. the events composing sub-history hvt are removed from hv).

Terminated(t,o) T (hvto), where hvto refers to a sub-history of hv consisting of all events in transaction t
relating to object o.

Finalize(t) (T (hvt)^ S(hvt
;hvi

;hvict )^W (hvt
;hvw)), where hvi is the sub-history of hv consisting of all

irrevocable events, hvict is the sub-history of hv consisting of all events with which t is ignoring
conflicts, and hvw = hvn (hvt[hvict ).

Expose(t) immutable(t) = true

3.3 Cache Management

A third dimension of the transactional cache architecture is cache management. A cached store design
is motivated by the desire to hide IO latency and introduce replication through caching. While visibility
is concerned with the state of the store as it might be seen by a given transaction, cache management is
concerned with the availability of that image to the transaction.

Cache management can be modeled in terms of each active transaction, t, operating over a logically
distinct cache ct within which are present some set of objects: ct = fo0;o1; : : : ;ong. An object is only
available to a transaction if present in that transaction’s (logically distinct) cache.

Core
Fix

Unfix

Table 3: Caching primitives.

Only two primitives are necessary for the implementation of a cache management scheme:

Fix(t,o) c0

t = ct [fog.



Unfix(t,o) c0

t = ct nfog.

With these the client can notify the store of when it requires availability to a given object. The state
of the available objects is a function of the visibility control mechanism.

3.3.1 Generality and Completeness

Each of the three orthogonal abstractions outlined above are general—in the sense that they are premised
only by intrinsics of scalable persistent systems, namely caching, atomicity by way of transactions, and
layered software abstractions—and complete in so far as they support the wide range of scenarios derivable
from a combination of ACID transactions, delegation, isolation relaxation, intra-transactional stability,
and checkpoint/rollback.3 When brought together, the orthogonal abstractions yield a full abstraction of
the transactional object cache with the same generality and completeness. The remainder of this section
gives a brief overview of the full abstraction.

The relationships between each of the abstractions are not symmetric. Visibility can be thought of as
dominant because it is visibility that defines the image of the store seen by each transaction. By contrast,
stability and cache management have ancillary roles of defining the stability and availability of the store
image as determined by the visibility model.

By and large the integrated semantics of the full abstraction are straight-forward. However, it should
be emphasized that the cache is merely a means of accessing the store image as defined by the visibility
model. Any access to the cache outside the context of a fix(t,o), unfix(t,o) pair is not meaningful and
any access within the context of a fix(t,o), unfix(t,o) pair is only meaningful insofar the visibility model
indicates the validity of such an access.

Finally it should be noted that although the abstraction is presented in terms of object-grained se-
mantics, it is applicable to data movement and coherency at any granularity and so may be trivially
adapted to account for such.

3.4 Separation of Concerns

Having presented the semantics of a transactional object cache, we now look at how various elements of
persistent programming system design impact on the PSI interface design. We start by identifying key
design choices for a persistent programming language (PPL) implementer. Having identified these, we
determine the extent to which PSI will take a role in that aspect of PPL construction on the basis of its
relative proximity to storage and language issues. In the remainder of this section, we identify six key
issues and for each argue the case for PSI’s role with respect to that issue. We refer to the PPL as the
interface’s “client” throughout this section.

Persistence Identification PSI presents its clients with a store that supports persistence by reachability
from a single root and that guarantees the referential integrity of object identifiers (OIDs) within the scope
of a transaction. An OID is undefined as soon as it leaves its transactional scope. Support for extended
transaction models allows clients to use delegation of transactional scope to avoid re-traversing from
the root of persistence at the start of each transaction. This approach does not inhibit the client PPL
from presenting applications with a more elaborate space of named entry points, it is left to the client to
ensure that all advertised entry points remain reachable. In order to efficiently implement persistence
by reachability, PSI introduces the concept of descriptors. PSI associates each object with a (hidden)
descriptor field. The descriptor field points to an object that encodes the location of references (pointers)
within the object.

PSI’s approach to object typing contrasts strongly with ODMG’s ODL [Cattell and Barry 1997] and
SHORE’s SDL [Carey et al. 1994], which are object definition languages that attempt to provide a means
for storing objects and their types in a language independent manner. PSI is language independent, but
does not attempt to address the issue of poly-lingual access to objects. The need for PSI to be aware of
types is limited to the requirement that it be able to efficiently and correctly garbage collect the store—a
need that is adequately met by the identification of references and is-one-of relationships as provided
by the descriptor model.

3It is hard to prove completeness, however the literature suggests the completeness of the range of scenarios covered by the
abstractions.



Residency Checks and Write Detection Object faulting is usually achieved through some sort of res-
idency check at each object access. Similarly, some form of write detection is typically used to identify
updated objects for writing back to stable store. The spectrum of approaches to residency checking and
write detection include explicit checks by an interpreter at the time of word access or update (Napier88
[Munro 1993]) and use of page-grained hardware memory protection (the Texas persistent store [Wilson
and Kakkad 1992]). The choice of the most appropriate mechanism involves tradeoffs which, for a par-
ticular client, are likely to be heavily context-dependent [Hosking 1995]. For this reason PSI relies on the
client making explicit read and write requests, leaving the choice of detection mechanism to the client’s
implementer.

Swizzling The choice of an appropriate swizzling strategy is complex and influenced by application
characteristics and PPL implementation approach (interpreted versus compiled PPL, for example). For
this reason PSI does not impose a particular approach to swizzling on the client PPL, but instead provides
hooks that facilitate swizzling—by allowing the client to identify references through descriptors, for
example.

Concurrency Control and Cache Management The question as to which level the management of
concurrency control should live within a persistent programming system is an important and difficult
one. One approach is to give the upper layers levers in the form of transactional primitives within a
flexible, extended transaction framework such as that formalized in ACTA [Chrysanthis and Ramam-
ritham 1994]. The PSI interface is based on a rich abstraction of a transactional object cache which gives
the client the levers necessary for the execution of a wide range of transaction models while leaving the
store designer considerable implementation scope [Blackburn 1997].

Recovery There exist a wide variety of approaches to recovery. Most are compatible with the semantics
of durability and failure in the context of basic ACID transactions and some support more sophisticated
stability semantics such as intra-transaction stabilization and roll-back. The ACID notion of durability
is included in the core PSI interface while intra-transaction stabilization and rollback form the basis for
PSI’s logging extension.

Advanced Storage Structures Some prospective PSI clients are likely to make use of extended storage
structures such as index and collection types [Albano et al. 1995]. While these can be readily constructed
on top of an object store (including PSI), the specialized nature of such data types has lead to the pub-
lication within the database community of considerable implementation optimizations with respect to
concurrency control and storage management. In response to this, the implementation of index and
collection types is the basis for one of PSI’s extensions.

3.5 The interface

The PSI core interface is now defined in terms of the semantic framework outlined in section 3.1. In
addition to the extra functionality of extensions for logging, extended transactions and advanced storage
structures, the interface includes a number of housekeeping functions for opening and closing the store
(including store recovery), setting the cache size etc. For the sake of brevity, only the core interface is
described here (the interested reader is referred to [Blackburn 1997]). The transactional elements of the
PSI interface are listed in table 4.

The modules that are not transactional in nature are illustrated in table 5. In addition there is a
function, PSI LIO, which gives asynchronous and list semantics to most of the transactional operations
in much the same way as the POSIX lio (list-directed IO) interface [ISO/IEC and IEEE 1990] does for
Unix file operations.

PSI Read A copy of a specified object is forced into the cache. While PSI will not guarantee the ob-
ject to be fresh, it will ensure that no transaction exposed to a stale object be allowed to commit (see
section 3.1.2). The object will either be left in-place—in which case the client is returned a pointer to
the object—or copied to a client-specified buffer, depending on the value of a boolean, copy, passed
by the client. In terms of the semantics outlined in section 3.1, the read has no impact on stability but
implements ReadIntention(t,o) with respect to visibility and if the read is in-place, Fix(t,o) with respect
to cache management.



Core
PSI Read
PSI Write
PSI New

PSI NewTransaction
PSI Commit
PSI Abort
PSI Unfix
PSI Fix

Logging
PSI Checkpoint

PSI Rollback
PSI ThisCheckpoint

PSI Stabilize

Extended Trans.
PSI Delegate

PSI IgnoreConflict

Indexing
PSI Insert
PSI Fetch
PSI Delete

Table 4: The PSI transactional interface.

Extended OID
PSI GetSA
PSI GetOID

Housekeeping
PSI Init

PSI Open
PSI Close

PSI Recover

Table 5: PSI non-transactional calls.

PSI Write The client’s intention to update an (existing) object is asserted. The reference passed by the
client may be to the in-place version of the object or to a private copy. The call implements WriteInten-
tion(t,o). In the case where the object reference is in-place it also asserts Fix(t,o) semantics. ReadInten-
tion(t,o) semantics are not asserted—a client would therefore typically call PSI Read before PSI Write
(although this is not necessary if the client is not concerned with the object’s prior state).

PSI New Space is allocated space for a new object or a new array object, the call returning a cache
pointer and an OID (see [Blackburn 1997] for a description of the PSI storage model). The nearOID
parameter allows the caller to nominate an object as a placement hint (predefined constants allow users
to nominate other sorts of hints, for example NEAR ANY). PSI New takes a descriptorOID argument
which allows the user to define is-one-of relationships and to identify the structure of the new object. In
addition to the allocation of space, PSI New implements WriteIntention(t,o) and Fix(t,o) semantics.

PSI NewTransaction The data structures associated with a new transaction are created and a transac-
tion handle is initialized with respect to that transaction. The caller may provide a callback for handling
pre-emptive aborts (see section 3.1.2). BeginUpdates(t) and BeginVisibility(t) semantics are asserted.

PSI Commit The commit process is two phase. The first phase terminates the transaction by first
asserting DelegateUpdates and DelegateVisibility with respect to any delegations flagged for commit
time, and then asserting Unfix(t,o), ReadComplete(t,o), WriteComplete(t,o) and NotifyUpdate(t,o) with
respect to all objects accessed by the transaction. The second phase is conditional on Isolate(t) and Final-
ize(t) being true. If they are true MakeDurable(t) and then Expose(t) semantics are asserted. Otherwise
PSI Commit returns failure, and the transaction is aborted (AbortUpdates(t) and AbortVisibility(t) are
asserted). ACI transactions can be constructed by delegating all updates prior to commit. Although
PSI Commit is described here in terms of a series of steps, its implementation must be atomic.

PSI Abort All resources associated with the transaction are released. Unfix(t,o) is asserted with respect
to all objects accessed by the transaction and then AbortUpdates(t) and AbortVisibility(t) are asserted.

PSI Unfix The availability of the specified object is removed by asserting Unfix(t,o) (the object remains
unavailable until the need for it is re-asserted via PSI Fix, PSI Read, or PSI Write). If the object was
being updated in-place (i.e. PSI Write was asserted with respect to an in-place version of the same
object), NotifyUpdate(t,o) semantics are asserted with respect to the object.



PSI Fix The need for an object to be made available is asserted through Fix(t,o). This call is only
valid in the context of read or write intentions for that object already being asserted but not completed
(PSI Unfix must have been called subsequent to the PSI Read, or PSI Write in order to make the object
unavailable).

4 Applying PSI to Persistent Java Implementations

Having defined the PSI core, we now investigate the application of PSI to persistent Java implementa-
tions, using the PJama0 architecture [Atkinson et al. 1996] as a reference point4.

PJava programmers' point of viewa b2cb1

b2 c
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Figure 3: PJama0 architecture [Atkinson et al. 1996], illustrating JAM, Object Cache Manager, and Sta-
ble Store modules. The details of the PJama0 Stable Store implementation have been hidden. (Figure
adapted from figure 2 in [Atkinson et al. 1996].)

The PJama0 architecture (figure 3) is comprises the three key modules: the Java Abstract Machine
(JAM), an Object Cache Manager, and a Stable Store. A key feature of the PJama0 architecture is the
minimal extent to which the JAM is disturbed [Atkinson et al. 1996]. The persistence mechanisms in
PJama0 are thus concentrated in the the Object Cache Manager and the Stable Store, the Object Cache
Manager faulting objects from Stable Store and requesting stabilization of data by the Stable Store when
necessary. The Stable Store is implemented on top of RVM [Satyanarayanan et al. 1994], a segment-based
transactional storage system.

4.1 Implementation Approaches

By including an object cache manager as a central component, the PJama0 architecture lends itself to a
PSI-based implementation. Minimally, PSI could be used in place of the Stable Store. A more tightly
coupled approach might see the object cache manager operating over PSI’s cache rather than copying
objects into its own cache. Given the amenability of the PJama0 architecture to a PSI implementation,
the dominant PSI/PJama design issue is therefore likely to be whether a single-level or two-level (as in
PJama0), buffering strategy should be employed.

Copying Versus Non-copying o maximize data transfer efficiency, caching stores usually move data
in and out of the cache at as coarse a grain as possible. In the case of an object cache, this can result in
many objects needlessly being brought into the cache at each object fault. Object clustering can help but
it cannot guarantee good results because of the stochastic nature of the problem. Another approach is to
re-pack objects in a second level cache. This can increase the efficiency of memory use significantly, but
incurs the overhead of a memory-to-memory copy for each object fault, which, in the face of memory
bandwidth bottlenecks becoming a dominant feature of modern processor architectures, is an increas-
ingly unattractive option. The implementer is thus faced with a time-space tradeoff: either optimize for

4We chose PJama0 because to our knowledge it is the only orthogonally persistent Java with a detailed published account of
its architecture.



time by avoiding copies, or optimize for space by introducing a packed cache. The approach taken in
the design of PJama0 is to optimize for space [Atkinson et al. 1996]. A third alternative is to adopt a
hybrid approach [Kemper and Kossmann 1994] which involves adaptively switching between the two
polices as making each of the respective tradeoffs becomes more essential.

The results presented in [Kemper and Kossmann 1994] suggest that a hybrid approach is likely to be
optimal. Such an approach could either be implemented within PSI or on top of PSI. Experimentation
is necessary to determine which of these schemes will perform best.

4.2 Stable Store Alternatives

Having pointed to the suitability of PSI as the basis for persistent Java construction, we will now briefly
assess alternatives.

4.2.1 RVM

Initial performance results for PJama0 [Jordan 1996] suggest that RVM performs reasonably well. How-
ever, the stated design goals for RVM [Satyanarayanan et al. 1994], which include simplicity and porta-
bility of the RVM implementation suggest that a more targeted storage system, such as PSI, is likely to
perform better and give the PJama implementer more flexibility.

The simplicity of the RVM design comes at the cost of efficiency, of loading the client with implemen-
tation responsibilities, and of reduced functionality such as resilience to media failure [Satyanarayanan
et al. 1994]. The client implementer is left to take care of important elements of the transactional storage
system such as distribution, nesting, and serializability. RVM’s authors state that these areas of functional-
ity were excluded in order to provide clients with flexibility with respect to the implementation choices
associated with each [Satyanarayanan et al. 1994]. In terms of the semantic framework of section 3.1,
RVM’s transactional semantics are very weak. It supports only basic stability and cache management se-
mantics (no support for logging or delegation) and makes no guarantees about visibility semantics other
than those that are implicit in stability semantics (commit stabilization followed by access by a later
transaction).

By contrast, PSI provides a simple yet rich abstraction of a transactional object cache which gives
the client implementer flexibility through a collection of powerful levers by way of fully implemented
transactional mechanisms. Furthermore, PSI implementors are given a great deal of scope to explore
different implementation strategies, so to the extent that implementations of these are made available to
client implementers, client implementers will have a wide choice of storage implementation approaches
available to them.

While care was taken in the RVM design to maximize the portability of the RVM implementation, the
design philosophy for PSI is closer to that of MPI (a widely used message passing interface [Message
Passing Interface Forum 1994]), where the emphasis is not on the interface implementation being portable,
but rather the interface efficiently providing portability to its clients by appropriately abstracting complex,
vendor specific message-passing mechanisms. In the case of MPI, such efficiency is usually obtained
precisely by exploiting non-portable hardware features on each target platform. It seems likely that
stable store implementations will need to do the same in order to deliver performance comparable with
that offered by commercial database vendors.5

4.3 Other Approaches

A range of alternative implementation approaches exist. The two most obvious being an integrated
Stable Store/RTS implementation and the use of another storage layer like RVM or PSI.

Integrated Implementation Approaches The “integrated” implementation approach has been used by
many, if not most orthogonally persistent programming systems to date. By “integrated”, we mean that
the design does not attempt to strongly separate database and programming language technologies. The
absence of any such implementations that efficiently offer a full range of database features (as outlined in
[Atkinson and Morrison 1995]) gives support to the view that the approach is ultimately inappropriate
in the context of a small research community such as the persistent systems community.

5For example some operating systems offer non-portable control over memory management that can greatly improve caching
performance and reduce TLB misses. Also, in the context of distributed stores, optimal communication mechanisms vary from
platform to platform (e.g. TCP/IP versus MPI or native message passing).



Alternative Storage Layers Mneme [Moss 1990] is perhaps the most natural candidate as an alterna-
tive storage layer. Like PSI, Mneme is based on the transactional object cache architecture and so is
well suited to the PJama architecture. However, Mneme is distinguished from PSI in two key respects:
First, Mneme does not directly support extended transaction models, which are a feature of the PJama
design. Mneme leaves the implementation of extended transaction models to higher levels of abstrac-
tion, only directly supporting simple transactions. Secondly, Mneme is a store implementation rather
than an interface definition, so it does not offer the same opportunities for collaboration between store
implementers and PJama builders as PSI.

There are few other purpose-designed stand-alone transactional storage layers. Carey and DeWitt’s
review [Carey and DeWitt 1996] lists a number of key examples of database system toolkit projects, some
of which come close to the transactional storage layer approach. Carey et al. illustrate problems with
the database toolkit approach by reporting a number of the problems they and other users encountered
with EXODUS [Carey and DeWitt 1996; Carey et al. 1994]. These include: users wanting to use EXODUS
to build an object server and being stuck with a client-server architecture, their server thus becoming a
server-on-a-client; control over low level details being hidden from ‘serious’ implementers (too high an
abstraction); and application programmers finding it a bit too low level (too low an abstraction).

All of the database toolkit projects differ from PSI in a number of ways, perhaps most important of
those being that PSI is not a system implementation but an interface specification based on a rich storage
abstraction. A system based on PSI is therefore not limited to a single storage implementation approach
or architecture. To the contrary, it may be used as the platform for experimentation with a range of
approaches to storage management.

5 Conclusions

We have presented PSI, an interface based on an abstraction of the transactional object cache architecture.
We argue that the use of such an interface will play an important role in overcoming the problem of
mastering the breadth of technology involved in the construction of orthogonally persistent systems by
separating concerns and so allowing a concentration of expertise. PSI should also encourage portability
of persistent systems and enhance opportunities for collaboration. Finally, we have shown how PSI
might be integrated into a persistent Java implementation, using PJama0 as an example.
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Abstract

This paper describes an interactive browser used for exploring the structure of Java objects and
their classes. It is implemented in Java and uses JDK 1.1 core reflection classes to discover details
of the objects passed to it. The initial motivation for development arose from the need to browse
persistent Java stores; the browser may also be useful as part of a symbolic debugging or
visualisation tool.

1 Introduction
The provision of orthogonal persistence for Java, e.g. [ADJ+96, DHF96, GN96, MCK+96], allows the programmer
to create potentially large persistent stores of Java objects. There are a number of ways of discovering the contents
of these stores, including interactive browsing, writing programs which navigate inter-object references, and the use
of a query language. All of these, and others, will probably be required in practice. This paper describes a
visualisation tool called OCB (Object/Class Browser) which addresses the first requirement, supporting the
interactive display of Java objects and classes, and the navigation of references linking them.

The main design goals for the initial version of OCB were:

• to provide a simple and clean user interface;
• to produce an implementation quickly; and
• to implement the browser using only standard Java for maximum portability1.

The OCB browser was designed in response to a need identified by the developers of the PJama persistent Java
implementation [ADJ+96]. It was quickly recognised, however, that most of its facilities would also be useful in
conventional Java systems and other persistent versions. All OCB facilities other than access to persistent roots, and
in some cases method invocation, will work with any Java system. Persistent root access for other persistent versions
can be added simply on a per-system basis; the details depend on the model of persistence provided.

The remainder of this paper contains a summary of related work in Section 2, descriptions of the user and program
interfaces in Sections 3 and 4, an outline of the implementation in Section 5 and a discussion of avenues for further
development in Section 6.

2 Related Work
There are several aspects of a persistent object store which it may be useful to visualise, including:

• the states of the objects in the store and the graph of references linking them;
• the states of the threads running in the store; and
• the class hierarchy or type structure associated with the objects in the store.

Other systems support these requirements for Java and other languages to varying degrees. The OCB browser in its
current implementation addresses only the first and third requirements, although it is planned to extend it to include
thread states in a future version.

1 No native methods are used, although OCB is not 100% Pure Java™ for reasons explained in Section 6.



2.1 Commercial Programming Environments

Several commercial products offer integrated programming environments which support the visualisation of the state
of an executing Java Virtual Machine. Although these run on non-persistent Java systems, there is considerable over-
lap with the facilities needed for persistent store visualisation. Such products include Metrowerks CodeWarrior
[Met97] and Symantec Visual Café [Sym96] which also support other languages such as C, C++ and Pascal.

CodeWarrior provides a Hierarchy window which displays the class tree of the Java program being edited; clicking
on a node in the tree brings up the source code for that class. During execution a symbolic debugger may be used to
examine local variables accessible by a thread at a particular break-point, and the states of objects reachable via
those variables. Similar facilities are available in Visual Café.

The class hierarchy display and symbolic debugger in CodeWarrior are accessed interactively by the programmer
via the programming environment user interface. These facilities are only available if the program has been
compiled with appropriate flags set. In contrast, OCB can be accessed through an API by any normally-compiled
running Java program and made to display objects and classes in scope at the current point of execution. It can also
be invoked as a stand-alone Java application to display persistent objects and classes. Since it is written solely in
Java, OCB is also relatively portable, whereas CodeWarrior and Visual Café are available in multiple versions
tailored to particular platforms, involving greater porting effort.

CodeWarrior2 does not make it easy to distinguish object graph structures. For example, the Variables pane in
Figure 1 shows an object of class Person. The variable p1 contains the object at the program break-point indicated
by the arrow in the Source pane. At this point p1 and p2 denote separate instances of Person, and p1.father is set to
p2. This structure is not clear from the display, which shows the objects referenced from the current object in the
form of a nested list. In particular, this.p1.father denotes the same object as this.p2, a fact that can only be deduced
from the list by noticing that they both have the same address. Presumably the need to make such deductions is the
reason for including addresses in the display, which seems an odd mixing of abstraction levels for a language with
automatic memory management. Also, in this user interface class names used in the Variables pane are not linked to
their definitions; it would be useful to able to click on a class name and bring up its definition directly.

