
Automated and Portable Native Code Isolation

Grzegorz Czajkowski, Laurent Daynès, and Mario Wolczko

M/S MTV29-01
901 San Antonio Road
Palo Alto, CA 94303-4900

Automated and Portable Native Code Isolation

Grzegorz Czajkowski, Laurent Daynès, and Mario Wolczko

SMLI TR-2001-96 April 2001

Abstract:

The coexistence of programs written in a safe language with user-supplied unsafe (native) code is con-
venient (it enables direct access to hardware and operating system resources and can improve application
performance), but at the same time it is problematic (it leads to undesirable interference with the language
runtime, decreases overall reliability, and lowers debuggability). This work aims at retaining most of the
benefits of interfacing a safe language with native code while addressing its problems. It is carried out in
the context of the Java™ Native Interface (JNI).

Our approach is to execute the native code in an operating system process different from that of the safe
language application. A technique presented in this paper accomplishes this transparently, automatically,
and without sacrificing any of the JNI functionality. No changes to the Java virtual machine (JVM™) or its
runtime are necessary. The resulting prototype does not depend on a particular implementation of the
JVM, and is highly portable across hardware architectures and operating systems. This approach can
readily be used to improve reliability of applications consisting of a mix of safe and native code; to enable
the execution of user-supplied native code in multitasking systems based on safe languages and in
embedded virtual machines; and to facilitate mixed-mode debugging, without the need to re-implement any
of the components of the language runtime. The design and implementation of a prototype system, perfor-
mance implications, and the potential of this architecture are discussed in the paper.

email address:
grzegorz.czajkowski@sun.com
laurent.daynès@sun.com
mario.wolczko@sun.com

© 2001 Sun Microsystems, Inc. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun
Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Java, Sun Enterprise, Java HotSpot, JVM, Forte, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. UNIX® is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@eng.sun.com>. The entire
technical report collection is available online at http://research.sun.com/techrep.

1

Automated and Portable Native Code Isolation
Grzegorz Czajkowski Laurent Daynès Mario Wolczko

Sun Microsystems Laboratories
901 San Antonio Road

Palo Alto, CA 94303, USA

1 INTRODUCTION

The growing popularity of the Java programming language
[AG98] has not obviated the need for unsafe (native) code.
While safe languages offer many benefits, including
inherent improved code reliability, increased programmer
productivity, and ease of code maintenance, quite often it is
desirable to execute user-supplied native methods (referred
to simply asnative code) [Lian99]. There are several good
reasons for accepting this impurity: access to devices and
programming interfaces to which there is no standard
mapping from the language or from the core libraries,
direct interaction with operating system services, and
possible higher performance of native code. Nevertheless,
native code is potentially unsafe and as such may break the
contract offered by a safe language.

Ensuring the safety of native code has been the focus of
several research projects. The common approach is to let it
execute in the same process as the original safe language
computation. This can be accomplished by augmenting
native code with safety-enforcing software checks
[WLA+93], via statically analyzing it and proving it
memory safe [NL96], or by designing a low-level, statically
typed target language to which native code is compiled
[MCG+99]. Although these approaches have their success
stories, and at the current state of the art they are practical
in many circumstances, their usefulness for addressing
problems with an arbitrary native library is rather limited.
Ensuring memory safety with these techniques requires
source code of native libraries [MCG+99], generating
safety proofs [NL96], which is impossible in general, or
may incur substantial performance penalties [WLA+93].

The inherent lack of memory safety in native code is not
the only problem, however. An equally important issue is
guaranteeing the safe use of system resources by
independently developed software modules, such as the
JVM and arbitrary user-supplied native code. While
programmers may have very legitimate reasons to, for
instance, customize signal handling in a native method,
doing this may interfere with the runtime system of the
Java programming language (referred to simply asthe
runtimeor the JVM).

Directly using certain operating system services by native
code may lead to highly unpredictable and difficult to
explain behavior, dependent upon the implementation of
the runtime and the kind of interference between native
code and the runtime. Trapping system calls issued by
native code is possible, but deciding whether the call
should be allowed to take place or not would depend on the
particulars of the runtime. In general, such a control
scheme seems likely to be either overly restrictive,
preventing some classes of programs from being written, or
overly permissive, allowing various collisions and
interferences between native code and the runtime of a safe
language, or requiring human analysis and manual
intervention for each native code module.

Unwanted interference may also occur between two
independently written native libraries loaded by the
runtime. This means that, for instance, developers of third-
party components, coded partly in the Java programming
language and partly in C, should considerably restrict their
use of system’s resources; practicing such “safe driving” is
necessary to avoid conflict with other modules, unknown at
the time of the development of this particular component,
that may be loaded by the same application. The specifics
of the “restrict the use of resources” vague guideline may
differ among implementations of the JVM which, in
general, limits the re-usability of native code. All of the
above may conspire to produce unpredictable and difficult
to explain behavior, low reliability, and poor software re-
usability.

Another concern is raised by embedded JVMs [Morg98].
Any problem mentioned above may not only just crash the
application that loaded errant native code, but also abort or
distort the execution of the embedding application. Similar
issue arises in the context of multitasking JVMs [BG97,
HCC+98,Czaj00,BV99,SBB+00,BHL00] where arbitrary
independent tasks can execute in the same JVM. The
problem is aggravated in this case when native code is
written with a single task in mind.

These concerns made us explore the alternative direction –
executing user-supplied native code in a different process
than that of the JVM. In addition to memory protection via
separate address spaces, which guards against memory
corruption, this approach prevents conflicts arising from

2

native code abusing resources and interfering with the
intended operation of the JVM runtime. The result of this
investigation is a design and implementation of a highly
portable infrastructure for executing methods from
specified native libraries in separate operating system
processes.

This work emphasizes that composability of arbitrary
unsafe software modules is not just a memory safety issue.
The main contribution of the paper is a complete solution,
readily deployable in practice. In particular:

• The approach enables safe, reliable, and interference-
free composition of native libraries and the JVM
runtime.

• JNI is unchanged and programming against it is the
same regardless of whether the resulting native code
will execute in the same process as the JVM or in
another one.

• The resulting infrastructure is independent of the JVM,
and does not require changes to implementations of the
JVM.

• The infrastructure is highly portable, with a small
component that depends on the way arguments are
passed to and values are returned from C and C++
methods on a given hardware/software platform, and
another part that depends on the IPC mechanism used.

• The actions necessary to execute native libraries in
processes other than that of the JVM are fully
automated, and require only the libraries themselves,
not their source code.

• The performance overhead depends on the ratio of
computation carried out by the native methods to the
amount of inter-process communication needed and on
the efficiency of the IPC mechanism used.

Our initial experience with the prototype system is
encouraging, especially considering its transparency to the
users and programmers and its seamless interaction with
the JVM.

The rest of the paper is organized as follows. Section 2
discusses the problems arising when native code is
executed in the same process as the safe language
application and the runtime. The advantages and
disadvantages of putting native code in a separate address
space are discussed in Section 3. Section 4 contains an
overview of JNI. The proposed architecture and its
implementation are discussed in Section 5. Performance
issues are the focus of Section 6. Related work is reviewed
in Section 7. Finally, a conclusion section summarizes the
paper.

2 MOTIVATION

Most Java runtime environments contain a mix of native
code: native code compiled from bytecode, native code that
is part of the JVM runtime and interpreter, native code that
is part of the core libraries, and, optionally, user-specified
native code. This paper discusses only the last of these:
user-specified native code, loaded through shared libraries
at run time. The other native code is logically part of the
JVM runtime, is designed, implemented and tested by the
developers of the particular implementation of the JVM,
and is totally under their control. None of these properties
pertain to user-specified native code. This leads to various
problems, described below.

2.1 Conflict of Interfaces

Native code is written against two interfaces: the JNI,
which is its sole interaction point with the JVM and the
application, and the host operating system (OS) interfaces,
involving standard libraries for I/O, threading, math,
networking, etc. The latter is also the interface against
which the JVM is written, and therein lies a problem. The
JVM has to make certain decisions regarding the use of the
host operating system interface and of available resources.
For example:

• Signal handlers may need to be instantiated to handle
exceptions that are part of the operation of the JVM
(e.g., to detect null pointer and other memory
exceptions, to detect arithmetic exceptions, detect the
interrupt signal, etc.).

• The JVM must choose a memory management regime
(involving such things as malloc /free and
mmap/munmap) for its own purposes, including the
allocation of thread stacks and red zones.