Figure 1. CodeWarrior Java debugging window

2 Professional Release 1 at the time of writing.



In contrast, the OCB browser does not display any address information. Indeed, since it is implemented as a standard
Java program it cannot obtain addresses. OCB allows objects to be distinguished on the basis of identity, so that for
the example above it would be obvious to the user that this.p1.father and this.p2 denote the same object, since they
would be represented by the same independent window.

The Java debugger jdb, part of Sun’s Java release, can also be used to browse object states at a program break-point.
It makes no attempt to hide address information, and is command line based. In common with the CodeWarrior
debugger, the states of the objects reachable by a thread can only be displayed if the running program has been
compiled with a ‘debug’ flag set.

The O2 object-oriented database system provides a graphical browser which allows the state of persistent and
transient O2 objects to be displayed. Its facilities are similar to those of OCB, except that it does not allow the
display of inherited attributes to be controlled in the same way—OCB’s style of handling this is described in Section
3.2. Indeed the authors do not know of any other browsers for inheritance-based languages which provide similar
control3.

2.2 Research Systems

Two previous object browsers with which the authors were involved are those for the persistent languages PS-algol
[DB88] and Napier88 [KD90]. Similarly to OCB these can be invoked either from a running program or as a stand-
alone application. The Napier88 browser displays object graph structures in the form of icons linked by directed
edges.

Various other systems have provided graphical object browsers with which OCB shares some similarities in display
style, for example Smalltalk-80 [GR83], Trellis/OWL [OHK87] and Cedar [Tei84].

2.3 OCB Design Aims

The main differences between OCB and the related work described above arose from the following specific design
aims identified for OCB:

• to provide portability by implementing in Java;
• to allow control from running Java programs through a class interface and callback methods which allow the

programmer to specify actions to be performed in response to user interaction;
• to support the visualisation of object sharing and identity, and to allow simple navigation between related

objects and classes;
• to allow the graphical display format to be customised for specific classes, including the temporary hiding of

superclass fields and methods.

3 OCB User Interface

3.1 Instances and Classes

This section uses the augmented definition of Person shown in Figure 2.

3 OCB’s style is not directly applicable to O2 anyway, since O2 supports multiple inheritance in contrast to Java’s single
inheritance.



public class Person implements Cloneable {
private int     age;
public String   name;
public Address  address;
public Person   mother, father;
public Person[] children;
public static int numberOfPeople=0;

Person() {…}
Person( String n, int a ) {…}

public Date dateOfBirth() {…}
}

public class Address {
public String street, town;
public int  number;

Address( int n, String s, String t ) {…}
}

Figure 2. Definition of class Person used in example

Figure 4 shows how OCB displays an instance of the class Person. The Instance pane on the left displays details of
the instance’s fields, while the Class pane on the right displays details of the class.

In the Instance pane the values of any fields with primitive types are displayed next to the field names, while the
values of object type fields are represented by boxes containing the appropriate class names. The user may also
customise the OCB display by defining alternative textual representations to be used for instances of particular
classes, as described in Section 4.3. In the example a customised representation is used for strings, as illustrated for
the name field.

The Class pane displays details of methods, constructors and fields, and the values of static fields. It also displays
the superclass and any interfaces implemented by the class. Class and interface names are identified by underlining.

The various modifiers applicable to class members are indicated by coloured squares displayed next to member
names. In the default colour coding public members are indicated by transparent squares and private members by red
squares, hence the only visible squares in the example are for the age field. Colour coding is not used for the static
modifier, since static members are already displayed in separate regions from non-static members. To assist the user
in remembering the colouring scheme, a panel showing the current scheme is displayed whenever the user clicks a
mouse button over one of the coloured squares, as illustrated in Figure 3.

Figure 3. Modifier colour code prompt panel



Figure 4. Display of an object and its class

The user may click on various parts of the display to navigate an inter-object or inter-class link. Display regions
which are sensitive in this way are differentiated by being displayed in red, as well as by the cursor which changes to
a hand icon when it passes over them. Sensitive regions are used to denote values of object type fields, both in
standard boxed format and customised string format, and class names which are underlined.

When the user clicks on an object value, the corresponding object and its class are displayed in turn. When the user
clicks on a class name, the corresponding class is displayed. In the latter case, the OCB continues to display the
current instance if the new class is the same as, a superclass of, or an interface implemented by the current class.
Otherwise the new class is displayed on its own in the Class pane with no corresponding instance in the Instance
pane.



The user may control whether or not a new window is created when new information is displayed. The default
behaviour is that no new window is created, with the new information replacing the existing information within the
current window. Alternatively, the user may pin a window by checking the Pin checkbox in its lower-left corner.
While this is checked, new windows will be created whenever new information is displayed. New windows are
initially unpinned. Each time a link is followed in an unpinned window the currently displayed object and class are
pushed onto an internal stack. The user may navigate backwards and forwards in the stack using the arrow buttons
next to the Pin checkbox. This style of browsing combines that used by web browsers such as Netscape Navigator
[Net97] with the pinning mechanism of Sun Microsystems’ Open Look graphical user interface [Sun89]. Figure 5
shows the display obtained by pinning the first Person instance and then clicking on its father field.

Figure 5. Example of pinning

There is a one-one correspondence between pinned windows and the identities of the objects they are displaying.
This means that the user can detect object sharing simply. For example, in Figure 5, if the father field of another
object referring to Fred Smith is selected, the window displaying the Fred Smith object is brought to the front, rather
than a new window being created.

Each window also contains menus which allow the user to select particular objects or classes to be browsed, adjust
the colour coding used for modifiers, and to load and save preferences.

3.2 Viewing Inherited Members

In the examples shown earlier, only the fields and methods defined in the instance’s most specific class were
displayed, omitting members inherited from superclasses. For example in Figure 4 the methods inherited from class
Object are not shown (and Object defines no instance fields). This is satisfactory if the methods inherited from
Object are not of interest to the user, since the display remains relatively compact and focused on the application-
specific class Person. The default behaviour of OCB is thus to display only the members of the most specific class,
hiding any members defined in superclasses. These hidden inherited members may then be revealed under user
control.

Alternatively a user may wish to view an instance through a superclass view, for example viewing a Student as a
Person, requiring members defined in the most specific class to be hidden. Both requirements are met by allowing
the user to set a top class and a bottom class to be applied to an OCB view, subject to the constraint top ⊇ bottom ⊇
C, where C is the most specific class of the displayed instance, and ⊇ means “is an ancestor class of, or is equal to”.



The effect is, informally, to hide any members which are defined outside the part of the class hierarchy bounded by
top and bottom. More precisely, a member of C is displayed if and only if it is defined or over-ridden in a class X
such that top ⊇ X ⊇ bottom. Furthermore, if a member which is displayed is over-ridden in a subclass of bottom, it is
displayed in the form applicable to bottom rather than to C. To illustrate this, consider the (somewhat contrived)
class definitions in Figure 6:

public class Animal {
public String name;
public int age;

}

public class Person extends Animal {
public Person spouse;

}

public class Student extends Person {
public Student spouse;
public int number;

}

Figure 6. Example class hierarchy

This gives the class hierarchy Object ⊃ Animal ⊃ Person ⊃ Student. Table 1 defines the effects of setting top and
bottom to various classes for a displayed instance of class Student.

top bottom result

Student Student The fields spouse and number are displayed, but no methods. This is the default
setting (Figure 7).

Object Student The fields name, age, spouse, number are displayed, as are all of the methods
inherited from Object (Figure 8).

Animal Student The fields name, age, spouse, number are displayed, but no methods (Figure 9).

Animal Person The instance is viewed as a Person and methods inherited from Object are
hidden; the fields name, age and spouse are displayed, while number is hidden.
The value of the spouse field is displayed as a Person rather than as a Student
(Figure 10).

Table 1. Effects of various settings for top and bottom

The values of top and bottom can be set by manipulating the double-thumbed slider at the bottom of the display. The
allowed positions on the slider range from class Object at the left, to the most specific class of the displayed instance
at the right. The left thumb controls the setting of top and the right thumb the setting of bottom. Initially both are set
to the most specific class. The example in Figure 7 shows both top and bottom set to Student: only members defined
in that class are displayed.



Figure 7. Viewing members of class Student only

The example in Figure 8 shows top set to Object and bottom remaining set to Student. This makes visible all of the
members available in class Student, i.e. those defined in any of its ancestor classes.

Figure 8. Viewing all members



The example in Figure 9 shows top set to Animal and bottom remaining set to Student. This filters out the members
inherited from class Object.

Figure 9. Viewing only members defined in and below class Animal

The example in Figure 10 shows top set to Animal and bottom set to Person. This filters out members inherited from
Object, and also those defined in Student, effectively viewing the Student instance as a Person. Note that the value
of the spouse field is now displayed as a Person.

Figure 10. Viewing instance of Student as a Person



The example in Figure 11 shows the view obtained when the superclass link to Person visible in Figure 10 is
selected. The instance display remains the same, while the superclass Person is displayed subject to the same
filtering out of Object members. Since it would now result in an inconsistency if the user were allowed to set bottom
to Student—because class Person is being displayed—the right slider thumb cannot now be moved past Person4.

Figure 11. Viewing a superclass of Student

In the current implementation, the initial settings for top and bottom when an object is first displayed are the object’s
most specific class. As discussed in Section 6, it is planned in a future version of OCB to allow the default settings
to be specified on a per-class basis.

3.3 Arrays

For array objects the Instance pane displays the length field and a scrolling list of the array components. The Class
pane displays the class of the array elements. The example in Figure 12 shows the OCB display after the user has
clicked on the box containing Person[] in the children field of Figure 4.

Figure 12. Display of an array

4 Although not visible in the monochrome screen-dump, the section of the slider to the right of Person is now drawn in a
different colour to indicate this.



3.4 Invoking Methods

As well as passively displaying the current state of objects and their classes, OCB can also be used to interact with
objects by invoking their methods. A method is invoked by clicking on the appropriate name in the methods region
of the class pane. Depending on the method signature, parameter values for the method call may be required. OCB
then displays a dialogue requesting the user to enter code defining the parameter values. For each parameter the user
provides a fragment of code which, when executed, will produce a suitable parameter value. For example when the
addChild method shown in Figure 4 is clicked on, a dialogue requesting a single parameter is displayed. The text
area initially contains the code

return new Object();

which is then edited by the user, as illustrated in Figure 13.

Figure 13. Parameter value dialogue for method invocation

When the user presses the Invoke Method button, OCB compiles and executes the code to create the required
parameter value, which is then used to invoke the addChild method. If the code entered is invalid, or its execution
does not produce an instance of Person, an error message is displayed. For methods with multiple parameters the
dialogue contains a separate code area for each one.

In the current implementation, the parameter creation code entered by the user can only refer to classes which
already exist and are accessible through the normal classpath. As described in Section 6, it is planned in a future
version of OCB to allow the user to define new classes at the point of method invocation which can be used in
creating the parameter values.

3.5 Browser Menus

Several OCB facilities are accessed via the menus. The Browser menu simply allows the current window to be
closed. The Instance menu contains an entry which gives access to persistent objects; the details of the operation
depending on which persistent Java system is being used. For PJama it displays a dialogue listing the names of the
current persistent roots. When one is selected the corresponding object is displayed.

The Class menu provides access to persistent classes in a similar way; it also contains an entry which allows the user
to enter any fully qualified class name, in response to which the corresponding class is displayed. Finally the
Preferences menu contains entries which allow the user to alter the colour coding used to display modifiers, and to
load and save colour and class customisation settings from a file or from the persistent store.

4 Program Interface

4.1 Invoking OCB

A Java program may create an OCB window by instantiating the class ocb.OCB, which implements the interface
ocb.OCBInterface defined in Figure 14.



package ocb;
import java.awt.Container;

public interface OCBInterface {
public void displayObject( Object anObject );
public void displayClass( Class aClass );
public Object getDisplayedObject();
public Class getDisplayedClass();
public void clear();
public void clear( String paneName );
public void close();
public Container getOCBContainer();
public void addCallback( Callback cb );
public void removeCallback( Callback cb );
public Callback[] getCallbacks();
public void addCustomDisplay( Class theClass, DisplayAsString customDisplay );
public void removeCustomDisplay( Class theClass );

}

public interface DisplayAsString {
public String objectToString( Object theObject ) throws WrongClassException;

}

public interface Callback {
public boolean callback( Object theObject, OCBInterface ocb );
public boolean callback( Class theClass, OCBInterface ocb );
public boolean callback( Object theObject, String name, OCBInterface ocb );
public boolean callback( Class theClass, String name, OCBInterface ocb );

}

Figure 14. Interface ocb.OCBInterface

The constructors provided by class ocb.OCB are shown in Figure 15:

package ocb;
import java.awt.*;

public class OCB implements OCBInterface {

/** Creates an OCB in a new frame of default size. */
public OCB() {…}

/** Creates an OCB in a new frame with the given position and size. */
public OCB( Point position, Dimension size ) {…}

/** Creates an OCB in the given container. */
public OCB( Container parent ) {…}

…
}

Figure 15. Constructors of class ocb.OCB

The first constructor creates an OCB which displays its information in a new Frame (an independent window), as
does the second. The third constructor creates an OCB which displays information within a given existing
Container. Once an instance of class ocb.OCB has been created, objects and classes may be displayed by invoking
its displayObject and displayClass methods.

4.2 Callbacks

The user may register callback methods with an OCB instance to be called whenever an object, class or member is
selected. When used in a persistent Java system these callbacks persist between sessions. The example in Figure 16
shows the registration of a callback which writes out a message whenever a class member is selected in the OCB:



import ocb.*;

public class MyCallback implements Callback {
public boolean callback( Object theObject, OCBInterface ocb ) { return true; }
public boolean callback( Object theObject, String name, OCBInterface ocb ) {

return true; }
public boolean callback( Class theClass, OCBInterface ocb ) { return true; }
public boolean callback( Class theClass, String name, OCBInterface ocb ) {

System.out.println( "class member " + name + " selected" );
return false;

}
}

public class Test {
public static void main( String args[] ) {

OCB myOCB = new OCB();

myOCB.addCallback( new MyCallback() );

Person john = new Person( "John Napier", 447 );
myOCB.displayObject( john );

}
}

Figure 16. Registering a callback

The ocb.Callback interface provides methods to be called when an object, class, object member or class member is
selected. Each method returns a boolean which specifies whether other registered callbacks should also be called on
this occasion.

4.3 Customising the Display

The user may associate a customised display method with a particular class. This is then used by OCB whenever it
displays a field value of that class. The method takes as its parameter the class instance and returns a string
representing that instance, which is then displayed in place of the default boxed class name.

Customised display methods are registered as instances of a class that implements the interface DisplayAsString:

public interface DisplayAsString {
public String objectToString( Object theObject ) throws WrongClassException;

}

Figure 17 shows how a custom display method for class Address could be registered with an OCB instance.

import ocb.*;

public class AddressDisplayer implements DisplayAsString {
public String objectToString( Object theObject ) throws WrongClassException {

if ( theObject instanceof Address ) {
Address objectAsAddress = (Address) theObject;
return String.valueOf( objectAsAddress.number ) + " " +
    objectAsAddress.street + ", " + objectAsAddress.town;

} else throw new WrongClassException( "class Address expected" );
}

}



public class Test2 {
public static void main( String args[] ) {

OCB myOCB = new OCB();

try {
myOCB.addCustomDisplay( Class.forName( "Address" ), new AddressDisplayer() );

} catch (ClassNotFoundException e) {
System.out.println( "Couldn't get class for Address" );

}

Person john = … // Create Person instance as in Figure 2.
myOCB.displayObject( john );

}
}

Figure 17. Customisation of OCB

Figure 18 shows the display of the Person object with the customised display of the Address field.

Figure 18. Example customised OCB display

The motivation for this somewhat cumbersome mechanism is to allow OCB customisation without the need to alter
existing classes. A second simpler mechanism may be used if display by OCB can be taken into consideration at the
time of class definition: where a class overrides the method toString, which is inherited from class Object, that
method will be used to produce the custom string. Figure 19 shows the definition of such a subclass of Address.
Instances of this class will be displayed in the customised form without the need to register with the OCB instance.

public class CustomAddress extends Address {
CustomAddress( int a, String s, String t ) {

super( a,s,t );
}
public String toString() {

return String.valueOf( number ) + " " + street + ", " + town;
}

}

Figure 19. Class with customised display method



5 Implementation
OCB is implemented completely in Java and requires release JDK 1.1 or later. It uses the core reflection classes in
java.lang.reflect to discover details of the classes and objects passed to it. The graphical display is constructed using
the awt toolkit.

In common with many Java programmers, the use of awt was often a frustrating experience, particularly due to the
inconsistencies between implementations on various platforms. The core reflection classes, in contrast, were found
to be particularly easy to use. They appear to be well designed and to provide all the functionality needed to display
object states. It could be argued, though, that for full reflection the classes should allow the retrieval of method
source code, although this would present significant implementation difficulties. A security mechanism would also
be required in order to suppress source code in situations where public access to it was not desirable.

The core reflection classes do not, however, support the introduction of new code into the running system, the need
for which was described in Section 3.4. This requires dynamic access to the Java compiler, that is, an executing Java
program needs to be able to invoke the compiler, passing it a source program representation and receiving compiled
classes in return. Some techniques for achieving this are described in detail in [KMC+97]. Briefly, given the core
reflection classes currently provided this involves either forking an operating system process to perform the
compilation, or relying on the availability of a Java compiler implemented in Java which can be invoked directly.
The details of the former option depend on the platform, and it may not even always be possible. The latter option
depends on access to non-core classes which may not always be present.

The need for dynamic compilation means a degree of platform dependence. Currently OCB fails gracefully by
interrogating its environment before attempting to perform compilation; if it detects that compilation is not possible
it simply disables dynamic method invocation. A more satisfactory solution would be for compilation support to be
added to the core reflection classes. For example a class Compiler could be provided, removing the need for ad-hoc
solutions:

public class Compiler {
public Class[] compile( Source source, Class[] imports ) throws …
…

}

Here the method compile takes a source code representation, which could be a string or a more structured
representation, and an array of classes used by the code, and returns an array of compiled classes.

At the time of writing (September 1997) OCB has been fully implemented as described in this paper, with the
exception of customising colours, and the loading and saving of customised settings. OCB is freely available at the
following URL:

http://www-ppg.dcs.st-and.ac.uk/Java/OCB/

6 Further Work

6.1 Static Visualisation

Several relatively minor enhancements are planned for the next version of OCB:

• to allow customisation of the default settings for the top and bottom class when an instance is first displayed:
allow a top/bottom pair to be specified for a particular instance or for all instances of a particular class;

• to allow arbitrary new classes to be defined at the time that an object method is invoked: these classes could
then be used in the creation of the parameter values to be passed to the method. For example a subclass of
Person called Child could be defined dynamically and a new instance of it passed to the addChild method.

• to allow the user to update public instance fields in a similar manner to method invocation, and to provide a
facility to ‘bookmark’ objects for convenient re-visiting.

http://www-ppg.dcs.st-and.ac.uk/Java/OCB/


The issue of assisting the user in discerning the structure of linked object graphs was raised earlier. The currently
implemented tool does support this to a limited extent, in that when pinned displays are used there is a one-to-one
mapping between objects and OCB windows. However this becomes unsatisfactory when more than a few objects
are displayed simultaneously. One possible enhancement is to provide an additional ‘overview’ window containing
iconic representations of the objects encountered, connected by edges showing the inter-object references, in the
style of the PS-algol and Napier88 browsers [DB88, KD90]. Other possibilities include options to display all
persistent roots, and to display the results of queries executed over the persistent store.

The class customisation mechanism described in Section 4.3 supports only customised string representations for
particular classes. It would be relatively simple to extend this to allow the specification of graphical representations
which would be displayed in place of the standard boxed class name representation, perhaps by renaming the
interface DisplayAsString to CustomiseDisplay, with the methods:

public interface CustomiseDisplay {
public String objectToString( Object theObject ) throws WrongClassException;
public Image  objectToImage( Object theObject ) throws WrongClassException;

}

In this case the objectToImage method would be called if the objectToString method returned null. Another
possibility would be for instances of the customised class appearing in fields to be displayed using nested OCB
windows, so that the entire field value would be displayed within the parent window. This option could be indicated
by having both methods return null.

As mentioned in the previous section, a possible addition to the core reflection classes would be the ability to obtain
source code from a given method representation. If this were supported the OCB display could then be adapted to
show the source of each method in the class pane. Clearly this would raise security issues with regard to controlling
which users were allowed to access source code; it would not be acceptable to allow universal access.

One of the issues considered in the design of OCB was whether the display of an object and its members should
respect the access modifiers specified in its class definition, for example whether a private member should be
visible. More generally, should the user be able to discover or affect any aspect of the Java system that they would
not be able to do by writing an appropriate program? However, it turned out to be a non-issue: because OCB is
implemented solely in Java, by definition it can only perform actions permitted by the language rules. While giving
a clean and relatively safe tool—a user cannot do anything using OCB that they could not do anyway—this is too
restrictive for debugging purposes. For example it would be useful if all the members defined in a certain package
were accessible by OCB while the package was under development. This suggests a refinement of the core reflection
facilities to support over-riding of language security mechanisms in limited circumstances.

6.2 Dynamic Visualisation

The current functionality of OCB is to display a snapshot of the state of an object at one particular moment. It could
also be enhanced to provide an active monitoring capability, whereby an object could be polled regularly by an OCB
instance, with any changes being reflected in an updated display window. This would make OCB more useful as a
debugging tool.

As mentioned earlier, the display of persistent objects and their classes is only part of what is necessary for the
visualisation of a persistent Java system: the programmer may also need to examine the states of the threads
executing at a particular time. Since threads are Java objects it is possible to pass a thread to the current OCB
implementation for display. However this does not reveal very much interesting information since most of the
thread’s state is not publicly accessible.

An obvious avenue for development of OCB is to extend it with symbolic debugging capabilities, allowing threads
to be started and stopped, break-points set etc. Clearly given the current core classes this would have to be
implemented using a non-standard JVM. More interestingly, perhaps the core reflection classes could be augmented
to allow sufficient safe introspection into the dynamic state of the system for such facilities to be implemented in
“100% Pure Java™”. There is considerable existing work on Meta-Object Protocols to support this style of
reflection in other languages [KRB91, MJD96].



6.3 Implementation

The efficiency of the implementation could be improved by caching the results of various calculations internally.
Each time an object is displayed the structure of its class is traversed, involving a significant number of calls to the
core reflection classes. The window layout is then calculated on the basis of that structure. Some results from both of
these stages are dependent only of the class of the object and could thus be cached on a per-class basis. Similarly, it
is quite common for the user to press the back arrow to return to the previously viewed object. In the current
implementation this results in a complete recalculation, whereas the complete display state could be cached, keyed
by the identity of the object. Where OCB is used with a persistent Java system, both forms of cache could persist
across multiple user sessions.
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Abstract

Persistent systems manage main memory as a cache for efficient access to frequently-accessed persistent data.
Good cache management requires some knowledge of the semantics of the applications running against it. We
are attacking the performance problems of persistence for Java through analysis, profiling, and optimisation of
Java classes and methods executing in an orthogonally persistent setting. Knowledge of application behaviour
is derived through analysis and profiling, and applied by both a static bytecode transformer and the run-time
system to optimise the actions of Java programs as they execute against persistent storage. Our prototype will
unify distinct persistence optimisations within a single optimisation framework, deriving its power from treatment
of the entire persistent application, consisting of both program code and data stored in the database, forwhole-
applicationanalysis, profiling and optimisation.