• Threads accessible in the language are typically
mapped onto the underlying system's threading
mechanism and a convention is adopted to suspend and
resume threads for garbage collection (GC), to assign
threads to GC and compilation tasks, to set thread
concurrency level, etc.

• The JVM must decide how to manage I/O (e.g., the use
of blocking or non-blocking calls).

• The core classes automatically take care of freeing
some system resources (e.g., closing open file
descriptors); this policy does not extend to the very
same resources used exclusively by native code.

• The JVM may have a notion of a current directory and
environment variables that should stay unchanged
throughout its execution.

Few, if any, of these mechanisms arecomposable, in the
sense that it is not possible to take an arbitrary Java
program and a user-supplied native library which uses both

3

JNI and the host OS interface, put them together into an
instance of the JVM, put the JVM into an OS process, and
expect the resulting system to work correctly. For instance,
the native code may set its own signal handlers and clobber
those set by the JVM, or it may change the current
directory, possibly confusing the JVM. So, in reality, the
user-specified native code has to be written to a set of
implicit interfaces that do not conflict with the way the
JVM uses system resources. These implicit conventions
are rarely documented (because they are highly dependent
on the implementation decisions within the JVM, which are
subject to frequent changes and are usually thought of as
private to the JVM), and do not have to be common across
even the same vendor’s JVMs on the same platform, much
less JVMs on differing platforms and certainly not across
different vendor's JVMs. Furthermore, it is rare that legacy
libraries will respect these conventions; the economics of
amending these libraries to respect the conventions are
prohibitive (e.g., source code of the libraries may not be
available to either the vendor of a particular
implementation of the JVM or to the customer using the
library). Hence, it may be impossible to use certain
libraries in Java applications, or their usability may change
with new releases of the JVM. Figure 1 illustrates the
conflict of interfaces, and shows how it can be avoided by
using another process to host native code.

The problems are exacerbated by so-called "JVM
embedding" [Morg98], in which the JVM is treated as a
library that can be linked into other applications. In this
scenario, it cannot even be mandated that the JVM be in
some way "in charge", because it may be subservient to
another application. The issue here is that the JVM
becomes both the provider of functionality (as an

embedded service) and the client of it (when calling native
code) and is expected to control native code loaded by itself
and at the same time not to interfere with the way the
embedding application uses system resources, system
interface, etc.

The very same problems are bound to plague emerging
multitasking JVMs. Even though the proposed approaches
to enable multitasking in the JVM vary
[BG97,HCC+98,Czaj00,BV99,SBB+00,BHL00], one
theme is common to all these projects: the assumption that
no user-supplied native code is run by any of the tasks. This
is so because any undesirable operation caused by user-
supplied native code (e.g. corrupting memory of other tasks
or changing signal handlers previously set up by the
runtime) can cause a crash or malfunctioning of the whole
JVM, disrupting all the other tasks and defeating all other
isolation mechanisms. Unless a comprehensive approach is
found to contain various aspects of the damage runaway
native code can cause, native code may have to be banned
from safe-language multitasking systems.

2.2 Reliability and Resource Guarantees

It goes without saying that the resultant reliability of
systems based on this combination is less than desirable.
The reliability of the composition of complex applications
based on the JVM and native libraries is therefore
something of a hit or miss nature.

The JVM needs some resources (file descriptors, memory,
etc.) from the underlying OS to perform its function of an
ersatz OS for Java applications. However, when arbitrary
native code coexists with the JVM, it cannot expect to
always find resources available. For example, native code
could use up the remaining file descriptors causing failure

JNI

OS Interface

JNI

OS Interface OS Interface

System Resources

Native CodeJVM Native CodeJVM

System
Resources

System
Resources

Current Approach Proposed Approach

Figure 1. Current JNI implementations do not prevent conflicting use of the OS resources by native code
and the JVM (left). The execution of native code in a separate process addresses this problem (right).

4

in the JVM when it needs to access a file. This happens not
only when a Java application opens a file, but also in
support of internal operations, such as error logging, class
loading,mmap-ing memory, etc.

While it is possible to implement the JVM to cope with
resource starvation at arbitrary moments, this level of
defensiveness requires the JVM to pre-allocate all it needs
for its essential operations, artificially inflating the
application's usage of system resources. It is also extremely
difficult to write and test the JVM code that must deal with
all aspects of resource starvation caused by user-supplied
native code.