Keywords: persistence, Java, bytecode, program analysis, dynamic profiling, optimisation

1 Introduction

Orthogonally persistent programming languages [Atkinson and Buneman 1987; Atkinson and Morrison 1995] pro-
vide improved support for the design, construction, maintenance and operation of applications that manage large
bodies of long-lived, shared, structured data. In spite of this, there is continued mainstream resistance to languages
with orthogonal persistence due to a perception that they cannot deliver performance to match that of traditional pro-
gramming languages. We believe that performance problems associated with persistence can be dealt with through
extension of traditional program analysis and optimisation techniques to encompass optimisation of persistent pro-
grams, as well as new techniques based on execution profile feedback [H¨olzle and Ungar 1994; Grove et al. 1995],
specialisation, customisation and other partial evaluation [Chambers and Ungar 1989; Chambers et al. 1989; Cham-
bers and Ungar 1990; Chambers 1992; Dean et al. 1995; Dean et al. 1995; Consel and Danvy 1993; Jones et al.
1993], and dependence analysis and loop restructuring [Wolfe 1996]. We also believe that analysing, profiling and
optimising in a persistent setting has benefits even for generic optimisations not directly related to persistence.

1.1 Orthogonal persistence

The language principles oftransparencyandorthogonalityhave been repeatedly articulated [Atkinson and Morrison
1995; Moss and Hosking 1996] as important in the design of persistent programming languages, enabling the full

�Java is a trademark of Sun Microsystems, Inc.



power of the persistence abstraction. Transparency means that access to persistent objects does not require explicit
calls to transfer them between stable store and main memory. Thus, a program that manipulates persistent (or
potentially persistent) objects looks similar to a program concerned only with transient objects. To support this,
the program’s compiled code or interpreter, and the persistent run-time system, contrive to make objects resident
in memory on demand, much as non-resident pages are automatically made resident by a paged virtual memory
system.

Treating persistence asorthogonal to type encourages the view that a language can be extended to support
persistence with minimal disturbance of its existing syntax and store semantics. Thus, programmers need to add
little to their understanding of the language in order to begin writing persistent programs. A common way to achieve
orthogonal persistence is by treating persistent storage as a stable extension of the dynamic allocation heap. This
allows a uniform and transparent treatment of both transient and persistent data; persistence is orthogonal to the way
in which objects are defined (i.e., their types), allocated, and manipulated in the heap.

Implementation of transparent, orthogonal persistence requires two underlying mechanisms:residency checks
to trigger retrieval of non-resident objects from stable store to main memory for read access, andupdate checks
to track their modifications (including acquisition of write locks as necessary for concurrency control) for eventual
propagation back to stable storage. The application of these checks constitutes aread barrier andwrite barrier
for persistence, respectively, since execution is suspended until the checks and any consequent action is complete.
Efficient implementation of these mechanisms, and sensible object caching policies, are the keys to performance for
persistence.

1.2 Performance

Cattell [1994] (p. 268) mentions two performance tenets for an object data management system (ODMS):

T26: “Minimal access overhead. An ODMS must minimise overhead for simple data operations, such as fetching
a single object.”

T27: “Main-memory utilisation. An ODMS must maximise the likelihood that data will be found in main memory
when accessed. At a minimum, it should provide a cache of data in the application virtual memory, and the
ability to cluster data on pages or segments fetched from the disk.”

We are addressing both of these issues, which can significantly affect performance: reducing access overhead leads
to persistent programs whose performance approaches that of their non-persistent counterpart, since the persistent
program will have negligible overhead when operating entirely on memory-resident data; improving main-memory
utilisation reduces I/O which is the main performance barrier for persistence.

1.2.1 Minimal access overhead

There is an inherent tension between the principle of orthogonality and efficient implementation of that model. The
abstraction of orthogonal persistence obscures the performance disparity between fast cache/main memory and slow
secondary storage. Thus, naive implementations of orthogonal language designs can lead to inefficiencies. For
example, a given object reference in an orthogonal persistent program may target either a resident or non-resident
object. Before the object can be manipulated through that reference a residency check must be performed to make
sure the object is available in memory. A naive implementation would encode each object reference using its target
object’s disk-based persistent identifier (PID). Every time an object reference is traversed, the PID must be mapped
to a pointer to the target object in memory (with a call to make the object resident if it is not already). Residency
checks on transient or already-resident persistent objects are unnecessary, so long as those objects remain resident.
Eliminating the check and using a direct memory pointer to refer to such objects is more efficient, since repeated
object access can be achieved through fast main-memory addressing as opposed to slow PID translation. We are
developing global data flow analyses (both intra- and inter-procedural) to discover and eliminate redundant residency
and update checks and to influence conversion of PIDs to direct pointers (i.e., “swizzling”).



1.2.2 Main-memory utilisation

Persistence transparency precludes explicit control by the programmer over the physical transfer of objects between
main memory and persistent storage. Rather, objects are automatically retrieved as needed by the program and
cached in memory until evicted by the cache replacement policy. However, I/O latencies are so high that the timing of
fetch requests, the way in which objects are clustered for storage and retrieval, and the policy for object replacement
all have a significant impact on the performance of a persistent program.

Note that persistent systems face a much more difficult task of cache management than file-based systems. A
persistent store contains highly-structured complex objects that are traversed in relatively random orders with respect
to their storage on disk, rendering the low-level clustering and prefetching strategies of traditional file systems
ineffective.

We are devising techniques for automatic derivation of strategies for prefetching, replacement, and clustering of
objects, based on static program analysis, dynamic profiling, and direct consideration of the schema and physical
structure of the target database.

2 Optimisation

Our goal is to devise, implement, and evaluate optimisations for the orthogonal persistence for Java (OPJ) prototype
[Atkinson et al. 1997; Atkinson et al. 1996] being developed jointly by Sun Laboratories and the University of
Glasgow. We divide candidate optimisations into those that are:

enabled by persistence: optimisations that target generic program improvement and are enabled by analysis, com-
pilation and execution in a persistent setting; and

enabling for persistence: optimisations specifically targeting reduction of the persistence-specific overheads of
execution

We now describe in more detail the optimisation strategies we plan to explore.

2.1 Persistence-enabled optimisations

Java’s dynamic, late-binding, object-oriented nature provides many opportunities for optimisation, such as those pur-
sued for Self [Ungar and Smith 1987] and other OO languages: e.g., specialisation, customisation, method splitting,
cloning and inlining, which all act to reduce the overhead of dynamic method invocations. Similar optimisations
have been applied in other settings such as Modula-3, based on ”whole-program” analysis [Fernandez 1995; Diwan
et al. 1996; Diwan 1997].

Java’s model of network code distribution dictates a standard class file format for network transmission, with
code taking the form of architecture-neutral bytecode instructions for the Java Virtual Machine (VM) [Lindholm and
Yellin 1996]. In such a setting Java source code is never transmitted to clients: they see only the VM bytecodes,
which they may interpret with a virtual machine, or translate to native code using a ”just-in-time” (JIT) compiler
for direct execution. Without any control over the initial server-side compilation phase that translates source code to
bytecodes, the only opportunity for clients to influence code quality is at the time of JIT compilation after receipt of
the Java bytecodes. However, there is an inherent tradeoff to optimisation during JIT compilation, since the goal is
usually to begin executing code as soon as possible after it has been received, whereas many optimisations depend
on a time-consuming analysis of the code. Indeed, Self-93 [H¨olzle and Ungar 1996] retreated from many of the
more expensive analyses and optimisations of Self-91 [Chambers 1992] simply because they were too expensive for
fast turnaround of JIT compilations.

It is here that persistence can provide assistance, allowing more aggressive off-line analyses and optimisations of
both bytecode and native code. Analysis and optimisation phases are greatly simplified when all code, data, profiles



and other measurements are retained within a persistent store. Advantages accrue from the accumulation of large
bodies of types, analysis results and both unoptimised and optimised bytecode and native code in the persistent store.
JIT compilers can take advantage of such analysis to generate more efficient code, but without the overhead of on-
line analysis. In this sense, persistence changes the game because there is no longer a need to trade off performance
for responsiveness.

OPJ calls for Java classes (including code) to be interned as part of the persistent store. When loading a Java
class, OPJ first checks to see if the class is already available in persistent storage; if so then the interned code can
be used instead of loading the external bytecoded code representation. Needless to say, interned persistent code
can take whatever form is convenient: standard bytecodes, extended bytecodes, or native code. Whatever form is
assumed for interned code, the expensive analyses that drive candidate optimisations can be performed on the stored
code during periods when the persistent system is inactive. Moreover, the interned body of code can approximate
the notion of ”whole-program” that has been exploited for optimisation in other settings. Naturally, open-world
assumptions must apply where necessary, either to avoid recompilation of vast quantities of code when new classes
are interned and existing classes are modified, or to trigger re-optimisation and re-compilation if appropriate. Such
interaction between optimisation and system evolution is a promising area for further investigation, as is the concept
of “active” for a persistent system.

Another interesting twist is that in a persistent setting code can be specialised with respect to the stored data (both
the instances and the instantiated classes). Thus we are presented with a classic opportunity for partial evaluation of
code with respect to the database schema, its physical structure, and the stored instances. The schema consists of
the set of types of all objects actually stored in the database, as opposed to described in the code. Where there are
differences between the types described in the code and the database schema we have an opportunity for optimisation
based on type hierarchy analysis [Dean et al. 1995; Diwan et al. 1996; Diwan 1997], which bounds the set of
procedures a method invocation may call by examining the object-oriented type hierarchy for method overrides.
It is these overrides that result in dynamic method invocations at so-called polymorphic call sites. Although the
program’s type hierarchy may imply a polymorphic call is necessary, the database schema’s hierarchy might indicate
that only a monomorphic call is required, since objects of only one of the types possible in the polymorphic call can
actually be allocated or encountered in the database. Thus, the indirect polymorphic call can be converted to a direct
monomorphic call.

Specific to Java there are remaining interesting problems for optimisation that also arise out of its inherent
dynamism, where the body of code in the system can evolve over time. On the one hand, persistence helps by
enabling complex, long-running analyses in a dynamic object-oriented environment, while on the other hand, static
analysis can become obsolete at any instant. It seems that this is very different from prior settings for optimisation.

2.2 Persistence-enabling optimisations

These are our primary focus. Whereas persistence-enabled optimisations take and extend to a persistent setting
previous work in the area of optimisation of non-persistent aspects of execution, persistence-enabling optimisations
directly address the performance of persistence features. Persistence optimisations strive for minimal access over-
head for persistent data and improved main-memory utilisation as described above. Minimising access overhead
means that simple operations can be performed on persistent data with minimal overhead (ideally, there should be
little or no performance penalty for manipulating resident persistent data compared to transient data). Good main-
memory utilisation means maximising the likelihood that data will be found in memory when accessed, through
caching of data in the application virtual memory and clustering of related data on pages or segments fetched from
disk.

Persistence optimisations are driven by information about theco-residencyof particular objects. We writei!p j
to indicate that whenever an objecti is resident so alsoj will be resident, with probabilityp. We writei ! j if p= 1.
If i ! j and i is made resident then references toj can be swizzled to direct memory pointers. Residency check
elimination assumes that the run-time system will respect co-residency assumptions. By default, we assumei ! i



(once resident an object will stay resident so long as “live” swizzled pointers to it exist). Thus, residency checks are
idempotent, and redundant checks can be eliminated. Further, giveni ! j, references fromi to j can be traversed
without checks. Similarly, update checks and lock acquisition for transaction concurrency control are idempotent
within transaction boundaries, and can be optimised in similar fashion.

Co-residency is transitive only if all weightsp have value 1. One can think of adjusting the co-resident reach of
a given “handle” on a persistent data structure by combining weights and applying a threshold. Supposei !p j !q

k!r l , specifying thatj should be co-resident withi with weight p, k with j with weightq, andl with k with weight
r. Assume 0� p;q; r � 1. Then, given a ”handle” oni, and some thresholdt, j will be co-resident ifp> t, k if
pq> t andl if pqr > t. That way, a given handle can modulate its ”reach” using the threshold combined with the
weights on the edges of the data structure.

Note that when executing code that is compiled to take advantage of co-residency assumptions the object cache
manager is required to guarantee residency of certain objects. In a multi-threaded environment, these guarantees
require careful management to avoid severe performance degradation. Section 2.4 considers this issue in more
detail.

Swizzling can also be driven by co-residency information. Ifi! j holds then we might as well swizzle references
to j contained ini. Not only are checks on those references redundant, but the link can be followed with minimal
overhead. Prefetching and clustering can be driven similarly: when fetchingi we might as well issue a request for
(i.e., prefetch)j at the same time; ifj is also clustered withi then further I/O is unnecessary.

As implied earlier, co-residency information can be acquired in several ways. Static data-flow analysis can
approximate the ”storage profile” of a piece of code which can be refined through dynamic profiling. The information
might be encoded as constraints that must be obeyed by the run-time system before the code (compiled in light of the
constraints) can execute, or more globally, a collection of related types can be annotated by the system to indicate
the global storage profile of their instances, with code optimised in light of those global annotations [Moss and
Hosking 1995]. Other static residency information can be gleaned from knowledge of the object-oriented execution
paradigm of Java: the target of any dynamic method invocation (i.e., the “this” argument) must be resident in order
to dispatch the method. Thus, the bodies of those methods can access the fields of the target object without residency
checks. This observation led to elimination of 86-99% of residency checks in a prototype persistent Smalltalk system
[Hosking 1997]; we expect similar improvements for OPJ programs.

To sum up, the principal objective is to focus on the unique setting persistence gives for optimisation, both
persistence-enabled and persistence-enabling. There is a strong connection among persistence optimisations such as
residency-/update-/lock-check elimination, clustering, prefetching, and swizzling, centered on co-residency analyses
and dynamic profiling. Prior work in these areas has not recognised the commonalities that arise in each of them, and
our goal is to unify the approaches in a common framework of program analysis and execution profiling. Recasting
previous optimisations (e.g., from Self) in this framework is a by-product of this objective.

2.3 Analysis and optimisation framework

In order to understand our approach it is necessary to consider the current architecture of OPJ. Without changing the
standard Java language, the OPJ team has made extensions to JavaSoft’s Java Development Kit (JDK) implementa-
tion of the VM to support transparent, reachability-based persistence for Java. Stable storage is currently provided as
a layer below the standard JDK VM and its garbage-collected volatile heap. Attempts to access non-resident objects
are trapped by the OPJ VM. The resulting object faults are serviced by calls to the storage layer to fetch, swizzle as
necessary, and cache a copy of the target object in memory, before execution can proceed.

We are focusing on persistence optimisations, but intend also to consider the synergies between persistence and
generic optimisations, particularly those able to take advantage of analysis and profile information stored along
with the persistent store schema (e.g., the instantiated types in the store) and the store’s physical organisation (e.g.,
clustering, indexes, etc.).

We plan to analyse and optimise to an extended VM bytecode set from the standard bytecodes. Some simple



analyses and static optimisations might be performed by an extended VM itself when the code is interned (e.g., re-
placing slow bytecodes with their quick forms as the current JDK VM already does), but more complicated analyses
and transformations will take place off-line. Short of native-code compilation there is much we can do to improve
the performance of OPJ. We will modify the OPJ VM to incorporate additional non-standard bytecodes for use
in optimised interned code. These bytecodes will isolate and expose the costlier operations of persistence. Static
data-flow analysis and optimisation, allied with execution profile feedback, will determine where these bytecodes
are redundant and so can be eliminated.

As a concrete example, consider residency checking. Currently, OPJ residency checks are performed on every
”unhandle” operation in the VM. By removing the checks from the internal unhandle operation and exposing them
as separate bytecodes we can eliminate those found to be redundant. (Similar strategies can be applied for clustering,
prefetching, and elimination of unnecessary update checks and lock requests [Hosking and Moss 1991; Moss and
Hosking 1995; Hosking 1995; Hosking and Moss 1995; Hosking 1997].)

2.4 Profiling and run-time support

In addition to static analysis we will also perform significant dynamic profiling, since Java’s execution allows ex-
treme forms of dynamism (e.g., injection of classes unknown at compile-time). The results of static analysis will
be both updated code sequences and auxiliary data structures capturing both analysis information and frameworks
for dynamic profiling. In the persistent setting it is possible for the analyser itself to plant profiling code and attach
appropriate data structures to a targeted class object to record profile information associated with that class. This is
in line with previous approaches to dynamic persistence optimisations [Cutts et al. 1994].

As well as profiling localised to certain code regions, profiling of a more global nature will also be performed.
For example, the cache manager, thread scheduler and lower-level store mechanisms maintain a global view of data
access spanning multiple executing threads. Static code/class analysis alone cannot capture this global behaviour.

For any particular optimisation, some adjustment will be required within the OPJ VM. Particular examples are
implementations for new bytecodes, and adjustments to the cache management mechanism to take into account static
residency assumptions used to drive optimisation. For example, static analysis may identify redundant residency
checks on the basis of guarantees about the on-going residency of the target object. That is, there is an expectation
that a resident object will not be unceremoniously evicted by the cache manager. In essence, residency checks pin
objects in memory for some range of code, and the cache manager must agree to maintain those objects as resident
so long as the thread executing the pinning code is active.

Excessive pinning of objects will prevent effective cache management. This is especially so in the context
of pre-emptive thread scheduling, where a thread could be pre-empted in the middle of a pinning range. If the
pre-empted thread is pinning large amounts of data then other running threads will face a congested cache. To
avoid these problems we plan to allow the cache manager to steal pinned objects from suspended threads, on the
understanding that stolen pins will be restored when the thread is resumed. Analysis of the existing cache manager
and thread scheduler of the OPJ VM [Dayn`es 1997] has shown that they can be modified to support this additional
functionality efficiently. Briefly, rather than overloading execution with explicit pinning mechanism, residency
checks will implicitly pin objects. So long as there exist live references from a thread stack to an object, the cache
manager will avoid stealing that object, and then only if the thread itself is inactive. If it absolutely must steal
from the thread then it faces two choices: make the thread inactive until such time as memory becomes available to
allow the object to be pinned and the thread resumed; or arrange for access to the object to be trapped transparently
with respect to the code (techniques based on operating system primitives for virtual memory page protection are
one approach [Hosking and Moss 1993]). Of course, one key question is how to discern live references. Bytecode
analysis can help here by capturing liveness information per code range for use at run-time, but we can assume no
such information is available for native methods. Since the current object cache manager must work with native
methods anyway, we see no reason why analysis-guided pinning assumptions cannot also be incorporated into its
mechanisms.
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3 Prototype

We are building a prototype bytecode analyser based on the optimisation framework of Diwan [1997], and col-
laborating with the OPJ team to support the necessary extended bytecodes and run-time functionality to permit
persistence optimisations. The basic architecture of the prototype is illustrated in Figure 1. As external classes
are interned by the OPJ virtual machine, their bytecoded methods are filtered and augmented with the extended
bytecodes for persistence (e.g., residency checks, update checks, etc.). These extended bytecodes simply expose
persistence functionality that is currently buried inside the bytecode implementations of the current OPJ system.
Assuming that the OPJ VM fully implements these extended bytecodes (i.e., as other than no-ops) then it can excise
the buried persistence mechanisms and run with the extended bytecode set. The filtering process does not perform
optimisation; it simply adjusts the bytecode for execution on the (extended) OPJ VM.

Analysis and optimisation takes place as necessary, on-line in response to requests by the run-time system when it
discovers execution hot-spots that might benefit from optimisation, and off-line during periods of system quiescence.
The analyser/optimiser is being coded in Java and will take advantage of a privileged interface to the persistent store
allowing it to navigate persistent classes and to peruse and update their bytecoded methods. The analyser will
communicateprofile modelsto the run-time system for annotation; these consist of auxiliary data structures on
which to hang execution statistics that may later serve more focused analysis and optimisation. Examples of these
auxiliary structures include control-flow graphs for execution frequency annotation, and type graphs and instance
structure graphs for pointer traversal annotation. Annotation may be performed by the insertion of profiling code, or
througha priori contracts between the run-time system and the analyser. Note that all of this information can itself
persist in the store for subsequent use in later executions.



4 Conclusion

We have briefly described a prototype bytecode analysis and profiling framework that we plan to implement for the
prototype OPJ system. The intention is to support optimisations that both enable, and are enabled by, persistence.
Construction of the initial prototype analyser and attendant modifications to the OPJ virtual machine for residency
check elimination are expected to be nearing testing by the time of the workshop, where we will report on our
experiences thus far. Areas we expect at that time to be more concrete include:

� the interface between the OPJ system and the analyser

� dynamic profiling results to expose system hotspots, and the potential benefits of candidate optimisations

� a detailed description and design of the pinning architecture within the OPJ virtual machine, including its
interaction with the thread scheduler and object cache manager

� specification of the new, internal bytecodes for persistence mechanisms
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Abstract

A large group of computer users are now mobile; they either make use
of more than one computer or carry lap-top computers with them. User
migration is often hindered by inadequate programming models and
architectures. This paper describes an architecture which permits the
user’s environment to migrate with them. A corner-stone of this
architecture is the ability of persistent Java systems to save and restore
the state of active computations. This concept is extended to permit
computations to be restored on different machines thus permitting a
user’s environment to migrate. The architecture also addresses the
difficult issue of channel mobility between two migratory applications.
It is therefore general enough to support arbitrary distributed mobile
computations.

1 Introduction

Many computer users make use of more than one computer, for example, it is common to
have a computer at work and another at home. Sometimes within the workplace a user may
use more than one computer, perhaps in different rooms, buildings or even countries. Users in
these situations have been forced to accept that the data they wish to manipulate may be
unavailable on the local machine or perhaps available but the appropriate software to
manipulate it is not. Software can add to the problem by encapsulating data, making it
difficult or impossible to access from other machines. Examples include: data held in editor
buffers, CAD designs, electronic appointment programs and electronic mail.

Many people have adopted ad-hoc working practices to accommodate mobility, for example,
carrying floppies or a lap-top containing a cached version their current work. Ironically, the
use of a lap-top introduces another form of mobility which must be accommodated - that of
machine mobility. A common solution to the problem of making data globally available is to
store and manipulate data on a central server. The situation is typified by electronic mail.
Some users of electronic mail read their mail using tools such as elm, xmh or mailtool which
both execute and manipulate mail files on a central server. Alternatively, tools such as Eudora
which run on a local workstation may be used. The former solution forces users onto the
central resource whereas the latter utilises the local machine but at a cost. Since mailers such
as Eudora maintain both read and unread mail folders on the client†, a user moving to another
machine and wishing to access mail has considerable difficulty.

A more desirable situation would be for a user to approach an arbitrary machine and be able to
continue performing their work regardless of where they worked last. This paper presents a
first step towards the realisation of this ideal. A number of developments have made such an
approach possible: the ubiquity of the Internet, the widespread adoption of Java, and the
maturity of persistent technologies.

                                                
† Pop based mailers such as Eudora do allow mail to be left on the server but the users forfeit the ability to
organise mail into folders.



The paper is organised as follows: first some terminology and a characterisation of different
kinds of mobility is made. This is followed by a statement of the requirements for supporting
mobility and a description of an architecture designed to satisfy these requirements. The
architecture has two main components, platforms and servers which are described in Sections
3 and 4 respectively. A design to cope with the problems of environment binding and
communication channels between mobile entities is addressed in Section 5. Section 6
describes an initial experiment which we have conducted to prototype, test and develop our
ideas. Some related work is discussed in Section 7 and Section 8 concludes.

2 Terminology and Requirements for Mobility

2.1 Terminology

In this paper we will consider the mobility of three classes of entity: people, machines and
processes. We assume that a mechanism for finding data on the network exists; a naming
mechanism such as that provided by Uniform Resource Locators (URLs) will suffice.

We define a user to be a person who uses a computer; users are mobile: they move from home
to their place of work, from city to city and from continent to continent. We define a view to
be that which a user sees when they sit down at a computer screen be it connected to a PDA,
PC, workstation, network computer, or mainframe. Users may own multiple views but only
make use of one at a time. A view is implemented by a platform. A platform is a collection of
hardware and software that combine to implement the view. We will separate a platform into
two components the platform software and the platform hardware. The platform software
consists of:

• active threads and/or processes‡ that implement the view,

• the code being executed by the threads,

• the code that implements the software environment (e.g. the Java-virtual machine,
dynamic libraries etc.) and,

• the data representing entities visible in the view.

The platform hardware consists of a computation environment on which to run the platform
software i.e. a CPU and main memory, a screen with a pointing device and perhaps a
keyboard. The platform hardware may contain persistent storage but need not. In cases where
persistent storage is not available on the platform, it is provided by a server. A server contains
non-volatile storage and may be used as a general purpose repository. There are no
requirements for a server to support any form of view. If a device which is used as a server
also contains the ability to operate as a platform or vice-versa, it will be considered to be two
different entities. Clearly, there is an opportunity for optimisation in this case.

2.2 Characterising Mobility

The framework described above is shown in Figure 1 which shows the three classes of entity
that may be mobile: users, views and platforms. When users move from location to location
they require their view to move with them. The view includes the user interfaces to
applications which may be executing on the platform, on the associated server, or elsewhere
on the network. When a view migrates from one platform to another, either the threads and

                                                
‡ We will use the term thread to mean thread/process.



data implementing the view must also migrate, or those threads must be notified of the
location of the new view.

Figure 1: Users, Views, Platforms and Servers.

Clearly the former solution makes better use of caching and network bandwidth. In this paper
it is therefore assumed that the threads and data implementing the view migrate with the user.
There is no requirement for the applications with which the user is interacting to migrate
although it may be expedient for them to do so. When the threads implementing a view
migrate, the connections to networked entities must also migrate. For example, if the view
includes a traditional window implementing a Unix interaction with a remote host, the input
and output to and from that host must migrate with the view.

A platform may migrate with a user, for example, when a user carries a lap-top to another site.
When this occurs, the applications running on that platform and the view that it presents also
migrate. However, network connections to the platform may be severed and need to be re-
connected at another site. This situation is analogous to the process which occurs when
platform software migrates. When a platform migrates, it may be expedient for the platform to
employ the services of a local server at the new site.

As described above, a view is implemented by a collection of persistent threads each of which
operate on some cached data. Figure 1 is refined in Figure 2 which shows the composition of
views, platforms and servers.



Figure 2: Points of Mobility

Figure 2 shows the two different points of mobility that may be considered:

1. view mobility over platforms and,

2. platform mobility over servers.

View mobility is supported by platforms and servers, platform mobility is supported by
servers. The persistence of threads and data in the platform may be implemented either by the
platform, if it is equipped with persistent storage (e.g. in the case of a PC), or co-operatively
between the platform and the server if it is not (as is the case in a NC).

2.3 Requirements for User Mobility

A user may move from machine to machine, for example, in Figure 1 user Jim may move
from platform B to platform C connected to a different server. When the user moves, the
user’s view should also move, permitting the user to continue with whatever work was being
performed at the last platform.

The ability to migrate a view requires that the platform software be capable of migrating to a
different platform hardware instance. Since the platform software consists of active threads
and the data representing entities visible in the view, migrating the view requires two forms of
migration:

1. data migration, and,

2. thread migration,

or rephrased,

view mobility = thread mobility + data mobility.

Each of these forms of mobility introduces other problems discussed below.

2.4 Requirements for Platform mobility

Consider platform C, in Figure 1, as a mobile device it may be disconnected from the network
and reconnected elsewhere. Here the view of user Fred is (may be) maintained by the mobile
device, however the mobility of platforms highlights some other problems, namely:

1. environment mobility, and the special case of this,

2. channel mobility.



Environment mobility is concerned with bindings between threads and the external
environment. For example, a thread may make use of a printer or some input device.
Mechanisms must be provided so that threads running on a mobile platform may bind to
services which appear in their environment. This situation also arises when a view is migrated
to another platform. It is clear that different kinds of bindings are required even for one class
of device. For example, in the case of a printer, a user may wish to print confidential or
personal documents on a secure printer at a fixed location and in other cases any printer may
satisfy their needs. This illustrates the need for both static and dynamic binding mechanisms
to support environment mobility.

Channel mobility is a special case of environment mobility. A thread running on a platform
may open a communications channel with a another thread running on another platform or
server. If the platform is taken off line and moved to another location, the channel will be lost.
Like environment mobility, this situation also arises when views are migrated since threads
are migrated to other platforms. To make movement transparent, software that maintains the
channel across movement must be provided. This may be achieved in one of two ways:

1. implementing software at both ends of the channel to manage the transparent
connection/reconnection, and,

2. using a server as a connection proxy.

These ideas are expanded in Sections 5.1 and 5.2 below.

2.5 Overall architecture

Figure 3: Re-establishing a View

Before view is made visible, the owner of the view must be authenticated. This requires the
following:

1. users must identify themselves,

2. users must present authentication, and

3. the location of the view specified by the user must be established.

The first two stages above are identical to a conventional login session on a Unix machine.
The third step is necessary in order to locate the user’s specified view. These three steps may



be easily achieved if a smart card with modest memory is available. Using smart cards it is
possible to record the identity of the user and where they were last active. Many of the
Network Computers that are currently available have smart card interfaces built into them
which could be used for this purpose. However, since smart card devices are not ubiquitous,
we shall consider other ways of identifying the user and their views. Figure 3 shows one
method of doing this using the World Wide Web.

Each user is assumed to have a home which is capable of recording the identity of the last
hardware platform on which each view was last made. This functionality may be implemented
via a simple cgi script located on a Web server which is capable of saving and retrieving
locations. In the worst case, a user might type in the location of their home during the
authentication process in order permit the system to locate it. Other possibilities are to use a
search engine or global identifiers to locate a user’s home.

When a view is established on a hardware platform, the user's home is contacted to register
the server as manager of the view (1). Periodically the view is snapshotted to the server to
provide resilience and to permit future migration (2). Following user migration (3), the new
platform contacts the user’s home to register and request view migration (4). The Web server
requests the platform which last implemented the user’s chosen view to migrate the software
platform to the new hardware platform (5). These requests will typically be sent via the server
supporting the platform as described in Section 5.2 below. In practice many of these requests
will not be forwarded to the platform and will be handled by the server implementing the
platform’s persistent storage. In either case, the closure of threads and data implementing the
view are migrated to the new hardware platform for restoration (6) and the cycle begins again.

3 Platforms

A platform must be capable of:

1. authenticating a user,

2. loading a view from the platform/server identified during the authentication sequence,
and

3. saving the state of the view to persistent storage provided by the platform or the server
that supports it.

The second and third activities are intimately related to each other and require a protocol that
defines:

1. how to identify the persistent state implementing a view,

2. how persistent state is preserved,

3. what format the persistent data is in, and

4. how to transport that state to and from persistent storage and between platforms and
servers.

The persistent state that implements a view may easily be tagged using the user-id combined
with a view identifier. This scheme is used in Grasshopper to identify login sessions and
similar schemes have been used elsewhere [1]. The next question is how state is preserved; in
general, there are 4 approaches to saving state in Java systems:

1. manually writing save and restore code in every application/applet,

2. perform saving and restoration using (Java) serialisation,

3. providing persistence at the (Java) virtual machine level [2], and



4. providing persistence at the address space level.

The first approach is the traditional solution to persistence: write flattening code by hand for
every object class in the system. Whilst this is possible for simple data structures it becomes
unmanageable in complex applications and has been estimated to account for 30% of all
application code. The only merit of this approach is that code may be written that is highly
optimised for the data types.

The second approach has become popular since the introduction of Java object serialisation
[3] which permits an arbitrary graph of objects to be marshalled into a stream. Whilst this
approach would be appear to be a panacea it is not without its problems some of which are
fundamental and others accidents of implementation. The first problem, which may be argued
to fall into either of the above two categories, is that not all fields of objects are written to the
stream. In particular, private fields are not serialised due to a perceived security breach. The
second problem with this approach is that active context (i.e. active threads) is not saved.
Knowing that threads are not preserved across serialisation will inevitably force programmers
to write code in a certain way. Whether this is detrimental to coding remains to be seen. The
third problem is that Java object serialisation is not an efficient method of making data
persistent due to the fact that, like pickling, it is an all or nothing approach. There is no
concept of saving only that data which has been modified since a particular point or time such
as the start of a transaction. One can attempt to avoid this problem by selectively serialising
objects. However, using such an approach it is easy to lose referential integrity which must be
avoided. A final problem with serialisation is that it cannot be effectively used to save
anything other than entire object closure. In many persistent systems the object closure may
include the entire persistent store and perhaps even large portions of the Internet. If this
approach is to be followed, techniques such as Farkas’ OCTOPUS mechanism [4] or the use
of weak pointers are also required.

The next approach to saving state is to provide persistence at the (Java) virtual machine level.
This is the approach followed by Atkinson’s PJava group [2]. Whilst we have argued
elsewhere that the last approach is better, this approach has many merits in the application
domain described in this paper. It also addresses many of the shortcomings of the serialisation
approach described above. Providing persistence at a level lower than the Java language level
permits the (reflective) type system to be broken and consequently all fields of objects may be
saved to persistent storage rather than only the public ones. Secondly, the runtime state
associated with threads may also be saved to persistent storage and later restored†. Since the
runtime system has access to object implementations, it is easy to save only those objects that
have been modified since a previous checkpoint or transaction start. This approach helps solve
the closure problem described above although does not address the problem with respect to
network transmission.

The final approach to providing persistence is to provide it at the virtual address space level;
this approach is followed in the design and implementation of Grasshopper and has many
desirable properties which we have described elsewhere [5]. One benefit of this approach is
the ability to make all data in the address space persistent, including the state of threads and
the stacks supporting them. Curiously, this does not assist in the transmission of state to
another machine since data must be in an architecturally neutral format to support
heterogeneity.

The above techniques are all capable of gathering some approximation to the persistent state
of a computation. The format of the data in each case is different. Using the manual approach

                                                
† Current implementations do not support this functionality.



to saving persistent data produces persistent data in an ad-hoc format. This is a hindrance to
its use in a general purpose system. Clearly some standard representation is required to enable
the data to be saved and restored. In this respect, object serialisation is clearly the best
approach. However, as described above, it is deficient in that it does not capture the dynamic
state of computations. This is also true of the Aglet approach described below [6]. The most
complete solution, that of persistence at the address space level, suffers from problems with
heterogeneity, leaving the Pjava approach being the most promising.

The last problem is how to transport state between platforms and between platforms and
servers. Once a format for the persistent data has been agreed, this may be easily achieved
using one of the stream abstractions provided by Java that use TCP/IP.

4 Servers

Servers are responsible for four tasks in the architecture:

1. implementing the home of users,

2. providing persistent storage for non-persistent client platforms,

3. providing channel proxies, and

4. provide caches for client platforms.

The task of providing a home for users is the simplest of the four tasks. This requires the
ability to record and recover the identity of the last hardware platform which implemented a
view. As described above, this may be done simply and efficiently using existing Web tools
and protocols. A server providing a user’s home may also be required to provide persistent
storage for (passive) data owned by a user. This is the traditional file/object server task often
associated with the role of a server.

In addition to the file/object storage role, servers are required to provide persistent storage for
the views implemented by the hardware platforms they support. This role is similar to that
played by servers in support of early Sun diskless workstations (e.g. Sun 3/50). In this
architecture the servers are likely to be required to support a cluster of diskless network
computers. The state of the platforms is periodically checkpointed to the server which is
responsible for saving the view on non volatile storage. This state may be requested by the
platform following a crash or by another platform during the re-establishment of a view.

Servers also implement channel proxies discussed in Section 5.2. These provide a fixed
location for communications with migratory hardware and software platforms. The fourth role
of servers is that of cache manager. It is likely that clusters of network computers would often
be running similar if not identical collections of code. Since servers support persistent storage
and act as proxies for communications channels, it is natural for the servers to implement code
and data caches.

5 Channel and Environment Mobility

5.1 Managing connection/reconnection

As described above, channel mobility may be implemented in two ways:

1. implementing software at both ends of the channel to manage the
connection/reconnection, and,

2. using the server as a connection proxy.



In order to accommodate the connection and reconnection of channels we introduce a new
abstraction called a half session. The primary purpose of a half session is to implement a
communication channel which provides a reliable stream abstraction that can be disconnected
and reconnected to different platforms and servers. As shown in Figure 4, on each platform or
server implementing a relocatable channel, a half session is used to manage the connection.
Thus there is a half session managing each end of a relocatable channel. The name,
inspiration, and thinking behind half sessions is motivated by the seminal work of Strom and
Yemini [7].

Half sessions present stream abstractions which are an extension of the interfaces presented by
java.io.InputStream and java.io.OutputStream [8].  In addition to the methods provided by
these interfaces, the half session abstraction provides methods for the re-establishment of the
stream with an alternative client or server should a half session object be migrated. Clearly the
re-establishment method must communicate with its peer half session in order to re-establish
the channel.

Figure 4: Half Sessions

5.2 Channel Proxies

The half session abstraction permits two threads running on different servers or platforms to
communicate with each other and permits migration of either end of the channel. However,
views may be required to communicate with legacy systems which do not implement the
channel abstraction. This is the case where a user is interacting with a legacy application
running on a Unix system, for example a shell. Since legacy code does not support the half
session abstraction, some additional mechanism must be provided to permit the platform
(hardware or software or both) to migrate. This may be achieved by the use of the server as a
fixed proxy for communication. Using this scheme, the fixed server communicates with the
remote party on behalf of the platform. This communication is achieved using a traditional
socket interface. The platform in turn communicates with the server using the half session
abstraction permitting the platform to be relocated without the knowledge of the remote party
which is only aware of the server.

The above scheme may be implemented in Java using an implementation of the
java.net.Socket class which uses the half session objects described above rather than standard
input and output streams. In the implementation of this class, all data is routed via the server
using the half session abstractions rather than using direct communication with the remote
party. This may all be achieved transparently to the client.

5.3 Agents and Channels

In addition to managing socket like streams, we also wish to support agent-style computation.
This model is now well known [6, 9, 10] and requires autonomous computations capable of



moving between different nodes in the network carrying code and data with them. Agents may
be used to perform a number of tasks including scheduling meetings between different users
and gathering information from a number of sites for example to arrange a trip. Consider this
last example, a user may wish to travel between Stirling and California. Such a trip may
involve agents visiting different sites containing information about train and flight times.
After initiating agents to arrange a trip, the user may move to a different site. However, the
agents should report back to the user not back to the site from which they originated.

The management of agents leaving from and returning to a view may be handled using a
mechanism similar to channel proxies. All agents are routed via the server using the half
session abstractions. This ensures that agents have a fixed location to which they may return.
The server is responsible for holding agents attempting to return to views that are currently
inactive.

5.4 Binding to Services

A final aspect of mobility that must be addressed is binding to the external environment.
Binding to external services may either be dynamic or static, for example, an application
running on a platform may wish to make use of a printer. In this case any postscript printer
available locally may be suitable and the binding is dynamic. In other circumstances, for
example when a user wishes to make use of a file/object server, only the file server containing
the user’s files would be appropriate. Here the binding between the application and the
external service is static.

In both cases the external services are provided by servers, the only issue is how platforms
bind to the servers. Clearly, if either the hardware or software platform is permitted to
migrate, some indication of the (re)binding regime must be specified when the binding to the
service is initially established. In order to support (re)binding activities, servers are required to
provide an associative lookup mechanism like that provided by CORBA [11] and
Grasshopper nameservers.

6 An Initial Experiment

As an initial experiment we have implemented an instance of this architecture to support a
single application – a ubiquitous mailer. This system was constructed as a demonstrator and
mimics the functionality of a ubiquitous mailer being implemented by DEC. The mailer is a
Java applet which is uploaded from a server running the Grasshopper operating system. All
persistent state is held on the Grasshopper system and loaded on demand to the mailer applet.
The applet (800 lines) is essentially a mail viewer and contains code to authenticate the user,
view mailboxes, compose mail messages and snapshot its state. Most mailer operations
involve communication with the server. All interactions between the mailer and Grasshopper
are made using HTTP. Since HTTP behaves in a connectionless manner, the mailer may move
from platform to platform transparently to the server.

In the system described in this paper the snapshotting and recovery of platforms is automatic.
In the mailer system, the state of the mailer is persistified (sic) by a thread with application
specific knowledge. The thread sleeps on a timer and on awakening sends any volatile state of
the mailer including messages currently being composed, lists of new mail etc. to the server
using HTTP.



7 Related Work

7.1 Migratory Applications

In [9] an architecture designed to support migratory application in the language Visual Obliq
is described [12]. Single user migratory applications are supported at the language
environment level and may migrate from node to node whilst maintaining the state of their
user interface. Almost no requirements are made of the application programmer which is the
ethos behind orthogonal persistence and the thinking behind this paper. The basic building
block of the system is the concept of an agent, a computation that may hop from site to site
carrying with it a suitcase containing the agent’s persistent memory. When the agent executes
a hop instruction, the suitcase and the computation’s closure is migrated to the new site. When
an agent arrives at a site, it is given a briefing which may include advice for the agent and site
specific information. The above mechanisms have been used to construct migratory
applications containing a MigrateTo(Host) command which causes the remote host to be
contacted and if it will accept the application, it checkpoints the state of its user interface and
performs a hop instruction. This work is complementary to our own and has coloured our own
thinking.

7.2 Aglets

As described in [6] an aglet is a mobile Java object capable of visiting different hosts on a
network. Aglets are autonomous, they each contain an active thread of execution and are
capable of reacting to messages sent to them. Like an applet, the class files for an aglet can
migrate across a network. Unlike applets, when an aglet migrates it also carries its state. An
applet is code that can move across a network from a server to a client. An aglet is a running
Java program (code and state) that can move from one host to another on a network. Each
aglet executes in a context which provides a uniform execution environment independent of
the capabilities of the host. The aglet context serves to isolate the aglet from the platform.

Aglets have an onCreation method which is executed when the aglet is created or migrated to
a new context. Aglets also contain a dispatch method which takes an URL as a parameter and
may be used to migrate the aglet to a new context. When dispatch is called, the byte code and
state of the aglet is preserved using standard Java object serialisation and transmitted across
the network using the Aglet Transport Protocol (ATP) [6]. Aglets can be reactivated at the
new site using the onCreation method.

Since aglets use Java object serialisation to export their state, the execution state of the threads
owned by the aglet are not serialised. Therefore when an aglet is migrated or deactivated, any
state resident on stacks and the program counters of running threads are lost. This is a
consequence of the JVM, which does not permit direct access to run time state. Before an
aglet is serialised, the host informs it that serialisation is immanent (via the onDispatch
method) so that it may store any information it will need to continue its execution in object
variables.

Aglets are complementary to the ideas in this paper in that they offer potential technology for
implementing the architecture described in this paper. Whether or not the loss of dynamic
state is too much of a programming restriction will remain to be seen.

8 Conclusions

This paper presents some initial thoughts on how persistent technology in general and Java in
particular may be used to provide mobile users with a ubiquitous environment. A generally



applicable architecture to support mobile users has been described. We have implemented a
restricted prototype in order to validate these ideas. The architecture is realisable using
technology which is currently available. Techniques with which user views may be located
and restored on a different hardware platform have been described as have techniques for
dealing with the difficult problems of inter-platform communication. These techniques both
address the need to interact with other mobile computations and with legacy systems. They
are also general and may be applied to mobile distributed applications unlike [9]. A number of
engineering problems remain, in particular, the best way to save and restore closures of Java
objects. We have suggested several approaches which may be used. The best approach will
require further investigation.
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ObjectStore PSE: a Persistent Storage Engine for Java

Gordon Landis, Charles Lamb,
Tim Blackman, Sam Haradhvala,
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Object Design, Inc.

Object Design, Inc. markets and sells ObjectStore PSE for Java, a lightweight Persistent Storage Engine
for Java.  PSE is an entry-level product for users who require persistent Java object storage in client,
server, servlet, or applet environments. Typical PSE applications run the gamut from applets that need to
store user configuration information locally, servlets that need to store user access history, GUI-based
user-directed web spider applications that need storage for their results, and financial applications that
need to store up to tens of megabytes of cached data on a client host.

This paper describes the design goals of PSE, as well as some of the implementation details, user and
customer experiences with it, and future directions.

Goals

The goal of this project was to build a persistent storage and database access system for Java, with the
following characteristics:

Transparent access to persistent data.

• Fetch/Store.  The operations to fetch persistent data from a database and store modifications back to
the database should be automatic and largely transparent.

Tight integration with the Java language and environment.

• Object identity.  Object identity should be preserved across the transient/persistent boundary.  That is,
it must not be possible to get two different representations of the same object, nor to get two different
references that denote the same object yet are not equal.

• Memory management / persistence: Java is a garbage-collected language, so an object exists if it is
reachable from another (reachable) object.  Similarly, an object persists if it is reachable from another
(reachable) persistent object.  We call this persistence by reachability, or transitive persistence.

• Single type system.  There should be a single type system for both transient and persistent storage.  It
should not be necessary to translate between the types stored in the database and the types used in the
runtime environment. Rather, the type system of the Java language should be directly supported by
the persistence mechanism (including the ability to directly store built-in Java types).

• Multi-threaded applications. Java encourages multi-threaded programming so it is important for PSE
to support thread safe operations.  At a minimum, the entry-points must be safe against simultaneous
calls from different threads.  Furthermore, threads must be able to cooperate in their accesses to
persistent data, or act independently from one another.