2.3 Debuggability

When there is a problem in the interaction between the
native code and the JVM, debugging can be a nightmare.
Simple bugs in native code can cause JVM data structures
to be corrupted, leading to random failures long after the
problem has occurred. If these bugs have pathologies
which are time varying, the bugs can manifest themselves
in arbitrary places within the JVM or in other native
libraries.

For the purposes of fault isolation, it would be desirable if
native code bugs were clearly identifiable as such: this
would at least save considerable effort. Using techniques
enforcing safety at the level of binaries can lead to a clear
verdict on whether a particular memory safety violation is
caused by a user-supplied native library or by some other
part of the runtime. Bugs resulting from conflicting use of
system resources are much harder to find. Moreover, the
road from detection to finding an actual cause can be a long
one, especially when no (or no good) tools for mixed-mode
debugging exist for a given hardware/OS/ JVM platform.

The amount of effort needed to track such problems is
exemplified by a months-long debugging ordeal by a group
of experienced developers, trying to determine why their
commercial implementation of the JVM failed when
embedded in another application. The reason was that the
JVM used signals as its thread suspension technique
internally. The action of receiving these signals interrupted
pending system calls from the embedding application’s
non-Java threads. Eventually, the problem was “solved” by
not using the signals [Skin00].

3 PROCESS-BASED ISOLATION

The problems identified above indicate that the co-location
of user-supplied native code with the runtime of a safe
language leads to numerous difficult issues. This section
explores the benefits and disadvantages of moving native
code out of the JVM’s process into a separate process.
Because processes of modern operating systems identify
memory protection (via hardware-enforced address space
separation) with resource allocation and control, they are
well suited to address the problems discussed above.

3.1 Advantages

Composability. Separating the JVM from user-specified
native code means that the only interface between the two
becomes JNI: a standard, well-defined and widely accepted
interface. There is then no implicit contract between JVM
and native code concerning memory management,
threading, signal handling and other issues. This solves the
composability problem neatly, both of the JVM and native
code and of multiple native libraries. By placing the native
code in a separate process it has full control of its own
resources: memory, signals, threads, file descriptors,
sockets, etc. There are no unexpected interactions with the
JVM in these areas.

Fault isolation. A wild pointer bug in native code is not
going to corrupt JVM data structures. It is much more
likely to lead to a fault within the native code's process,
which is then easily attributed to the native code. False
JVM bug reports should thus be reduced. Similarly, this
approach allows for a quick identification of which native
library causes a fault, when more than one such library is
used by a Java application.

Resource management. There is no danger that resource
management policies will conflict: for instance, the native
library can mmap at any address it chooses. Further,
resource management errors (e.g., careless use of file
descriptors, memory, etc.) do not percolate from the library
to the JVM.

JVM embedding and multitasking in the JVM .
Embedding the JVM within an application should be
simple and reliable. With native code moved safely to
another process, a well-tested implementation of the JVM
is unlikely to crash its host application and yet can offer the
benefits of interacting with native code. Multitasking in the
JVM benefits in a similar way – one task’s native code
cannot crash or disrupt any other task, provided each task’s
native code executes in a separate process.

Interoperability across different address widths.
Ensuring that 64-bit JVMs are able to use existing 32-bit
native libraries may smooth the transition to the former for
many users. The proposed technology can be used to this
end, as long as both the JVM and the native code obey JNI
to communicate with each other and as long as the chosen
IPC mechanism can flawlessly exchange data between the
two. Such transparent interoperability across different
address widths can also be used to let 32-bit JVMs use 64-
bit libraries. This generalizes to arbitrary large future
address widths.

Remote processing of native code. Moving native code
into a separate address space turns JNI (in addition to its
original function) into a specialized, high-level inter-
process communication protocol, layered on top of an IPC
mechanism already present in the host operating system.
This IPC mechanism can be replaced by a networking

5

protocol, enabling the remote execution of native libraries.
This can be useful for load balancing or when native
libraries and the JVM runtime are written for different
hardware/OS platforms. Thus, a technology enabling
transparent execution of a native library in a separate
process at the same time enables the remote use of the
library in a heterogeneous environment, without having to
re-code or wrap the library with RMI, CORBA, and such –
JNI suffices as the interface between the JVM and native
code, regardless of where the execution of either takes
place.