• Compatibility with Java environment. The persistence mechanism must not interfere with Java’s goals
of portability to any VM or platform, simplicity of code distribution, or applet execution.

• Support for reuse of existing class libraries.  The development environment and tools should enable
existing class libraries to be made persistent with little or no source modification.

Capable of supporting multiple back-end storage systems with different scalability characteristics.

There are currently three back-end storage systems in use with this API: PSE, PSE Pro, and ObjectStore.
These span the range from a simple, low-end, single user persistent store, to a high-end multi-user client-



server DBMS.  They share a common front end, such that the same user code (both Java source and
compiled byte-code) can access either a PSE database or an ObjectStore database without modification or
recompilation.  This paper focuses on the PSE and PSE Pro engines.1

The primary design goals for the PSE storage engine are:

• Small footprint: The target size for the uncompressed runtime .zip file is 300k bytes.  This
allows applets to download the PSE classes quickly.  Minimum database size as well as
storage overhead must also be small.

• Portability:  To maximize its portability, PSE must be pure Java, and must not rely on
specialized Java environments (such as a modified VM).  Nothing should prohibit PSE’s use
in a variety of application scenarios, including applets, applications, and servlets.

• Random Access to Persistent Data: PSE must provide random access to persistent data, and
must only read or write those objects which are read or modified during a transaction.  This
differs from Object Serialization, which is an "all or nothing" access method.

• Atomic Transactions: Even at the low end of the storage system functionality spectrum, it is
a requirement that PSE must support ACID transaction semantics: atomic, consistent,
isolated, and durable2.  This allows applications to maintain data integrity as well as provide
simple "undo" capabilities through a transaction abort function.  PSE must protect persistent
data from system failure.

• Multi-user: PSE need only support coarse-grained locking for multi-user access; more fine-
grained concurrency is provided by other storage systems in the ObjectStore product suite.

Note that it was not a goal to make PSE a full-function multi-user database system; rather, the goal was to
make an easy to use, small-footprint storage environment, which would be API compatible with the full-
function ObjectStore DBMS.

The following sections describe the implementation of PSE, and the level to which it has succeeded in
meeting these goals.

API Transparency

For an entry-level database system such as PSE to be widely accepted, it must be easy to use, and it must
impose as few implementation burdens as possible on the programmer.  Ideally, programming for
persistent storage should not be much different from programming for transient storage.  In particular, the
user should not have to explicitly read objects in from the database before using them, or write objects out
when they are changed; instead, the database system should perform these tasks automatically. In most
cases, the user should not even have to be aware of the fact that the objects being manipulated are being
read from and written to a database.

We considered three main implementation options for such a transparent interface to persistent storage:

• changes to the Java Virtual Machine itself
• pre-processing of the Java source files
• post-processing of the class byte-code files

                                                            
1 Although there are small differences between them, for the purposes of this paper, PSE and PSE Pro may
be considered the same.
2 Transaction durability is one area where PSE and PSE Pro differ slightly.  While both guarantee the
durability of updates in the event of a process crash, only PSE Pro guarantees durability in the event of an
operating system crash.



The first approach, changes to the Java Virtual Machine, was considered in some detail.  While there
could be a number of highly desirable aspects to such a solution (assuming it could be implemented in a
way that did not compromise the performance of applications that do not make use of persistent storage,
and could cover all of the corner cases), we nonetheless rejected it as unfeasible.  Given JavaSoft’s
understandable reluctance to make sweeping changes to the VM, especially changes that affect the
fundamental operations of object access and update, we felt that it was not practical to depend on changes
to the standard Java VM definition.  Even if it were possible to define a set of changes that was simple to
implement, and that did not adversely affect the performance of mainstream Java program execution, it
appeared that it would take a long time and a great deal of effort to overcome the inertia to change
generated by the need for a stable VM definition on which to base silicon implementations. We also
rejected the option of making our own, non-standard VM changes, both because we were concerned about
the performance impact on transient code, and (perhaps more importantly) because this would violate our
goal of portability.

The second approach, a source-code pre-processor, was also considered. It was rejected because it
appeared to entail many of the same difficulties as post-processing.  In fact, because the class file format is
simpler than the source code format, a pre-processor is a larger undertaking than a post-processor. A pre-
processor would also violate our goal of supporting the re-use of existing class libraries in their compiled
form (that is, without access to the Java source code).

Given that the Java portability and code-distribution benefits are based upon the standardization of the
byte-code format and structure, a post-processing technique seemed most consistent with the goals of Java
and of PSE.  Finally, we felt that post-processing might have wider utility, if compilers from other
languages into Java byte-codes were to become available.  This technique is feasible because the Java byte-
code format is stable (unlikely to change much over time), simple (far simpler than .o file formats, for
example), and well specified.

The transparent access to persistent storage provided by PSE (and the ObjectStore Java interface) is
achieved by a class file post-processor called osjcfp (for ObjectStore for Java Class File Post-processor)3.
The classfile post-processor accepts a program’s .class files as input, and produces new annotated .class
files as output.  By setting the CLASSPATH appropriately, the annotated .class files produced by the post-
processor form the basis of the user’s program.

Class file post-processing performs two main functions.

• Schema Generation: It examines the fields of the targeted class files and determines the field
types and locations.  Using this information, it then generates auxiliary "ClassInfo" files (for
example, the post-processor would generate a PersonClassInfo.class file to correspond to a
persistent Person.class).  ClassInfo files are registered with PSE at run-time, and contain
methods that allow PSE to interrogate the number and type of fields in the corresponding
class. 4  A ClassInfo file has no corresponding source file; the post-processor generates the
byte code directly.

• Code Annotation: In order for PSE to know when data is being read from or written to the
database, byte codes are inserted into a class’s methods.  These byte codes cause the
COM.odi.ObjectStore.fetch and COM.odi.ObjectStore.dirty methods to be invoked, to read
data from the database into the object’s fields, or mark an object as modified.  These
annotations ensure that a persistent object is fetched from the database before any attempt is
made to read the object; and that any updates to the object are noted so that they may be

                                                            
3 Our implementation supports manual code annotation as well, but most customers prefer the simplicity
and safety of the post-processor.
4 Some of the ClassInfo code that the post-processor currently generates can be simplified or even replaced
by the use of the introspection API provided in the JDK 1.1.



written to the database by Transaction.commit.  Optimizations are employed to deal with
cases such as repeated use of the same object within a single method, or within a loop.

The class file post-processor can make a class persistence-capable (both of the above operations are
performed), or it can make a class persistence-aware (only the code annotation phase is performed).  A
persistence-capable class may have both transient and persistent instances: persistence is determined on
an instance-by-instance basis, based on reachability (described in the next section). A persistence-aware
class, on the other hand, can manipulate persistent objects, but cannot itself have persistent instances5.

The calls to fetch and dirty that are inserted by the post-processor check the object’s state to determine
what (if any) actions need to be taken.  If the object in question is persistence-capable, but not actually
persistent, then no action is required by either fetch or dirty.  If the object is persistent, then it can be in
one of three states:

• Hollow: This means that the contents of the object have not been read in from the database.  Both
fetch and dirty need to read the data from the database to initialize the fields of the object.

• Active: This means that the contents of the object have been read from the database, but have not
been modified in the current transaction.  While fetch does not need to do anything, dirty needs to
mark the object as modified so that its contents will be written back to the database when the
transaction commits.

• Modified: This means that the contents of the object have been read in from the database, and have
been updated in this transaction.  Neither fetch nor dirty need to do anything.

For instances of most classes, fetch and dirty check the state of the object by inspecting fields of the object
that were inserted by the classfile post-processor.  These fields, defined on the base class
COM.odi.Persistent, store object state information6.  When an object is read from the database by the fetch
method, the object’s state is initialized, and the object moves from the hollow state to the active state.  At
this point, any objects that are referenced by the object (and that have not already been accessed
previously) are allocated in the Java virtual memory space, and are initialized to the hollow state. Hollow
objects are placeholders for persistent objects, but their fields are not filled in from the database until they
are actually needed. Any attempt to access a field of one of these hollow objects in the fetch operation
being called on that object in turn.

Persistence-capable types that are not classes, such as array types and primitive types (e.g., int, boolean,
long, etc.), are dealt with specially, as are their corresponding wrapper classes (java.lang.Integer,
java.lang.Boolean, java.lang.Long), and the class Java.lang.String.  All of these types are automatically
persistence-capable.  However, because they do not inherit from COM.odi.Persistent, their object state
must be inferred differently.  In the case of the primitive types, only their values are stored in fields of
other objects, so they do not themselves have identity or separate representation in the database; they are
read in when their containing object becomes active. The immutable types (the primitives wrapper classes,
and Java.lang.String) do have separate identity in Java, but because they cannot be modified once they are
created, PSE gives them a simpler treatment, and reads them in when any object that points to them is
                                                            
5 Note that a class only needs to be persistence-aware if it directly manipulates the fields of a potentially
persistent instance.  Any class, even one that has not been post-processed at all, can manipulate persistent
instances by calling their methods.  In this case, because only the class itself directly manipulates its
instances’ fields, the object is strictly encapsulated, and code that uses the class need not be aware that
instances may be persistent.
6 In the current release of PSE, the classfile post-processor inserts COM.odi.Persistent into the inheritance
hierarchy of any persistence-capable class, so that these fields will be available. While this is generally
automatic and transparent to the user, it nonetheless violates our goal of a single type system. An updated
version of the PSE classfile post-processor will be available shortly that does not require this, but instead
provides persistence support through the COM.odi.IPersistent interface.



initialized.  Thus, there can never be hollow (or modified) instances of one of these types, there can only
be active instances.

Arrays have identity and are mutable, and so have all the same possible states as class instances. However,
because they cannot inherit from COM.odi.Persistent (or implement COM.odi.IPersistent), their state
fields must be stored out-of-line, in a separate data structure that PSE maintains.  Note that this means
that access to a persistent array object is more expensive than access to a normal class object, because the
fetch and dirty methods must look up the array in a separate table to determine its current state.

Two other classes bear special mention: java.util.Hashtable and java.util.Vector.  These utility classes can
be useful in a variety of database applications, so we generated persistent versions named
COM.odi.util.OSHashtable and COM.odi.util.OSVector, which are shipped with PSE. We re-
implemented and renamed these classes, rather than simply post-processing them with the same package
and name, for three reasons. First, these classes are used both in the Java VM and in the PSE
implementation in ways that would result in bootstrapping difficulties if they were persistence-capable.
Second, these classes are widely used both in the Java VM itself and in application code, so the added
expense of using persistence-capable classes in transient contexts could have had a performance impact.
Finally, while we could have simply post-processed the classes to make them persistent, we chose instead
to modify the implementations to make them perform better in persistent contexts.

Memory Management

Another aspect of transparency is the handling of memory management and object management.  Java is a
garbage-collected language.  At the very least, therefore, a persistence interface should not interfere with
the (transient) garbage collection built into the Java environment.  Ideally, such a system should also
extend this garbage collection support by implementing transitive persistence (or persistence by
reachability), and garbage collection of persistent space.

PSE supports a model of persistence by reachability.  When an object is stored in a database, the
transitive closure of all persistence-capable instances that are reachable from that object is also stored. If a
persistent object refers to other persistence-capable objects, then PSE will migrate the referenced object
into the database when the transaction is committed. For example, if a linked list consists of one or more
chained ListElement instances (and ListElement has been made persistence-capable of osjcfp), then by
storing the head of the chain in the database, all of the ListElements on the chain will also be stored.

An object becomes persistent, therefore, by one of the following methods:

• Root Value: If an object is referred to by a database root, it becomes persistent. Roots are the
mechanism for naming objects in a PSE database. All root objects are persistently reachable,
so these objects comprise the roots of the persistent reachability graph.  There will generally
be at least one root in a database since without any, there would be no way to navigate to any
of the stored objects.

• Reference from another persistent object: If an object that is already persistent is modified to
refer to an object that is not yet persistent, then the referenced object will become persistent
when the transaction is committed.

• Explicit migration: An object can be explicitly migrated by a call to
COM.odi.ObjectStore.migrate.

Two special cases must be considered when inspecting the fields of an object to compute transitive closure
of reachable objects.  First, references through fields that are declared with the Java transient modifier are
ignored when the transitive closure is computed.  The value of a transient field on a persistent object is set
to its default value when the object is first read from the database (hooks are available that enable the
application to reconnect a persistent object to other objects in the transient environment when an object is



fetched).  The second special case is static fields. These are also ignored, because we treat static fields as
fields of the Class object (which is an element of the transient runtime environment) rather than as fields
of instances of the class.  A warning is issued by the class-file post-processor if a static field is declared to
be of a persistence-capable type, telling the user that if the static field is intended to denote a persistent
object, then it is necessary to manually initialize the field, for example by making it a root object.

If a persistent object refers (through a field that is neither static nor transient) to an object that is not
persistence-capable, then a runtime exception is thrown by Transaction.commit.

PSE must maintain the correspondence between an object in the Java Virtual Machine, and an object
stored in the database. In general, the application programmer should not have to think about the fact that
there are two copies of the object (several cases where this fact does become apparent through the PSE
API are described in the next section, Transactions).  A single persistent object should never be
manifested in the application space as more than one Java object; nor should a single Java object be stored
in the database as more than one persistent object.  Therefore, if a persistent object is referenced by two
different paths, the resulting references obtained must be equal. For example, if the same object is stored
as the value of two different roots, root1 and root2, the following expression will evaluate to true:

    db.getRoot("root1") == db.getRoot("root2")

Similarly, if a transient object is reachable from two different persistent objects, only one persistent copy
of it is stored in the database.  PSE accomplishes this with an internal Object Table, which maintains a bi-
directional mapping between a persistent object in the database and the Java object representing the
persistent object.  When a persistent object is referenced, before a new Java object representing that object
is created for the application, the object table is checked to see if one already exists.  If an entry in the
Object Table is found using the object’s persistent ID as a key, the corresponding element in the table is
returned to the user rather than instantiating a new object. If the object is not found in the Object Table,
then a new hollow object is created and inserted into the table.

The object table has entries for all persistent objects that have been accessed in the current transaction. In
early releases of PSE, therefore, the object table became an obstacle to effective garbage collection of the
Java VM. In the current release of PSE, however, the object table is implemented with weak references
(on those Java VM implementations that support them).7  This allows the object table to be garbage
collected, and any entries for objects to which the user program is not holding references are cleaned up.

There are two places where our goal of transparency and object identity is not fully met, however.  The
first is a relatively minor issue, alluded to in the previous section: PSE/PSE Pro does not preserve identity
for certain objects that are instances of the Java wrapper classes, because it is more efficient to store these
objects as values rather than as objects. Only Longs and Doubles are stored as separate distinct objects.
Because identity is not preserved, programs that use object identity to compare wrapper class objects,
while perhaps not good programming style, work differently when used with persistent objects. For
example, this method is incorrect if it is applied to persistent Integer objects:

boolean comparePersistentIntegers(Integer x, Integer y) {
  return (x == y);
}

Instead, it should be written as:

                                                            
7 A weak reference is a Java reference to an object that allows the referenced object to be garbage
collected, provided that there are no other references (except weak ones) to that object.  It is a concept
taken from Smalltalk implementations. The JDK 1.1 for Windows and Solaris, and the SDK 2.0 from
Microsoft, support weak references without the use of non-Java (i.e. native) code.



boolean comparePersistentIntegers(Integer x, Integer y) {
  return x.equals(y);
}

The second limitation in PSE’s transparency implementation is more serious: the current release does not
include a garbage collector for persistent space. This means that users must explicitly delete objects to
remove them from the database. A persistent GC is under development and will be released shortly.

Transactions

All access to persistent storage is mediated by a transaction.  By default, once the transaction ends, any
persistent objects become inaccessible.  Any attempt to use a reference to a persistent object outside of any
transaction will cause NoTransactionInProgressException to be thrown. At the start of the next
transaction, of course, persistent objects become accessible again.  An application can then navigate back
to any objects of interest by starting from a database root; or it can simply continue to refer to any
persistent objects that were read in the previous transaction (provided of course that the application held
on to references to these objects). In this second case, we say that the references to persistent objects have
been retained across the Transaction.commit. In either case, the objects will be read back in from the
database if they are needed.  This behavior is a natural extension of the notion of object identity: a
reference to a persistent object will continue to refer to the same object from one transaction to the next.

PSE also provides options for not retaining references (that is, for discarding object identity for persistent
objects at a transaction boundary, by explicitly flushing the PSE object table); as well as for retaining not
only the references to persistent objects (the object identity), but also the contents of persistent objects.  If
references are not retained, then any attempt to use a reference to a persistent object in a subsequent
transaction will cause ObjectNotFoundException to be thrown (of course, it will still be possible to re-
navigate to the object from a database root).  If on the other hand both the references and the contents of
persistent objects are retained, then the contents of any objects that were readable in the previous
transaction remain readable even after the transaction commits.

If a Java application or applet has multiple threads, then they may need to either cooperate, or act
independently from one another. PSE supports both modes of operation through a transaction session.  If a
thread needs to access a PSE database, it must call COM.odi.ObjectStore.initialize.  There are two
different overloadings of the initialize method: the first overloading creates a new session, which acts
independently from all other threads.  That is, the thread is isolated from threads in other sessions, in the
sense that the PSE concurrency control mechanism guarantees that any transaction in this session will be
unable to see changes-in-progress from other sessions’ transactions, and vice-versa.

The second overloading of the ObjectStore.initialize method takes a java.lang.Thread argument, and
causes the calling thread to join the session of the argument thread.  In this case, the threads are said to
cooperate, and they can see changes in progress to persistent data.  In fact, one thread could start a
transaction and make some changes, the other thread could then call Transaction.commit to commit the
changes to the database.

Example

The following simple program consists of two classes, a UserConfig class, which represents a simple user
configuration, and a Browse class, which makes use of the UserConfig to retrieve and update a user's
configuration.  The UserConfig class has two fields, a vector of java.lang.String, and an int that holds an
offset into the vector of Strings.  Several methods are defined on UserConfig, including a default
constructor for the class, a method that returns the last URL string in the vector, and a method that sets
the last URL string in the vector.  (A more complete definition might have other methods, to iterate over
the entire history, prune selective portions, re-sort, etc.  These functions are omitted for simplicity.)



import COM.odi.*;
import COM.odi.util.OSVector;

class UserConfig {
  int lastVisitedURLOffset = -1;
  OSVector history = new OSVector();

  String getLastVisitedURL() {
    if (lastVisitedURLOffset == -1) {
      return null;
    }
    else {
      return (String) history.elementAt(lastVisitedURLOffset);
    }
  }

  void setLastVisitedURL(String URL) {
    history.addElementAt(URL, ++lastVisitedURLOffset);
  }
}

public class Browse {
  static Database database;

  public static void main(String argv[]) {
    ObjectStore.initialize(null, null);

    database = Database.open("users.odb", ObjectStore.OPEN_UPDATE);

    Transaction.begin(ObjectStore.UPDATE);

    UserConfig config = findConfig(System.getProperty("user.name"));
    System.out.println("Last URL is " + config.getLastVisitedURL());

    <do some stuff>

    config.setLastVisitedURL(newURL);

    Transaction.current().commit();
  }

  static UserConfig findConfig(String name) {
    try {
      return (UserConfig) database.getRoot(name);
    }
    catch (DatabaseRootNotFoundException e) {
      UserConfig result = new UserConfig();
      database.createRoot(name, result);
      return result;
    }
  }
}

The program first initializes PSE and opens a database; then it calls findConfig() to look up or create a
new UserConfig object representing the currently logged in user. Next, the program calls
UserConfig.getLastVisitedURL()  to retrieve and display the last element of the vector in the UserConfig



object. After doing some other unspecified operations, the Browse.main() method updates the "last URL"
by calling UserConfig.setLastVisitedURL(). The final act of Browse.main() is to call
Transaction.commit(), which writes any changes back to the database.
This program illustrates a few of the fundamental features of PSE: roots, API transparency, and
transactions. Once a root has been retrieved, all subsequent access to persistent data is completely
transparent.  In the example above, the UserConfig class does not require any keywords, or source code
modifications in order to store instances persistently in the database.  Nor does the code that reads and
writes the elements of a UserConfig (specifically, the getLastVisitedURL() and setLastVisitedURL()
methods) require any special user annotations (e.g. fetch or dirty calls).  The code creates and operates on
persistent instances of UserConfig just as it would on transient instances.

The example illustrates the use of transactions as a scoping mechanism for all access to persistent data.
Transactions are atomic all-or-nothing units of work.  A transaction is started by calling
COM.odi.Transaction.begin() with a transaction type (Update or Read-only) as argument.  Persistent data
may not be read from or written to the database unless a transaction of the proper type is in progress.
Transactions are committed by calling COM.odi.Transaction.commit(), or they are aborted (rolled back)
by calling COM.odi.Transaction.abort().  Transactions may not be nested in PSE.  For simplicity, the
example above has only a single transaction, which spans virtually the entire program execution.  In a
more realistic example, of course, smaller segments of processing would be bracketed by
Transaction.begin() and Transaction.commit() calls.

If the Browse class accessed any of UserConfig’s fields directly, it would have to be made persistence-
aware.  As it is written, however, all accesses to persistent data are through method calls on UserConfig so
only UserConfig needs to be post-processed.  That is, because the UserConfig class encapsulates all access
to its fields, and only exposes methods, there is no need to make any user of this class persistence-aware.
Users of the class need not know whether a particular instance is transient or persistent, or even whether
the class itself is persistence-capable.

Performance

In this section we present a simple implementation of the oo1 benchmark8 using ObjectStore PSE for
Java.  Briefly, oo1 has two classes, Part and Connection, which represent parts in a design and the
connections between them.  Each part has 3 connections to other parts.  In each Part instance, we used an
instance of the OSVector class to reference the 3 inbound and outbound connections.  Each Part instance
has the following fields: id (int), type (String), x and y (int), time (int), and from and to (OSVector) fields.
Each Connection instance has a type (String), length (int), and source and target (Part) fields.  For each
Part, 90% of the Connections are randomly selected among the 1% of the parts with id values "closest,"
while the remaining 10% of the Connections are made to any randomly selected Part.  We ran the
benchmark with 1000, 2000, and 5000 Part objects (3000, 6000, 15000 Connection objects, respectively).

A Pentium Pro 200 Mhz machine with 32mb of memory was used.  Two runs were made, one with the
Sun JDK 1.1.2, and the other with the Sun JDK 1.1.1 JIT. For each of the three benchmark runs, the
entire database was created in a single transaction.  The create times shown below are from the start of the
transaction to the end of the commit call, and include the database creation time.