3.2 Disadvantages

Performance. The most important disadvantage of this
approach is the performance overhead incurred when
crossing process boundaries. However, one important
observation is that significant IPC overhead may be
tolerable. We are only moving user-specified native code
into another process; the performance-critical native code
in the JVM and core classes would still be in the same
process, and its performance would not be affected.

Two facts mitigate this problem. First, a common idiom of
caching results of some JNI calls [Lian99] decreases the
number of their invocations. Second, research ideas on low-
cost IPC have found their way into commercial operating
systems. Two examples aredoors [HK93] available in the
Solaris™ Operating Environment and local RPC available
on win32-based systems [Roge97]. They were designed to
address precisely the problem of high-speed RPC-like
communication within a single machine and can be used to
send data between the JVM and native code. The overhead
of copying a few words of data is typically negligible when
compared to the cost of establishing transfer of control.
This may not be so for the copying overhead for large data
structures, such as arrays. One possible workaround is to
use shared memory facilities, which in turn may re-
introduce some of the problems of the co-location of native
code with the JVM.

For many applications the possible overheads of our
approach are a small price to pay for increased reliability.
Moreover, with the improving quality of Java compilation
techniques, the need to use native code as a performance
boosting mechanism will become marginal.

Differing semantics. As the prototype described in Section
5 demonstrates, it is possible to execute native code in a
separate process transparently, without the loss of
functionality and without any dependence on the JVM.
However, it is also possible to write legitimate native code
that behaves differently when executed under “traditional”,
in-process JNI and under out-of-process JNI. A contrived
example showing differing semantics is a program that
opens a file using standardjava.io classes and uses
reflection to get the value of the file descriptor of the open
file, typically stored in a non-public field of a

java.io.FileDescriptor object (this requires
knowing the name of the field). The value of the file
descriptor is then passed to native code, where it is used to
access the file system. In this example, the execution of
native code in a separate process will almost certainly lead
to different results than when all the program code is co-
located in the same process. Thus, even though concocting
such examples is difficult and requires intimate knowledge
of the JVM and its core classes, differing semantics may
arise in complex programs. A preventative rule of thumb is
to make sure that the lifecycle of each system resource
(initialization, use, termination) is confined to either the
JVM or user-supplied native code, and never spans the two.

4 OVERVIEW OF JNI

Before moving on to describing our design and
implementation, a brief overview of JNI is due (for a
complete reference, the reader is referred to [Lian99]). JNI
is the sole point of interaction between the JVM and user-
supplied native libraries. The interaction can have two
forms: downcalls(when a Java application calls a native
method) andupcalls(when a native method needs to access
data or invoke methods of the Java application).

Downcalls result in calls to C functions (a C++ mapping
also exists), whose names are generated from the names of
Java methods declared as native. Upcalls are invoked via a
JNI environmentinterface. For example, this class

class Test {
static native int doubleIt(Integer i);

}

defines a native method which takes an object of the type
java.lang.Integer and returns an integer value. The
JVM expects a corresponding C function with the
following declaration:

jint Java_Test_doubleIt(JNIEnv *env,
jclass cls, jobject iref);

When a Java application invokesTest.doubleIt(i) ,
the C function Java_Test_doubleIt(env, cls,
iref) will be called. The first argument is a pointer to the
JNI environment interface, which groups JNI upcall
functions. The second argument is a reference to an object
representing the class to which the method belongs (Test
in this case). The third argument is a reference to the
argument of the original call. The values ofcls andiref
and the data structures they point to depend on a particular
implementation of the JVM and should be handled by JNI
functions only. These functions are accessible viaenv . To
see how it is done, let us take a look at the body of the
native method:

6

jint Java_Test_doubleIt(JNIEnv *env,
jclass cls, jobject iref) {

jclass intcls =

(*env)->GetObjectClass(env, iref);
jmethodID mid =

(*env)->GetMethodID(env, intcls,
"intValue", "()I");

jint val =
(*env)->CallIntMethod(env, iref, mid);

return val * 2;
}

By invoking methods onenv, the reference to the class of
iref is obtained first, then an identifier of the instance
method “intValue() ” of that object is found, and finally
the method is invoked so that its return value can be
doubled and returned back to the calling Java method. An
important point about the JNI environment interface is that
even though meta-data such as references to classes and
method identifiers are visible to native methods, they are
both transientandopaque. They are transient because they
are obtained only to be passed on to other JNI functions
(although they can be cached in native code to avoid
repeated lookups). They are opaque because they are
meaningless to native code. This simplifies the
implementation of our prototype (Section 5), since no
native code should use these values for anything else than
as arguments to JNI functions.

The JNI environment interface defines more than 220
methods. This large number is a consequence of two facts.
First, many operations (invoking a method, accessing a
field) have several variants, depending on the type of field
or return value of the method, and on whether the field or

method is static or not. Second, JNI offers a rich set of
interactions with the JVM. In addition to accessing class
and object fields and invoking methods, the following are
examples of the functionality offered by JNI: monitors
available in the Java programming language can be entered
and exited, which allows for synchronization between
native and Java code; new references to objects can be
created so that the GC is aware of them; array regions can
be accessed; new objects can be created; reflective
capabilities of the Java programming language can be used;
exceptions can be thrown and caught by native code.

There are two mechanisms to resolve names and link native
methods as corresponding Java methods. The first one
requires that implementations of native methods be named
according to a specific convention (e.g.,
Java_Test_doubleIt). When the convention is
followed, linking a native method is then just a matter of a
name lookup in the symbol table of a native library; such
lookup is performed automatically by the JVM. The second
mechanism does not rely on the JVM to search for the
native method in the already loaded native libraries.
Instead, JNI programmers can explicitly link native
methods with their implementations by registering a C/C++
function address as the implementation of a particular
native method. This is convenient especially when a native
application embeds a JVM implementation and needs to
link with a native method implementation defined in the
native application. The names of such native methods of
the embedding application almost certainly do not obey the
naming convention required by the JVM for implicit
linking. This has motivated the second, explicit way of
name resolution and linking.

JNI

OS Interface OS Interface

Original
native
library

(l-orig)

JVM

System
Resources

System
Resources

j-process

l-proxy
IPC
layer

Pseudo
JNI

IPC
layer

n-process

unchanged

Figure 2. A schematic view of the prototype.

7

5 THE PROTOTYPE

A highly portable, JVM-independent infrastructure for
automated and transparent execution of user-supplied
native code in a separate process has been designed and
implemented. This section discusses the design and
expounds on some more technical aspects.

A high level view of the system is shown in Figure 2. It
consists of two processes. The first one,j-process, executes
the JVM and the Java application. The second one,n-
process, acts as a server processing requests to execute
native methods, and is linked with the original user-
supplied native library; let us call itl-orig.

In order to achieve JVM-independence, a native library
with the same name and exported symbols asl-orig must be
produced so that it can be loaded by the Java application
executing inj-process. Let us call this libraryl-proxies. It is
generated through an automated analysis of the symbol
table ofl-orig. All names of defined functions starting with
Java_ and JNI_ are used to generate a source file, in
which all these functions are redefined to ship all of their
arguments along with an integer uniquely identifying the
function to n-process. Upon receipt of such a message,n-
processexecutes the requested function with the supplied
arguments.

Each JNI function takes a JNI environment interface
pointer as its first argument. This simplifies the handling of
upcalls. Upon receipt of a request,n-processreplaces the
first word in the list of received arguments with its own
version of the JNI environment pointer. ThispseudoJNI
environment redefines all JNI functions so that each of
them ships all of its arguments along with its unique
identifier to j-process, where the upcall is dispatched to the
original JNI method.

To see the automation and transparency aspects of the
system, let us analyze the steps necessary to run the library
containing the methodJava_Test_doubleIt (see
Section 4) in a separate process. Let us assume that the
native implementation is compiled into a library called
libtest.so . A set of makefiles and scripts is used to
produce libtest-proxies.so . This new library
contains a function Java_Test_doubleIt , which
gathers all of its arguments and sends them ton-process.
The original library (libtest) is then linked with a
request-processing loop to formn-process, while
libtest-proxies.so is renamed tolibtest.so so
that whenj-processrequests the native library the proxies
are loaded instead. An initialization code inlibtest-
proxies.so is responsible for startingn-processbefore
any downcalls are issued.

Several details have to be explained before this high-level
picture can materialize into a working system. They include
handling upcalls, accessing arrays and strings, explicit
registration of native methods, issues related to the

underlying architecture, and the choice of an IPC
mechanism.