Size     Create Time (secs)    Create Time (secs)
                 JDK 1.1.2, no JIT           JDK 1.1.1 with JIT

1000 13.8   9.25
2000 28.2 16.8

                                                            
8 R.G.G. Cattell, J. Skeen, “Object Operations Benchmark,” ACM Transactions on Database Systems,
17(1), March 1992.



5000 88.0 60.7

The "lookup" part of the benchmark builds a random array of N part id’s, where N is the total number of
parts in the database.  Then, within a single transaction, it looks up each of those parts in the database,
recording the time spent doing so.  Since each part is stored in an OSHashtable, the lookup is a simple
OSHashtable.get() call using the part id.  It repeats the N lookups 10 times so that the effects of caching
may be seen.  The table below shows the "cold" time, which is the average time for the first N lookups, as
well as the "warm" time, which is the average time per lookup for the fastest set of N lookups

Size                  Cold time per lookup (msec)       Warm time per lookup (msec)
JDK 1.1.2 JDK 1.1.1 with JIT JDK 1.1.2 JDK 1.1.1 with JIT

1000                1.31                            .796     .141 .094
2000                1.38                            .852     .148 .094
5000                1.54                          1.03     .150 .103

Customer Feedback

PSE was made generally available in October 1996. It can be downloaded for free from Object Design’s
web site (www.odi.com).  At this writing it receives more than 80 downloads per day.  It is bundled with
the Netscape Communicator 4.0 browser, the Symantec Cafe environment, the Asymetrix Supercede IDE,
Borland’s Latte environment, Natural Intelligence’s Roaster IDE as well as other Java-based products.
Because it is also distributed through other sources from which we do not receive download information
(e.g. www.microsoft.com) we do not have complete information on the total number of copies in the field.

The deployed applications using PSE that we are aware of include:

• US Open Golf Results: During the US Open live commentary and results of each hole were
stored in a PSE database as audio byte streams. These results were made available via
telephone to press and other interested parties.  This was a multi-threaded application.

• Web Spider Applications: Several user-directed web spider applications that use PSE to store
results are known to exist.  These programs generally query a user for a starting URL and
then go out seeking and displaying information from that URL and the links it contains.  The
user can save information from the web page, or the URL itself, in PSE.

• Servlet Applications: PSE is being used in servlet applications for applications ranging from
storing user configuration information to storing newspaper content for redistribution via the
web.  The size of the data ranges from a few thousand bytes to tens or hundreds of
megabytes.

Because PSE was designed to be an entry-level persistence engine, it was an important goal that it be easy
to use, and require little support and maintenance.  The number of downloads that we have seen, and the
high level of traffic on the pse-java-discussion majordomo list (set up for the purpose of discussing PSE
usage and issues), together with the low level of support events (fewer than 5 per day) indicate to us that
this goal has been achieved, and that most users are able to use the product successfully with little or no
assistance.

There have been, however, several problem areas in the product, which have led to user difficulties and
support events. These include:

• classpath and classfile re-writing: The most common source of confusion for new users
centers around the use of post-processed classes in the development and runtime
environments.  Because post-processor reads in .class files and writes out new ones into
another directory hierarchy, the runtime classpath must specify the annotated .class file



hierarchy ahead of the original "source" hierarchy (otherwise the classes will not appear to
be persistence-capable or persistence-aware at runtime). Some users have tried to correct this
by copying the annotated .class files back into the source hierarchy, which unfortunately can
cause further problems if they later modify, recompile, and attempt to re-post-process these
files.  To address this program, we are considering modifications to the post-processor to be
able to annotate .class files "in-place".

• classfile post-processing mechanics: The classfile post-processor technology requires that all
.class files for a program be post-processed at once.  (Although this is not a strictly correct
statement of the requirement, for many simple applications this is the effective result.)  If all
of the classes are not postprocessed en masse, then persistence-aware classes may not be
aware of all of the persistence capable classes that they may encounter, and runtime errors
can result, because persistent objects may be accessed without the appropriate fetch/dirty
calls.  We’re considering the addition of runtime checks to detect if a user has made this
mistake.

• integration with RMI:  Both PSE and RMI are most easily used by employing inheritance
from a special base class (COM.odi.Persistent, in the case of PSE, and
java.rmi.server.UnicastRemoteObject, in the case of RMI).  This means that using the two
systems together requires some extra work.  It is possible to make a class persistence-capable
in PSE without inheriting from the Persistent base class, but only by manually annotating the
class (the automated generation of persistence-capable classes by our post-processor currently
inserts this base class).  It is also possible, of course, to use RMI without inheriting from
UnicastRemoteObject, but again this requires extra coding to accomplish.  We are in the
process of updating our post-processor to implement persistence through the IPersistent
interface, rather than the Persistent base class, to simplify integration with RMI and other
packages.

Future

Future enhancements to the product might include the following:

• Associative Queries, Indexes: While PSE supports the JGL (Java Generic Library from
ObjectSpace, Inc.) it provides no built-in support for queries or indexes.  Many of our users
who have asked us for this believe that it is important enough to warrant the significant
increase in footprint that it implies.

• Schema Evolution: Applications that have deployed with PSE to date are relying on
dump/reload mechanisms for dealing with schema evolution.  Built-in support for schema
evolution is one of our most common enhancement requests.

• Persistent Garbage Collection: We intend to release an updated version of PSE that includes
a persistent garbage collector in the near future, as discussed above in the section on
Memory Management.

Conclusions

The simplicity and flexibility of Java makes it a compelling choice for new application development in a
wide variety of product domains. Our goal in the development of PSE was to extend the Java environment
with a persistence capability that is easy to use and flexible in terms of underlying storage system
implementation.  The most challenging aspects of this development have been in building our
implementation of transparent persistence in such a way that it melds cleanly with the existing Java
environment and tools (including unmodified Virtual Machines), in the creation of a single API that could
serve as the front end for a set of storage systems of quite different implementation and capability.
Despite these challenges, we feel that we have been largely successful in our fundamental goals.
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Abstract

Persistent Java(TM) objects are important for using Java in business applications. Storing
Business objects in a Relational Database (RDB) has proven unsatisfactory. Direct use of
a RDB prevents full use of Object Oriented (OO) technology, while schema mapping
objects to RDB rows is a difficult problem. An alternative is persistent virtual storage
where the persistent and runtime forms of objects are the same. This improves efficiency
and allows a simple intuitive persistence program model but requires a large address
space. Single Level Store (SLS) large address architecture (48-bit and 64-bit) systems
have been commercially available since 1980 (IBM System/38 and AS/400) and recent
papers describe similar storage semantics on commodity 64-bit processors. Our prototype
implements a Java Virtual Machine (JVM) that simulates large address architecture for
32-bit systems (AIX, Windows95, WindowsNT), then adds a subsystem to create a shared
address space (SAS) with persistence. The SAS subsystem provides SLS storage seman-
tics for non-SLS systems. The implementation is targeted towards typical business appli-
cations.  For performance testing we devised a Business Object Benchmark (BOB-C),
based on the well known TPC-C(TM) data processing benchmark, and made some mea-
surements.  These are discussed later in the paper.

1.0  Introduction

Currently the Java language [Gosling] directly supports only temporary local objects. Per-
sistent Java objects are important to applying Java to business applications. Traditionally,
persistent data for business applications is stored in a RDB, but this has proven to be
unsatisfactory. Direct application use of the RDB prevents the application of OO technol-
ogy to core business problems (using polymorphic behavior to build extensible frame-
works). The obvious approach is to support persistent objects by mapping objects to RDB
rows. In this model, temporary object instances have their images freeze dried and written
to one or more rows. These images can be later resurrected from the freeze dried form into
another temporary object. This approach makes it difficult to support complex object rela-
tionships and forces harsh compromises between the simplicity of the program model and
performance of the application.  Maintaining object identity across freeze/thaw cycles is
also a challenge.  Similar problems apply to storing objects in files.
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Persistent virtual storage offers an interesting alternative to object mapping. This tech-
nique allows the persistent form of the objects to (closely) match the object’s runtime
form. It is also efficient as:

• Data is accessed and shared “in place”, minimizing data movement overhead

• Object data and references are accessed directly with load and store instructions

• The object’s virtual address is persistent, eliminating object identity to virtual
address mappings and lookups

The result is a programming model where persistence is as simple to program and as fast
to access as temporary objects.

Such technology has been commercially available for over 17 years in single-level storage
(SLS) systems, starting with the IBM System/38 and now the AS/400 [AS/400]. SLS sys-
tems require large address architectures (starting with 48-bit and now 64-bit addressing).
Recent papers [Chase] have demonstrated that the SLS storage model can be applied to
commodity 64-bit processors.

Several researchers have developed persistent objects systems on large address SLS sys-
tems [Rosen1, Rosen2, Malhotra] and have demonstrated that SLS allows a simple, natu-
ral implementation of object persistence.

But the majority of programming platforms are still non-SLS 32-bit. This paper describes
a prototype effort to provide the same simplicity of persistent programming that SLS pro-
vides to 32-bit non-SLS platforms.  Essentially, we implemented a Java Virtual Machine
(JVM) to simulate a large (> 64 bit) virtual address, then added a SLS paging subsystem
(SAS) to support persistent virtual storage. This JVM executes standard JDK 1.0.2 class
files and runs on several popular 32-bit platforms. Persistent storage and associated locks
are sharable across all instances of this JVM running on a system. We use this Shared
Address Space attribute of our JVM to name our project and prototype “JavaSAS.”
Details of the implementation are discussed in section 2.

Our implementation was targeted towards standard business applications.  In this arena,
performance and scalability are key issues that must be addressed, measured, and proven.
Currently available Java benchmarks (Caffeine marks) do not measure total system per-
formance under transaction loads (including display and file I/O) that are required for
business applications, nor do they address the scaling issue (both total number of persis-
tent and number of concurrently active objects). We implemented a new OO Business
Object Benchmark (BOB-C) based on the Transaction Processing Performance Council
benchmark C [TPC-C] specification. Since BOB-C reports the same results as TPC-C, we
can directly compare OO (BOB-C) and procedural (TPC-C) implementations for popular
platforms. A figure of merit for an OO implementation is simply the BOB-C/TPC-C per-
formance ratio. More importantly, it allows for direct comparison between competing
object persistence implementations when available for platforms publishing TPC-C
results.
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The results for BOB-C running on JavaSAS are very encouraging. We have successful
BOB-C runs for AIX (RS6000 model 250, 60MHz 601 PowerPC, 128MB RAM),
Windows95 (Gateway2000, 200MHz MMX Pentium, 64MB RAM), and Windows/NT
(IBM model 750, 166MHz Pentium, 80MB RAM). However, for the following reasons,
we can not claim fully qualified TPC-C results:

• We have not yet implemented full roll-back and recovery

• We are running on desktop workstations that do not support the terminal simulators
specified in the TPC-C specification

• We are running on desktop workstations that do not have sufficiently large real
memory and disk capacity for full scale (item, stock, and customer) object popula-
tions for multi-warehouse configurations

• Our results have not been audited by the Transaction Processing Performance Coun-
cil auditors.

We have tested with multiple terminals simulated by running multiple threads displaying
to a single shared test window, as well as with multiple processes each with its own text
display window. As text display in windowed systems cause significant CPU loads, we
implemented a non-display option to serve as stand-in for a client/server configuration.
We have built a fully populated (~2.35 million Java object) BOB-C warehouse and run
upto 40 processes against it. We also run multiple BOB-C Warehouse configurations with
the item, stock, and customer populations scaled down to fit our available disk space (nor-
mally 700MB to 1GB). Even with these restrictions, we have achieved impressive and (to
some) counterintuitive results.

2.0  Implementation

The JavaSAS VM integrates the simple and effective object persistence and sharing
semantics of single-level store (SLS) with the Java bytecode interpreter and runtime. The
initial focus is to bring SLS persistent programming model to 32-bit Java client platforms.
Our goal is to make the SLS programming model available for standard 32-bit desk-top
systems and the huge pool of programmers that support them. Our implementation
involves extensions to the Java VM and runtime environment:

• SAS Persistence Enabling
             - A SAS storage simulator.
             - Extend the JVM to recognize SAS storage references and call the SAS
                simulator for translations.
             - A Java SAS class loader for activating persistent Java classes.
             - Java lifecycle extensions for creating persistent objects in SAS storage.

• Persistence Model
             - Persistence is orthogonal to type: instances of any class can be temporary or
                  persistent depending on their method of creation.  Transient objects are created,
                as usual, with the Javanew operation, persistent objects are created with
                factory methods discussed later.
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             - Persistent objects are not garbage collected but must be explicitly deleted

                via a special method on a static class1.

2.1  SAS Simulator

SLS is an address space hungry technology. A 32-bit address is just not large enough to
persistently map all the code and data required for interesting commercial applications.
Our solution is to extend the Java VM to simulate a large address architecture (104-bits,
following the AS/400 object pointer) for 32-bit platforms. This requires:

• Simulating real memory as a page pool allocated in shared virtual memory.

• Simulating virtual (104-bit) to real (32-bit) address translation as an inverted page
translation table.

• Simulating the address translation look-aside buffer (TLB) mechanism as a local
hash table.

Obviously on a 64-bit architecture we would not need to simulate address translation. For
64-bit systems the transform from 104-bit to 64-bit is trivial and the 64-bit address can be
used directly to access storage.

The 104-bit virtual addresses are stored in reference fields as 128-bit quadwords (which
we call SAS addresses). The SAS address space is partitioned into persistent shared global
and temporary private local spaces.   The vast majority of the SAS address space is
reserved for persistent shared storage. SAS addresses are used for all Java references,
whether persistent or temporary. The internal structures of loaded (persistently activated)
classes and persistent storage heaps use SAS addresses throughout.

References to temporary local objects are also stored as quadword SAS addresses. A por-
tion of the SAS address space is reserved for temporary local objects and supports a trivial
translation from SAS to 32-bit addresses (the high order bits have a special value and the
low order bits are the virtual address). Temporary SAS addresses always point into the
local temporary heap of a specific Java VM instance. This quadword object reference for-
mat supports interoperation with future 64-bit JavaSAS implementations. This also
ensures that persistent Java object references are context independent.

The SAS simulator function is split into a client instance for each JavaSAS VM and a
server instance to manage shared resources for each system. Client and server instances
run on the same machine.  On a particular system JavaSAS VMs (SAS clients) share a sin-
gle page pool managed by a single server. This allows efficient sharing of objects between

1. Data is the life blood of commercial enterprises and they require strict controls over access and deletion.
Thus, it is unacceptable that data could be deleted by accident (some other object is deleted) or when
some other object is updated (pointer set to null).  For this reason, JavaSAS does not implement persis-
tence by reachability but requires explicit deletes which can be audited.  In some enterprises such as
insurance companies or hospitals the law requires that data never be deleted, just marked inactive.
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VM instances. To translate a SAS virtual address to a 32-bit process-local address the SAS
client first searches a (thread scoped) TLB hash table, then searches the (shared) inverted
page table.  If the SAS client cannot translate a SAS address the page request is sent to the
SAS server.

The SAS server will locate the page on backing store, read it into the shared page pool,
and update the shared page translation table. If the requested page does not exist the SAS
client is notified and the client throws an address exception. The SAS server manages the
page pool LRU, monitors reference and dirty page information, and insures that dirty
pages get written out.

SAS addresses are not used on the Java runtime stack (operand stack and local variables).
The Java runtime stack is always local to the Java VM instance and accessed via 32-bit
addresses. Object references on the stack are 32-bit pointers to TLB entries (which we call
SASRefs). All SASRefs can be referenced by their 32-bit address or looked up in the
Local Hash Table using the corresponding SAS address. Each SASRef contains the SAS
address, corresponding starting 32-bit virtual address in the page pool, and ending address.
So, in most cases, only one level of indirection is required to access fields in persistent
objects.

Thus, the implementation uses a standard Java stack and introduces no new bytecodes.  As
we shall see later, it needs to do a bit more work to interpret some of the bytecodes.

The SAS client maintains SASRefs (TLB equivalent) for each Java thread. The SAS client
also manages local heap storage for temporary/local Java object instances. Temporary
instances are referenced by temporary SASRefs (TempRefs). All SASRefs are subject to
garbage collection when the object reference goes out of scope. Temporary object heap
storage is freed via mark and sweep garbage collection. Temporary object handles can’t be
freed until all the SASRefs and temporary heap (both local object and Copy-On-Write)
COW storage) have been scanned for references.

The Java VM supports both local/temporary and persistent/shared (SAS storage) objects.
The Java VM primarily uses load/store methods of the SASRef C++ class in its implemen-
tation, allowing the VM to largely ignore the details of temporary vs. persistent objects.

References to temporary objects stored in persistent objects require special handling. The
Java VM detects the case of storing a temporary reference into a persistent object and the
SAS client marks the referenced temporary handle “keep forever” (or until that Java VM
instance terminates). Note that this is not a recommended programming practice, since the
reference is transient. Temporary SAS addresses are tagged so we can detect if the refer-
ence was created in another JVM. There is no problem with storing a persistent reference
in a temporary object.

SASRefs to permanent storage (PermRefs) maintain page reference counts for the shared
page pool. The page reference count is incremented when the SASRef is created and dec-
remented when the SASRef is garbage collected. Shared SAS pages cannot be removed
(stolen) until the page reference count is zero. Thus page removal from the shared pool is
indirectly driven by the SASRef garbage collector.
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Java class static data fields require special handling. Static fields are scoped to the Java
VM instance (static is shared by all threads within a VM but not between VM instances).
SAS supports this semantic by simulating copy-on-write (COW) storage. When a Java
class is loaded into persistent storage static fields are allocated as separate page(s) within
the activated image, initialized, and then persistently marked as a COW page(s). COW
pages are not read into the shared page pool but instead are copied directly into the local
heap of the VM. SASRefs to COW storage point directly to the local Java VM instance
heap and are managed as a VM wide resource

Synchronization also requires attention as it is integrated with Java language semantics.
Synchronization must have the same scope as the object instance.  For JavaSAS we co-
located locks with the objects in the shared persistent store.  Specifically, “test and set”
locks were stored with the persistent object handles and used an operating system “sleep”
for back-off.  While this is crude by any standard, it did allow Java applications to use
Java language synchronization for both local and shared objects.  For a production system
we would provide a shared memory lock with thread control.

2.2  Java VM

We modified the Java VM so bytecodes that reference object (instance, static, and array)
storage can support SAS addressing. When a SAS reference is loaded (by the getfield
bytecode) they are passed to the SAS Simulator for translation. The current strategy is to
store the full (128-bit) SAS address in objects and translate them to short (32-bit) refer-
ences for the operand stack and local (automatic) storage.

This partitions the Java bytecode into four categories:

• Bytecodes that are unaffected

• Bytecodes that load or store object references

• Bytecodes that load or store from persistent objects

• Bytecodes that reference the loaded class structures

Most bytecodes operate on simple data types on the operand stack or local storage or local
branches and are unaffected.

Bytecodes that load (128-bit SAS address) object references will need to translate to local
(32-bit) references. Bytecodes that store (SAS address) object references will need to per-
form the reverse translation (32-bit local to 128-bit SAS). This impacts the following sub-
set of the Java bytecodes:

• field puts and gets of object references (putfield and getfield byte codes)

• object reference array loads and stores (aaload and aastore byte codes)

• all persistent array loads and stores (Xaload and Xastore byte codes)

• static puts and gets of object references (putstatic and getstatic byte codes)
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The load/store bytecodes are exposed to the (hopefully) rare case of object instances or
arrays spanning page boundaries. The SAS simulator does not guarantee that adjacent
SAS pages are contiguous in the page pool. While the Java VM runtime should take care
in space allocation to avoid page crossings, eliminating page crossing is impossible with-
out imposing draconian restrictions. Since we wish to support large (>4KB) objects and
arrays, we handle loads/stores beyond the first (SAS) page referenced.  The put/getstatic
bytecodes are not impacted because copy-on-write storage is always allocated contigu-
ously.

Page crossing impacts all bytecodes that take an object reference as an operand and load
(get) or store (put) data or access the class. If the object is temporary and local, then no
further action is required (since local/temporary objects are allocated contiguously by the
runtime). Otherwise, if the object is in SAS storage and the field is not in the first page of
the object, then (logically) the field/entry offset must be added to the base SAS address
and translated to an offset in a valid page within the page pool. The SAS Simulator opti-
mizes this case by chaining secondary SASRefs off the primary SASRef.

In our current implementation the total (excluding quick variants) number of affected byte
codes is 35.

• ldc1, ldc2, ldc2w

• iaload, l,f,a,b,c,s,d

• iastore,l,f,a,b,c,s,d

• get/putstatic, get/putfield

• invoke virtual/nonvirtual/static/interface

• new, newarray, anewarray, multianewarray

• arraylength, athrow, checkcast, instanceof

Bytecodes that use object references to invoke methods, reference object fields, or check
casts must deal with the internal details of Java handles. In the JavaSAS VM implementa-
tion, handles contain the (128-bit) SAS addresses of the instance data and class. The get-
field bytecode translates the SAS address of the Java Object handle, but the translation of
the instance data and class address is delayed until the handle is used. For invoke (method)
bytecodes we translate the instance data and class SAS addresses to SASRefs immediately
and store then in the called methods frame. This insures that invocation and field refer-
ences to these are preresolved.

Invocations and field references using another object reference (not “this”), must resolve
the instance data and/or class SAS addresses each time. We are looking at a combined
SASRef and local handle to allow instance data and class SASRefs to be cached in the
handle. The down side is that it would muddy the line between the Java VM and SAS.
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2.3  JavaSAS Class Loader

The JavaSAS Class Loader takes a standard Java class file and loads it into SAS storage.
A SAS loaded Java class is (persistently) activated in SAS storage and is persistent, shared
and paged like all SAS storage. A SAS loaded class is capable of supporting both tempo-
rary and persistent Java object instances.

This impacts the Java class dictionary (which tracks Java class loads and is used to bind
class implementations). The class dictionary must be at the same persistence and scope as
the classes themselves, so a class name to class address map is created and maintained in
SAS storage.

2.4  Java Lifecycle Extensions

Currently Java supports only temporary local objects via thenew operation. For backward
compatibility we preserve the function ofnewunchanged. Applying thenew operation to
a SAS loaded class returns a reference to temporary object in the local Java environment.
For SAS loaded classes we add operations to create persistent objects in SAS storage.
Once a persistent object instance is created, it behaves exactly like a temporary object,
independent of its persistence scope.

To locate related persistent objects close to one another in the vast SAS address space,
Java developers need a containment/placement abstraction -- put this object over there! --
which we call Containers, and additional new operations. Thenewoperations work with
the container abstraction to insure that objects instances are created into the correct persis-
tence scope and physical location.  This raises some design challenges since the Java lan-
guage and runtime time does not support metaclass programming. The Class class can not
be subclassed! The two possibilities are:

• Generic Factory Class

• Extend java.lang.Object and java.lang.Class

The current prototype supports persistence via a Factory class. The Factory provides static
methods to create instances of the specified class. The class is specified as either a (pack-
age qualified) class name string or a Class reference. The Factory methods delegate the
work of instance creation to either java.lang.Class (newInstance method for temporary
objects) or the appropriate Container instance.  Containers are special classes with native
methods for storage allocation.

The factory methods we have in our prototype are:

• newPermInstance(Class classRef) - Used primarily to create Containers and Con-
tainer Heaps.

• newInstanceIn(Class classRef, Container containerRef) - To support placement
of new objects for locality of reference or security reasons. Creates an object
instance into the specified Container.
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• newInstanceWith(Class classRef, Object nearRef) - For generic programming of
composite objects. Create an instance into the same Container as the existing near-
Ref.

• newInstanceNear(Class classRef, Object nearRef) - For generic programming of
composite objects with a strong suggestion for physical placement. Create an
instance into the same Container and as close as possible (same page) to the existing
nearRef.

To complete the persistence framework we need some additional methods associated with
existing persistent objects:

• destroyInstance() - Used to destroy a persistent object instance. Redirects to a deal-
locate method on the appropriate Container.

• getInstanceContainer() - Returns a reference to this instance’s Container. Used by
the implementation of newInstanceWith, newInstanceNear, and destroyInstance.

The Container allocate methods are implemented as native methods integrated with the
Java VM. These native methods allocate storage from the Container heap, initialize the
Java object handle, invoke the default constructor for the class, and return a reference to
the new instance. Since the Container heap was created in persistent/shared SAS storage,
any contained object instance is persistent and shared.

This is an effective work around for the lack of metaclass programming and provides a
convenient interface for additionalnewoperations. We were able to create persistent ver-
sions of simple (non-composite, non-array) classes via the Factory methodsnewInstan-
ceIn() or newInstanceNear(). For example, we used java.util.Date extensively in our
TPC-C implementation. However arrays and existing complex (composite) java class
libraries are still awkward and require special Factory methods or arbitrary restrictions.

Neither the Java (1.0.2) language nor java.lang.Class provides a mechanism to program-
matically create arrays of an arbitrary type. Arrays of primitive types were handled by
writing a special method for each primitive type, such asnewlongArrayNear(), newdou-
bleArrayNear() ,... and implementing specific native Container methods to support them.
Arrays of Java Classes required a specialnewArrayOfNear()  method with special native
method support.newArrayOfNear()  accepts a (non array) Class reference for the base
type and number of elements as arguments and returned an Object[] that has to be down-
cast to the correct type

Another problem concerns the management of compound objects. A compound object is
composed of several sub-objects linked by object references. For example, each Person
object may reference an Address object. Or simpler yet, any object containing an array,
since in Java all arrays are objects. For example, a Person object includes first and last
name fields stored as an character arrays.

The SAS aware Java application will usenewInstanceNear() to create any sub-objects
and arrays. This insures that the sub-objects have the same persistence and scope as the
parent object. However the current JDK class libraries and the majority of Java program-
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mers are not SAS aware. The SAS unaware programmer will naturally use the simple new
operator to create sub-objects. The result would be a shared persistent object containing
references to local temporary objects, which may not deliver the desired result.

For example, java.lang.String and java.util.HashTable are both composite objects. Strings
are used pervasively so we implemented special native Container methods (allocString-
Near()) to insure both the String and the internal char array are created at the same persis-
tence and scope. We could not afford to write special Container methods for each
interesting class so we simply avoided using these classes for persistent objects.

Now that we have this working and understood it may be appropriate to pursue class
library and/or language changes with JavaSoft. We would like to leverage the larger world
of Java programmers who are not necessarily persistence aware. To achieve this we need
to make this programming model pervasive in the industry as a simple extension to Java.

Being able to extend java.lang.Class would be very useful.  It already supportsnewIn-
stance().  It should be simple to addnewPermInstance(), newInstanceIn(), newInstan-
ceNear(), newInstanceWith(), andnewArrayOfNear() to the runtime implementation of
Class. This implies that the Container abstraction and a default (temporary, local, garbage-
collected) are introduced and shipped with the JDK.  java.lang.Object would also need to
be extended to support thedestroyInstance() andgetInstanceContainer() methods. We
have used this framework extensively across several projects and platforms and believe
that it is generally applicable and complete. Similar Container and new-near abstractions
are integrated into the San Francisco Business Object Framework design [Andrews].

2.5  Exceptions

The single level store paradigm is unique in that it provides access to persistent storage via
machine level (load and store) instructions. The traditional file based persistence model
requires explicit calls to system APIs. But what happens if the requested operation cannot
complete? The file system returns a status variable that reflects the success or failure of
each operation: open, close, read, or write. A SLS system supports the equivalent of read
and write at the machine instruction level which makes a return code strategy impractical.
Instead an exception strategy must be used.

This is a good fit for Java since Java supports and makes extensive use of exceptions. Java
supports exceptions in three classes:

• Errors

• Runtime Exceptions

• Exceptions

Errors and RuntimeExceptions are normally thrown directly by the Java VM. Errors
reflect conditions where the requested resource is: not valid (VerifyError), inconsistent
(NoSuchFieldError), or VM has run out of resources (OutOfMemoryError).  RuntimeEx-
ceptions reflect a runtime violation of some constraint (IndexOutOfBoundsException,
ClassCastException), arithmetic error (ArithmeticException) or the security policies of
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the environment (SecurityException). Java programmers are not expected to program for
these exceptions but can (via try/catch) if they wants to. Just plain Exceptions are part of
the API and must be explicitly handled (via a catch clause) if the interface specifies the
exceptions (via throws on the method declaration). IOException is an example of this
class.

The JavaSAS persistence model introduces some new conditions to be handled:

• ObjectDestroyed -- The object no longer exists. The runtime detection of a dangling
reference.

• ObjectAccessDenied -- a form of SecurityException, The object is read-only and the
method attempted a store, or an attempt was made to call a method on an object the
client has a reference to but is not authorized to.

• StorageReadFailure -- The object exists but the Java/SAS VM can not read the
media containing the object. This may be a permanent read error (damaged media)
or a temporary condition (the link to the remote object storage is down).

• StorageWriteFailure -- The object exists but the Java/SAS VM can not write to the
media containing the object. This may be a permanent write error (damaged media)
or a temporary condition (the link to the remote object storage is down).

The Container abstraction introduces more conditions in this category, including:

• ContainerFull -- The physical storage space allocated to this container heap is
exhausted.

• ContainerDamaged -- The container is in an inconsistent state and requires a recov-
ery action before it can be used.

These exceptions all seem to fit into either the Error or RuntimeException classification.
This relieves the Java programmer from explicitly programming for these conditions and
the system default action (terminating the thread) is appropriate in most cases. However, a
Java class that implements recoverable resources (like a journal or transaction manager)
can catch and program recovery actions.

In the current prototype we have implemented SASException and ContainerException as
a subclasses of RuntimeException. All exceptions introduced by the JavaSAS package or
the JavaSAS VM are subclasses of SASException or ContainerException.

3.0  Some Observations

For this implementation we had to make some fundamental decisions. The first such deci-
sions was that temporary and persistent instances should have the same format and share a
single class image. This required that reference fields be the same size and alignment for
temporary and persistent object instances. From our experience with the AS/400, we
chose a reference size of 128-bits (16-bytes) with a 104-bit Virtual Address.



Java(TM) Persistence via Persistent Virtual Storage July 3, 1997 12

We also decided to use a page-based shared memory pool for currently accessed persistent
storage pages. This implied that large objects that cross page boundaries would be discon-
tiguous in the page pool. We also decided that references on the operand stack and local
variables should be 32-bits. We resolved this problem by enforcing a level of indirection
between the operand stack and object fields. Thus, the implementation for each getfield/
putfield bytecode must perform the following actions:

• load the current address of the object into the page pool from the reference look-
aside

• add any offset to this address

• and check for page boundary crossings

• load/store the target field

• loads/stores of object references must also translate 128-bit references to 32-bit
addresses in the page pool and back again

The design decisions above make the JavaSAS object instances larger and object field ref-
erences slower than the equivalent standard JVM. So the question is “how does the perfor-
mance and storage size compare to a more traditional (two-level store) persistence
model?”.  In the following sections we present some informal back-of-the-envelope com-
parisons.

3.1  Storage impact of large pointers

The first observation is that while a large pointer size (16-bytes vs. 4-bytes) does impact
the “foot print” of persistent objects, two other changes have a more significant impact.
First, Java Strings are stored as 16-bit Unicode characters. Second, persistent Java objects
include Java storage handles and the full java.lang.String object structure (not just the
characters).

To test this we simply plug in the population requirements of the BOB-C (TPC-C) specifi-
cation, the field sizes of the various BOB-C objects, and internal object structure require-
ments of Java into a spreadsheet. A BOB-C warehouse requires the following object
population:

• 1 Company and 100,000Items independent of the number of Warehouses

• 1 to NWarehouses, where each has:

• 10Districts

• 100,000Stock corresponding to the Companies Items

• 30,000Customers

• 30,000 initialOrders

• 300,000 initialOrderlines

• 9,000 initialNewOrders

• 30,000 initial orderHistories
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• Each Warehouse, District, and Customer has an associatedAddress

This allows direct comparison between the RDB storage requirements of a TPC-C Ware-
house and persistent Java implementations with various reference sizes. The resulting
storage requirement for a fully populated BOB-C Warehouse are:

• The Base (RDB equivalent) is 77MBs

• Java object equivalent with 32-bit references requires 245MBs (a 219% increase
over the base

• Java object equivalent with 64-bit references requires 267MBs (a 247% increase
over the base)

• Java object equivalent with 128-bit references requires 350MBs (a 356% increase
over the base)

Note the 200+% storage increase for the 32-bit Java equivalent.  This reflects: the addi-
tional object runtime overhead (i.e. object handles), use of java.lang.String to replace fixed
and variable text, use of Unicode to replace ASCII, use of java.util.Date to replace system
date and time and additional object references to avoid some lookups.  The biggest con-
tributors are: Unicode, Java Strings and Java Dates.  ASCII strings would save approxi-
mately 62MBs and implementing Date as a simple long would save approximately
18MBs.

However, a 32-bit persistent object reference does not support the scale required for a
large business application using SLS technology and is not a valid comparison. A 32-bit
JVM would be forced into a Two Level Store (TLS) implementation. TLS implementa-
tions do not need to store the complete Java structure, but object references are more com-
plicated. For example, only the characters of String need to be stored, but the Java national
language support strategy implies that Unicode should be preserved.

A TLS implementation tends to have fat persistent object references to support polymor-
phic types and to simplify object activation and distribution. TLS persistent object refer-
ences require a class ID in addition to an object ID or key. This allows an empty object
instance to be created and activation (stream internalization or schema mapping) to be del-
egated to the object implementation. In a distributed environment, a database or node ID is
required in addition to object ID and class ID. This allows function shipping requests to be
routed to a server without resolving the object identity to its storage location. For open
systems environments, these IDs are usually defined as 16-byte (128-bit) DCE UUIDs.

If you apply these assumptions (32-byte primary keys and 48-byte persistent object refer-
ences: 16 bytes for the Class, 16 bytes for the object and 16 bytes for the server) to the
spreadsheet, the storage required for a 32-bit TLS implementation jumps to 267MBs--a
247% increase over the base and only 31% less than the JavaSAS equivalent. The net: the
16-byte pointers are not the largest impact on the storage footprint -- object infrastructure,
String and Unicode are -- and the result compares favorably with the footprint of many
functionally equivalent TLS implementations.
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3.2  Measured Performance

Performance is difficult to measure objectively. The goal would be to directly compare
fully configured BOB-C measurements to the equivalent TPC-C on the same hardware
configuration. Due to limited resources, we were not able to configure BOB-C object pop-
ulations equivalent to the published TPC-C configurations.

For example, 166MHz Pentium systems with unconstrained (512+MB) DRAM and large

(10+GB) RAID storage configuration have published results over 1000 tpmC(TM)2. Such
a result implies 80 to 110 terminals and requires ~100 TPC-C warehouses to qualify. Our
166Mhz Pentium desktop system had 80MB and 1.7GB of disk space. This configuration
was large enough to build a single full scale warehouse or several fractional (1/10th and 1/
100th) scale warehouses. The 80MB of DRAM supported a 16MB shared storage pool
and 40 instances of the JVM process (simulating 40 independent users/terminals).

So far we have built and measured a single full Warehouse configuration on AIX,
Windows95, and WindowsNT. We have measured 11.5 to 12.6 tpmBOB-C running 10
JVM processes each in a separate command prompt (or X-Term) window. This is not very
exciting, but right on the money for one TPC-C Warehouse, ten terminals, and terminal
wait/think times per specification. A TPC-C run must perform at least 9 tpmC and not
more than 12.7 tpmC per warehouse. For higher tpmC (and tpmBOB-C) numbers, more
warehouses and terminals would need to be added to the configuration.

We built four 1/10th scale Warehouses and ran 40 JVM processes/windows. We measured
44.6 to 49.8 tpmBOB-C in this configuration on the AIX and WindowsNT platforms --
again, within the qualifying range with nominal wait/think times.

At this point it was clear that our system’s DRAM would not support the number of JVM
processes required to run larger Warehouse/terminal configurations. In an effort to mea-
sure the “intrinsic” capacity of our technology, we added a benchmark option to run multi-
ple threads within a single JVM process and set the wait/think times to zero. This allows
the JVM to run unconstrained but forces all terminal output to a single window. Since
scrolling large volumes of text is a significant load on windowed systems, we added a
option to disable the display of transaction screens. In this case the screen image is built in
memory, but the final display write is not called.

This mode allows the persistence storage mechanism to push to the maximum rate for that
CPU. This option also serves as a stand-in for a client/server configuration where the
screen display load would be distributed over a number of client systems. In this mode we
measured 98.3 tpmBOB-C running 4 threads over 4 1% scale warehouses, on a 166MHz
Pentium with 80MB DRAM under WindowsNT 4.0. Similarly we measured a 96.4 tpm-
BOB-C with screens enabled and 176 tpmBOB-C with screens disabled running 1 thread
over a single 1% scale warehouse, on a 200Mhz MMX Pentium with 64MB DRAM under

2. *Transactions per minute benchmark C, based on TPC-C
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Windows95. The difference is explained by a combination of faster processor cycle times
and the smaller database fitting entirely in the available DRAM. When running in a three
warehouses configuration on the 166MHz system, measures rise to the 116-124 tpmBOB-
C range. This shows a relatively graceful degradation for overcommitting real memory.

4.0  Conclusion

While these results are early and incomplete they demonstrate that SLS techniques are
applicable to 32-bit standard platforms. Combining SLS technology with Java VM tech-
nology provides both an effective and highly portable persistent object model. The same
persistent object model is a natural fit for 64-bit systems supporting Java and persistent
virtual storage (SLS).

Clearly, the JavaSAS interpreter has to do more work than a standard, transient-only JVM
and would not be suitable for an application that does not require persistence.  But for
commercial applications that require some form of persistence JavaSAS performs accept-
ably on 32-bit systems while providing a superior programming model.

While our performance claims are modest to date (120 tpmBOB-C Vs 1000 tpmC), it is
early yet with many potential improvements untapped. Our JavaSAS VM needs additional
tuning especially in the structure of the class image. Since we use 16-byte pointers within
the structure of the loaded class image, any unnecessary levels of indirection add signifi-
cant overhead. Additional hand tuning of the Bytecode dispatch loop is also warranted,
including a hand turned assembler implementation. Other important areas to be explored
include JIT technology and compilation to native code.

Of course the key comparison should be with other Java object persistence mechanisms.
While there are a number of products and published papers on Java persistence, we could
not find any published results comparable to TPC-C (or BOB-C). It is important to agree
on an appropriate benchmark so that results are directly comparable.
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Abstract
The purpose of the work describe here is to gain experimental experience with data warehouses for large
collections of Java objects.  We report on the design, architecture, and early experimental work with a
software tool called JTool for creating data warehouses of Java objects.  Our primary interest is in building
distributed data warehouses containing large collections of Java objects as a basis for the data mining of
objects on the web. This work is broadly based upon our prior work with a software called PTool which we
have used for the data mining of large collections of C++ objects in clustered computing environments
[Grossman 1996 and 1997a].

                                                       
1 This research was supported by Grants from the National Science Foundation and the Department of
Energy.
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With Version 0.2 of JTool, we have built Gigabyte size data warehouses of Java objects and showed that
JTool scales linearly with the size of the warehouse and the size and complexity of the underlying objects.
Unfortunately, due to the overhead of the Java Virtual Machine and to our use of  object serialization
supported by JDK 1.1.1, querying a gigabyte warehouse of Java objects takes approximately 15 hours (vs
minutes using PTool).

1 Introduction

Object warehouses are data management systems designed to support the analysis of collections of objects.
Where as databases are designed for transactions environments with many writes, data warehouses are
designed for analysis environment with many reads.  Data warehouses speed up the analysis of data by
precomputing and indexing as much derivative and summary data as feasible.  At one end of a spectrum
are transaction systems supporting updates of simple normalized relational data; at the other end are
object warehouses supporting complex queries on complex objects which incorporate derivative and
summary data.

Data mining is the discovery of patterns, associations, and anomalies in large data sets.  It is convenient to
divide data mining systems into three generations [Grossman 1997b].  Most systems today are first
generation systems which support one or more data mining algorithms and which interface to file systems
and databases.  Second generation data mining systems are characterized in part by incorporating data
management techniques in order to handle large data sets and to mine data out of memory.  Third
generation data mining systems support the mining of distributed data, including web-based data.
Broadly speaking, there are two approaches to building third generation systems: one based upon agent-
based computing and one based upon network-based computing.  With Java emerging as one of the de
facto standards for network-based computing, it is reasonable to explore the feasibility of designing third
generation data mining systems using Java.  This paper describes work in this direction.

The purpose of the work describe here is to gain experimental experience with large data warehouses for
collections of Java objects.  In this paper, we report on the design, architecture, and early experimental
work with a software tool called JTool for creating data warehouses of Java objects.  Our primary interest
is in building data warehouses containing large collections of Java objects.  This work is broadly based
upon our prior work with a software called PTool which we have used for the data mining of terabyte size
collections of C++ objects in clustered computing environments [Grossman 1996 and 1997a].

With this (second) version of JTool, we have built Gigabyte size data warehouses of Java objects and
showed that JTool scales linearly with the size of the warehouse and the size and complexity of the
underlying objects.  Unfortunately, due to the overhead of the Java Virtual Machine and to our use of
object serialization supported by JDK 1.1.1, querying a gigabyte warehouse of Java objects takes
approximately 15 hours (vs minutes using PTool).  Even so,  because of the improvements expected in
Java, we feel that the type of light weight data management employed by JTool for collections of Java
objects may emerge as a viable foundation for third generation data mining systems, a topic we are
currently exploring.

Our goals in the design of JTool are broadly similar to the design goals for PTool [Grossman 1995a and
1995b]:

1. We wanted a lightweight data management tool optimized for the types of queries common in data
warehouses.  Data warehouses are optimized for read-only queries and precompute and index as
much data as possible in order to speed the performance of common queries.

2. We wanted the tool to scale to large collections of objects, to objects containing large numbers of
attributes, and to queries which are numerically intensive.



3. We wanted the tool to support hierarchical storage systems incorporating memory, disk and tape and
a variety of network protocols.

Broadly speaking, we designed a software tool which met these goals and tested it on a several data
mining and data intensive applications with which we have worked in the past.  We report on the
preliminary results here.   We emphasize that our intention was not to design a persistent version of Java -
this has been done by others [Atkinson et al. 1996a, Atkinson et al. 1996b, Dearle et al. 1996, Garthwaite
and Nettles 1996, and Jordan 1996].

It is well known that object serialization can be very efficient, especially for large collections of objects.  A
standard approach for dealing with this type of inefficiency is to partition hierarchically collections of
objects into extents of increasing large size and manage each level in the hierarchy with a separate cache
manager.  This is the approach we take in this work.  We present some evidence that this approach might
prove useful in this context.

2 Related Work

Recently there has been a substantial work devoted to adding persistence to Java.  Broadly speaking, there
are three approaches.  One approach to adding persistence is to provide direct support for persistence by
changing the Java compiler or the Java virtual machine.  Alternatively, a preprocessor for the Java source
code could be used or a post-processor for the Java byte code.  This has the advantage that it is the most
powerful, but the disadvantage that it requires the most work.  Another approach is to use existing data
management systems to manage persistent data, either relational, object-oriented, or object-relational
databases.  This has the advantage that databases are widely available but the disadvantage that moving
data between  the two systems usually requires additional application code.   Finally, the Java development
environment itself supports a mechanism called serialization [Sun 1996] for taking a complex object and
transforming it into a byte stream, which can then be made persistent.  This has the advantage that it is
well integrated into the Java environment, but the disadvantage that it can be very inefficient.  We now
discuss each of these approaches in greater detail.

2.1 Directly Supporting Orthogonal Persistence
In some sense the "right" way to provide persistence to Java is well known and articulated in [Atkinson et
al. 83 and Atkinson and Morrison 95] through three principles.  The first principle is that persistence
should be orthogonal to type in the sense that all data whatever its type should have equal rights to
persistence.  The second principle is the principle of persistent independence which argues that all code
should have the same form independently of how long the data upon which it acts persists.  The third
principle is the principle of transitive persistence which argues that whether data persists or not should be
determined by whether the data is reachable from a persistent (root) object or not.

A difficulty with this approach is that providing persistence compliant with these three principles is not
easy and requires changing the Java compiler, the Java virtual machine, preprocessing the Java source
code, or post-processing the Java byte code. Moss and Hosking [Moss and Hosking 1996] classify some of
the different approaches for providing orthogonal persistence to Java.  Despite the effort required, there
have been several implementations of persistent programming languages following these principles. A
version of the Java language called PJava which supports persistence compatible with these three
principles is described in [Atkinson et al. 1996 and Jordan 1996].  Another orthogonally persistent Java
has been developed by Garthwaite and Nettles [Garthwaite and Nettles 1996]. Dearle et al. have developed
an orthogonally persistent Java on top of their persistent operating system Grasshopper [Dearle et al.
1996].  Related material from this point of view is contained in [Morrison et al. 1996].



Malhotra argues in [Malhotra 1996] that scalability issues necessitate supplementing defining persistent
objects through reachability with an alternate mechanism such as using explicit adds and deletes.

2.2 Interfaces to Databases and File Systems
There is embedded SQL interface between Java and relational databases called JDBC [Hamilton and
Cattel 96].  This has the standard problems -- the impedance mismatch between the data models in the
two different environments requires substantial additional programming  -- and the standard advantages --
it is extremely useful due to the large amount of relational data in current systems.   Related work is
described in [Santos and Theroude 1996].

Most of the commercial object oriented database vendors have developed interfaces between their
databases and Java.  The ODMG is developing a standard for this interface [Cattel 1996].  Since the
ODMG data model and the Java data model are similar, there is not the impedance mismatch problem
that occurs with the JDBC binding.  Most of these implementations appear to support orthogonal
persistence.

An even greater amount of data is contained in legacy file systems than is contained in databases. Gruber
[Gruber 1996] argues that this type of data is best accessed with external object faulting mechanisms.

2.3 Object Serialization
A serialization of a complex object is a byte stream representation of it.  Alternate terms for this process
are flattening and pickling.  Once an object has been serialized, it can easily be made persistent, either
using a file system or database.  A common approach is to store serialized objects in a relational database
as a BLOB or string.  Another use for object serialization is that it provides an easy means to move
complex objects between machines.

A closely related technique is to pack complex data into a string or blob. This is important for some high
performance decision support and data mining applications.  Accessing complex data with a conventional
database might require several database accesses.  By packing the data, this can be reduced to one
operation.  The trade-off is that updating the data is more difficult and expensive.

Perhaps the most important reason for employing object serialization to add persistence to Java is that it is
easy: the Java Development Kit JDK 1.1.1 provides direct support for object serialization.  The main
disadvantage is that currently employing object serialization can be very inefficient.  Employing object
serialization also violates one of the three principles in [Atkinson et al. 83 and Atkinson and Morrison
95].  See [Atkinson et al. 1996b].

3 Using JTool

3.1 API Objects and Utilities

JTool  Version 0.2 has three core objects for creating and manipulating large, persistent object stores: Ref,
Store, and JTool.  There is also a collection object for managing sets of persistent objects called: PSet.
Finally, a utility called JTool_Register is required to use the JTool API with general objects.

3.1.1 Ref



A Ref object is a 64 bit reference to an object within a given name space.  By name space we mean a
collection of Stores.  The Ref is broadly modeled after the ODMG specification of the same name;
however, the lack of templates and operator overloading required us to change the syntax and exclude type
information in Ref.

Ref Methods:

Ref();

The Ref()  constructor available to the programmer takes no arguments and constructs a
“NULL” Ref.  By NULL, we mean that the Ref instance is not pointing to a legal position in the
store.

Object Deref();

The Deref()  method takes no arguments and returns the Object that is located at the persistent
address in the persistent name space that the instance of Ref is pointing to.  Deref()  throws an
exception if the instance is referencing an illegal address in the name space (e.g.. a Store that
does not exist).

void Persist();

The Persist()  method takes no arguments and has a void return.  Persist()  causes the
persistent image of the object to become consistent with the current transient object to which the
instance of Ref is pointing.

3.1.2 Store

A store object is a named persistent space into which persistent objects can be allocated and out of which
persistent objects can be retrieved and modified.  The store is also a collection class and supports API
methods which allow functionality similar to that of the ODMG Bag class (i.e. allows insertion of
duplicate objects).  We have included this functionality in order to be compatible with the PTool-v2.3 API.
However, future releases of JTool will most like only include a method to add on object to the root of a
Store.

Store Methods:

Store( String );

The Store( String )  constructor takes a String and opens the persistent space of that
name.  If the store has not be created before, the constructor initializes the store and adds the new
store to the name space.

void insert_element( Ref );

The insert_element( Ref )  method takes a Ref object as an argument and adds the
reference to the Store’s collection of objects.  This method throws an exception if the Ref cannot
be added to the collection.

boolean Next( Ref );

The Next( Ref )  method takes a Ref object as an argument, attempts to set the Ref to point
to the next object in the Store’s collection and returns a boolean.  This method returns true if



another object was available in the collection and false if the end of the collection has been
reached and there are no more objects to return.  By “next’ object we mean in reference to
previous calls to Next()  starting with the first object being returned on the first call to
Next() .

void Reset();

The Reset()  method takes no arguments, returns void, and insures that the next call to the
Next()  method will attempt to return the first object in the Store’s collection.

3.1.3 JTool

The JTool object handles persistence transactions on the stores in a given name space.

JTool Methods:

static Ref New( Store, Object );

The New()  method is static, takes both a Store and an Object as arguments, attemps to allocate
the object into the persistent Store and returns a Ref pointing to the persistent location of the
object in the name space.

static void FinalizeJTool();

The FinalizeJTool()  method must be invoked at the end of a JTool application to bring the
object store into a consistent state.

3.1.4 PSet

The PSet is an untyped  collection class and supports API methods which allow it functionality broadly
similar to the ODMG Bag class (i.e. allows duplicates to be inserted).  The name “PSet” is a carry over
from the PTool-v2.3 API and will be mostly changed to PBag in future releases.

PSet Methods:

PSet( Store );

The PSet constructor available through the JTool API takes a Store as an argument and
instanciates the PSet.  The Store given in the constructor denotes the particular Store where new
PSet “nodes” will be allocated.  By “node” we mean an object which contains two Refs.  One Ref
points to an object in the collection and the other Ref points to the next “node” as in a linked list.
It should be noted that the Store where “nodes” are allocated does not have any bearing the
Store(s) where objects managed by the PSet are located.

void insert_element( Ref );

The insert_element( Ref )  method takes a Ref object as an argument and adds the
reference to the collection of objects.  This method throws an exception if the Ref cannot be
added to the collection.

boolean Next( Ref );



The Next( Ref )  method takes a Ref object as an argument, attempts to set the Ref to point to
the next object in the collection and returns a boolean.  This method returns true if another object
was available in the collection and false if the end of the collection has been reached and there
are no more objects to return.  By “next’ object we mean in reference to previous calls to Next()
starting with the first object being returned on the first call to Next() .

void Reset();

The Reset()  method takes no arguments, returns void, and insures that the next call to the
Next()  method will attempt to return the first object in the collection.

3.1.5 JTool_Register (Java Application)

The JTool_Register application calculates and registers the “sizeof” objects which are to be made
persistent in a given name space.  Therefore, all objects which are going to be persistent must be
registered with JTool_Register.

Usage:

java JTool_Register <object list>

3.2 An Example

The purpose of this section is to give a simple example of working with scientific data using JTool.  The
example in this section is adapted from [Grossman 1994], where further details can be found. There are
three main steps to create and access a store of events: first, a schema for the store is designed, which
defines the objects and their attributes; second, a store is created and populated with objects; and third, the
store is queried for objects meeting specified criteria.

1.  The first step is to define and register the schema for the store by defining the objects and their
attributes. Simply defining the relevant Java classes, as in Event.java, Jet.java, and Lepton.java found in
the appendix does this.  It should be noted that most sub-objects (e.g. as Lepton is to Event) should be
declared with a Ref in the main object.  All objects that are to be persistent must implement Serializable as
per Object Serialization in JDK 1.1.1 which simply means adding the words “implements
Serializable ” to the class definitions.  This is necessary since JTool currently utilizes Object
Serialization found in JDK 1.1.1 to cast byte streams to objects as discussed in section 4.2.

To register one would execute the following command:

> java JTool_Register Event Jet Lepton

2.The second step is to populate the store. The statement

Store store = new Store("PsiEvents");

creates a store with the internal handle a, and the external name PsiEvents, or opens the store for
appending if it already exists.

When a persistent object is created in a Store, it must also be part of some kind of data structure that
allows access to it in the future. JTool comes with a built-in sequential data structure as part of the Store
and an external version call PSet.



To make an object persistent, the standard Java statements

Event event;
event = new Event();

are replaced by

Ref  eventRef;
eventRef = JTool.New( store, new Event() );

In order to access the object later, it must be added to the base collection in the store with the statement:

store.insert_element(eventRef);

For a working example, see the source code Pop.java in the appendix.

Attributes for persistent objects can be accessed in the follwing ways:

((Event)eventRef.Deref()).vertex = 10.4;

or

Event event = (Event)eventRef.Deref();
event.vertex = 10.4

assigns 10.4 to the vertex attribute of the Event object.

3.The third step is to query the persistent store of objects. Any other process can open the store with the
external name PsiEvents and access its elements using the internal handle b with the statement

Store store = new Store("PsiEvents");

To loop through all objects in a store:

Ref eventRef = new Ref();
while( store.Next( e ) )
{ . . . }

For a working example, see the source code Pop.java and Acc.java.

4 Design and Implementation

4.1 Physical Storage Management

Both JTool and PTool achieve scalability by hierarchically grouping objects into extents of increasing size:
objects are gathered into segments, segments into folios, and folios into stores.  A name space consists of a
number of stores.  The different size extents are then managed by a multi-level caching and migration
system.  For more details, see [Grossman 1995a].

Segment.  A segment is a physical collection of objects. The size of the segment is currently set at 65K.
Segments are the basic unit for transferring objects between disks and memory.

Folio.  A folio is a collection of segments and the basic unit of managing segments on secondary and
tertiary storage systems, such as disks and tapes. Folios are currently implemented as files.  After a



network Waddle has been implemented, we will be able to distribute the folios of a Store across an
arbitrary number of nodes in a network and create stores which are larger than the maximum file size
allowed by a single file system.

Store.  A store is a collection of folios.

Name Space.  A name space is a collection of stores for which there is a JTool Registry and a JTool
Database Map.  Complex persistent objects can contain sub-objects, which may reside in other stores as
long as all the stores in question are in the same name space.

In summary, we designed JTool to use four storage levels for performing physical data management. With
this design we can theoretically create and access very large object stores, and yet manage the store
efficiently.  This is analogous to multi-level caching schemes, which are common in distributed file
systems.

4.2 The Use of Object Serialization

The current release of JTool utilizes the Object Serialization support in JDK 1.1.1 to facilitate the casting
of bytes held in the JTool Cache to objects and vice-versa.  JTool itself, however, provides a much greater
functionality than simple Objects Serialization.  A JTool name space functions as  a randomly accessible,
64bit addressable, persistent heap as opposed to a flat file.  Objects can be much larger than the single file
size limit and objects can span multiple Stores.

In order to retrieve or store objects, JTool fetches the appropriate segment into the cache as discussed
below, creates a temporary ObjectInputstream or ObjectOutputstream at the appropriate offset in the
segment were the objects resides or is to reside, and finally invokes objectWrite( Object )  or
objectRead()  as necessary.

4.3 Architecture

In this section we will examine the internal architecture of JTool.  Most notably we will better describe the
Ref and outline some important modules including: The Database Map, Object Registry, Waddle (an
unfortunate name retained from the PTool system), and Cache.  Finally we will step through an example
of allocating a new persistent object using JTool.

4.3.1 The Ref

The Ref, points to objects in the persistent space.  Once the Deref()  method is called or a
JTool.New()  is invoked, the Ref also points to a transient image of the persistent object.  The attributes
of ref are shown below:

class Ref implements Serializable
{

transient Object object;
long ppointer;

}

The “object” attribute of the Ref is marked as transient for the case when a persistent object A has a Ref to
a persisent object B as an attribute, as in:



class A
{

Ref b;
}

In this circumstance, only the persistent address (i.e. “ppointer” attribute of the Ref for object B) is stored
with the object A.  The Persist() method of the Ref for object B must be called to make object B persistent.
This functionality is desired so that an object can be much larger than the memory limit provided by the
transient 32bit addressing space of Java.  For example, consider a very large collection of objects as an
object itself, if the collection contained 100 Gigabytes of objects it would be required to use Refs since the
whole collection cannot fit into transient memory a single time.

The ppointer attribute of a Ref is a long.  These 64bits are further subdivided by JTool into four fields:
Store, Folio, Segment, Offset.  Currently, each field is 16bits long.  These four fields are recovered from
the long by bit shifting.  The figure below shows how these are used.

     Local Storage   Transient Memory

   Local
   File
   Waddle

 Folio 1
 Store 1

Folio 2

 Segment 1

 Segment 2

Offset 1
 Segment 1 Offset 1

JTool Cache

•
•

  St     F     Sg     O
  1 1 1  1

Ref

After the Deref() method has been called on a Ref object and the appropriate segment and offset has been
located in the cache, the byte array is “deserialized” into a Java object and “object” attribute of the Ref is
updated to point to the new transient image of the persistent object.



4.3.2 Database Map (JTool.DbMap)

The Database Map maps the global identifiers of Stores to ID numbers used in Refs as the most significant
16bits of the Ref’s ppointer attribute for objects in the a particular Store.  Any time a new Store is created
it is assigned a Store ID.  The Store ID and the Store name (i.e. global identifier) mapping is added to the
Database Map.  The Stores contained in a particular Database Map define a name space.  Any object in a
particular Store can contain Refs pointing to objects in other Stores as long as the Stores in question are in
the same name space (i.e. all the Stores are in the Database Map).

4.3.3 Object Registry( JTool.Registry )

The Object Registry maps class types which can be made persistent to a corresponding image size in the
persistent Store.  The Object Registry is initialized using the JTool_Register application.   This effectively
gives JTool a “sizeof” method which it can use to allocate appropriate space in the persistent store.  The
Object Registry is currently implemented as a Serialized Hashtable.

4.3.4 Waddle

   Transient Memory

 Segment 1 Offset 1

Jtool Cache

  St     F     Sg     O

  1 1 1  1

Ref

 long ppointer

transient Object object 

    Java Object



The Waddle module of JTool ( Waddle is a historical name from PTool) is responsible for the actual
fetching of segments from secondary storage into the JTool cache.  Currently, only a local file Waddle is
provided with JTool.  However, like PTool,  we expect to have network, compressed file, and tape
Waddles available for future implementations of JTool.

There is one instance of a Waddle for every open Store.  The Waddle instance fetches segments from
secondary memory by opening the appropriate folio (file), seeking to the appropriate offset in the folio (i.e.
where the wanted segment starts), and reading or write the segment as requested.

4.3.5 Run-time Store and Waddle Tables

These are look up tables containing pointers to instances of Store and Waddle based on the Store ID.

4.3.6 Segment Cache

The Segment Cache holds a variable number of Segments (decided at compile time) in main memory
during the lifetime of a JTool application.  When there is a Cache “miss” (i.e. a particular segment is
needed but not in the Cache), the Cache makes a call to the appropriate Waddle based on Store ID and
requests the particular segment.  The current cache eviction policy dumps the oldest segment (i.e. been in
the cache the longest).  Furthermore, every segment is flushed back to the persistent folios when evicted.
We plan to add a differentiation of  “dirty” and “clean” segments in future releases.  We recognize the
cache implementation as naïve as well as a potentially dominant performance factor.

4.3.7 An Example of Object Allocation

Below is a diagram of main memory after a new object Foo is allocated into Store “test” with the
following code fragment.  This also assumes Foo has been registered with JTool_Register application.

.

.

.
Store s  = new Store( “test” );
Ref pf ;
pf = JTool.New( s, new Foo() );
.
.
.

Here are the steps invovled:

Code: Store s = new Store(“test”);

Step 1.  Lookup Store ID in Database Map for “test”
Step 2.  Initialize Store and Waddle instances and set Store and Waddle Lookup Tables to point to them.
In this example, the Store “test” has a Top Folio of 3, Top Segment of 4, Top Offset of 300.  These three
numbers denotes the current end of the Store; new objects will be allocated after that.

Code: Ref pf;

Step 3.  Make a Ref variable.  Currently it is null.



Code: pf = JTool.New( s, new Foo() );

Step 4.  Make a new instance of Foo
Step 5.  Make a new instance of Ref and set the “object” attribute to point to the new instance of Foo.
Step 6.  Look of “sizeof” Foo (i.e. 200 Bytes) in the Object Registry.
Step 7.  Set Top Offset of Store “test” to 500 (i.e. allocate 200 Bytes in the Store).
Step 8. Set the “ppointer” attribute of the Ref to [ 5, 3, 4, 300] (i.e. Store 5, Folio 3, Segment 4, Offset 300
).
Step 9.  Request the following Segment: Store 5 (“test”), Folio 3, Segment 4.
Step 10.  If not present in the Cache, the Waddle for “test” fetches the segment into the Cache.
Step 11.  Create a temporary ObjectOutputstream 300 Bytes into the Segment.
Step 12.  Call writeObject( Object ) on the ObjectOutputstream passing it the new Foo object.
Step 13.  Return the new Ref and set pf  equal to it.

Database Map Object Registry

“test” -> 5 Foo -> 200 Bytes

Store Table

Waddle Table

 5

 5

Top Folio 3
Top Segment 4
Top Offset 500

Instance of Store “test”

Waddle for Store “test”

JTool  Cache

St: 5, F: 3, Sg 4

Instance of Foo Instance of Ref

Offset 300

Run-time JTool Memory Image After Object Allocation

4.4 Status
JTool Version 0.2 was used for the experimental studies reported here.  JTool is based upon Version 2.3 of
PTool.

5 Experimental Results



5.1 Experimental Facility

Experiments were conducted on a Sun Sparc 20 with 32 Mbytes of RAM running Solaris 2.5.1 and Jdk
1.1.1.  The disk on which we populated stores was a 9 Gig Seagate NFS mounted to the SparcStation over
standard ethernet.  The version of JTool used in the tests was JTool Version 0.2.

5.2 Data Sets

For ease of comparison with our past work mining scientific data, we created a data set containing
synthetic data called Events, broadly similar to data arising in high energy physics [Grossman 1995a and
1996].  More specifically, we populated a series of stores using JTool containing Events defined by the
class listed in the appendix.  The Stores ranged in size from 2 to 1000 Megabytes.  The attributes of the
events were assigned random values. Each event had 2 Lepton and 1 - 3 Jets as attributes.

We also populated a series of store keeping the number of Events constant but varying the number
attributes (Jets) between 5 and 1000.

5.3 Tests

1.  First, we measured the access time for examining all entire Event objects (i.e. including its Leptons
and Jets) in a store as we varied the Store size.

2.  Second, we measured the access time for examining all entire Event objects in a store while varying
the number of attributes per Event.

The data and tests are designed so that the best performance possible is a linear scale up as the amount of
data and number of attributes increases.  With inappropriate designs, linear scale up fails after a certain
point.

5.4 Summary of Results

In our first test we found that access times did indeed scale linearly as a function of store size:

ACCESS TIME (sec)

STORE SIZE (Mb)                     Real Time                     User Time           System Time

2 176.13 57.12 1.2
100 5469.1 2726.51 22.12
500 31051.15 14321.51 116.33

1000 51671.77 27378.4 217.11



Access Time vs. Size of Store
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In our second series of tests we found that access times did indeed scale linearly as a function of the
number of attributes:

 ACCESS TIME (Sec)

Number of
Attributes

                    Real Time                     User Time           System Time

5 4.93 4.05 0.7
100 40.56 39.53 0.81
500 191.18 186.95 1.66

1000 534.36 400.37 2.69



Access Time vs. Number of Attributes
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6 Summary and Conclusions

In this paper, we have described the design and implementation of a software tool for creating data
warehouses of Java objects called JTool and reported on experimental studies showing that JTool scales as
designed for data warehouses containing up to one Gigabyte of data and for objects containing up to one
thousand attributes.

The current release of JTool (Version 0.2) is our first pass with this design (the prior version had a very
different design) and has room for considerable improvement.   We are currently experimenting with
JTool's caching and migration methods, the developments of alternatives to object serialization, and
running additional applications and benchmarks.

Our main interest in JTool is as a data management infrastructure for data mining systems designed to
mine collections of complex data distributed over local and wide area networks.  With the rapid growth of
the net,  networked information is growing at a far faster pace than our ability to effectively use it. Much
of this information consists of collections of Java objects.  Data mining provides one means of
automatically discovering patterns and associations in large data sets; without the development of software
tools such as JTool, mining collections of Java objects will be more difficult.
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Appendix A.  Event.java
import java.io.*;

class Event implements Serializable
{
    int runNumber = 0;
    int eventNumber = 0;

    double vertex = 0.0;

    Ref lepton1 = new Ref();
    Ref lepton2 = new Ref();

    Ref JetSet = new Ref();

    Event()
    {
    }
    Event( Store s )
    {
        runNumber = (int) ( Math.random() * 10000 );
        eventNumber = (int) ( Math.random() * 10000 );

        vertex = (double) Math.random();

        lepton1 = JTool.New( s, new Lepton() );

        lepton2 = JTool.New( s, new Lepton() );



        JetSet = JTool.New( s, new PSet( s ) );

        int numberofJets = (int)( ( Math.random() * 3 ) + 1 );
        for( int x = 0; x < numberofJets; x++ )
        {
            Ref j = JTool.New( s, new Jet() );
            ((PSet)JetSet.Deref()).insert_element( j );
        }

        JetSet.Persist();
    }

    public String toString()
    {
        String JetString = new String();
        Ref j = new Ref();
        PSet ps = (PSet)JetSet.Deref();
        while( ps.Next( j ) )
        {
            JetString = JetString + j.Deref();
        }
        return new String( "Run Number: " + runNumber +
                           "\nEvent Number: " + eventNumber +
                           "\nLepton 1: " + lepton1.Deref() +
                           "\nLepton 2: " + lepton2.Deref() +
                           "\nJet Set: " + JetString +

"\n=========================================\n");
    }
}

Appendix B.  Lepton.java
import java.io.*;

class Lepton implements Serializable
{
    double p[] = null;
    double charge = 0.0;

    Lepton()
    {
        charge = (double) Math.random();
        p = new double[4];
        for( int x = 0; x < 4; x++ )
        {
            p[x] = (double) Math.random();
        }
    }

    public String toString()
    {
        String pstring = new String();
        for( int x = 0; x < 4; x++ )
        {
            pstring = pstring + new String( "\n    p[" + (x+1) + "]: " +
p[x] );
        }
        return new String( "\n  Lepton: " +
                           "\n    charge: " + charge +
                           pstring + "\n" );
    }
}



Appendix C.  Jet.java
import java.io.*;

class Jet implements Serializable
{
    int jet_num = 0, ntrk = 0;
    double q_frac = 0.0, phi_jet = 0.0, eta_jet = 0.0, mass_jet = 0.0,
pt = 0.0;

    Jet()
    {
        jet_num = (int) (Math.random() * 10);
        ntrk = (int) ( Math.random() * 100 );

        q_frac = (double) Math.random();
        phi_jet = (double) Math.random();
        eta_jet = (double) Math.random();
        mass_jet = (double) Math.random();
        pt = (double) Math.random();
    }

    public String toString()
    {
        return new String( "\n Jet: " +
                           "\n    jet_num: " + jet_num +
                           "\n    ntk: " + ntrk +
                           "\n    q_frac: " + q_frac +
                           "\n    phi_jet: " + phi_jet +
                           "\n    eta_jet: " + eta_jet +
                           "\n    mass_jet: " + mass_jet +
                           "\n    pt: " + pt + "\n" );
    }
}

Appendix D.  Pop.java
import java.io.*;

class Pop extends JTool
{

public static void main( String args[] )
{

  Store store = new Store( "PsiEvents" );

  Ref eventRef;

  try{
  for(  int a = 0 ; a < 1000 ; a++ )

{
    eventRef = JTool.New(  s, new Event( s ) );
    store.insert_element( eventRef );

    }
FinalizeJTool();

  }catch(Exception e ){ System.out.println( "Exception: " + e); }
}

}



Appendix E.  Acc.java
import java.io.*;

class Acc extends JTool
{

public static void main( String args[] )
{
  Store store = new Store( "test" );
  Ref eventRef = new Ref();

      try{
  while(  s.Next( eventRef ) )
  {

System.out.println( eventRef.Deref() );
  }
  }catch(Exception e){};
  FinalizeJTool();
}

}
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