5.1 Upcalls that Invoke Methods

Implementing the custom JNI environment interface was
straightforward for the JNI functions, which take a fixed
number of arguments of primitive types or of types
describing or referencing various components of a running
Java application. JNI functions not in this category are
array and string handling functions (Section 5.2) and JNI
functions for invoking Java methods or object constructors,
described below.

Invoking a Java method or object constructor via JNI
requires passing the arguments for the method. JNI
provides three ways to do this: (i) passing arguments using
functions with a variable number of arguments (by using
the “…” construct of C), (ii) passing arguments as a
variable-length list, as a value of the typeva_list , and
(iii) passing a vector of unions of the JNI-defined type
jvalue , each of which holds one argument for the upcall.
Only in the first case it is possible to compute the number
of upcall’s arguments by analyzing the current stack call
frame. However, this is not portable and does not address
the remaining two cases.

A portable solution is offered by the design of JNI itself.
Before invoking a Java method via a JNI upcall, the
method identifier has to be obtained first. This can only be
done by calling a JNI function (GetMethodID or
GetStaticMethodID) and supplying it with, among
other information, the signature of the Java method or
constructor to be executed by the upcall. The signature is
an easy-to-analyze string. The analysis is performed right
after successfully obtaining the method identifier, and
consists of computing the number and size of the
arguments. The original method identifier and the argument
information are stored in a data structure whose address is
returned as the method identifier to the caller (a native
method inn-process). This data structure is then used to
extract the original method identifier and associated
method information before forwarding the upcall request to
j-process.

5.2 Upcalls that Access Arrays and Strings

Another design decision had to do with accessing arrays of
primitive types. This can be accomplished in two ways in
JNI. The first way is to obtain a copy of the elements
(Get<Type>ArrayRegionfamily of upcalls) and then set it
accordingly (Set<Type>ArrayRegion). The second way is
more direct - a pointer to the array elements is obtained
(Get<Type>ArrayElements) and then released after
accessing the elements of the array is complete
(Release<Type>ArrayElements). Since the direct pointer
obtained in j-process is meaningless inn-process, our
implementation of theGetArrayElementsfunctions returns
a copy of array elements ton-process. It also stores the

8

original direct pointer in a hidden prefix of the array. Each
time a ReleaseArrayElementsfunction is called in n-
process, the original direct pointer is retrieved from the
array prefix and then sent toj-process along with the
request to release array elements and with the elements
themselves. Let us note here that the JNI specification
stresses that changes made to the array elements obtained
via any of the GetArrayElements upcalls will not
necessarily be reflected in the original array until a
correspondingReleaseArrayElementsis called. Thus, our
implementation does not violate the semantics as defined
by the specification. JNI functions for the direct
manipulation of string’s characters are handled in a very
similar fashion.

5.3 Architecture-specific Issues

The prototype system is highly portable. There are only two
parts of it, which in general require code specific to a
particular platform: (i) figuring out how many arguments
are passed to a downcall inj-process, and (ii) returning the
correct value after executing the original native method in
n-process. Both stem from the fact that, in general, neither
the number of arguments nor the type of return value of a
native method can be inferred from the native library.

In our prototype system, running on the Solaris Operating
Environment on a SPARC™ processor, reading the number
of words taken up by arguments from a stack frame solves
the first issue. This reading is done by the generated code in
l-proxies. Properly obtaining the return value of a native
method is done by a request-processing loop inn-process

as follows. The return value of a native method can be
either of a primitive type or a reference to JVM entity
(object, class, method identifier, etc.). In any case, this
value is returned in one of two registers: fixed-point%o0or
floating-point %f0 [WG94]. After the call, the values of
both of the registers are read byn-processand then sent
back to j-process, where they are restored just before
returning from the downcall. Thus, without knowing what
has actually been returned by the method, this value is
properly returned to the caller. There is no danger in
overwriting a value of, let us say,%o0 when in reality a
call returns a value in%f0, since neither register is
preserved across function calls. Other architectures may
have different idiosyncrasies with respect to these issues.
Some of these problems may not arise with C++ native
libraries on some platforms, since it may be possible to
extract method signatures from mangled names in library
symbol tables.

5.4 Explicit Native Method Registration

This section describes a portable implementation of the
explicit registration of native methods (Section 4). A fixed
number (256 in the current design) ofanonymous proxies
are linked withj-process. An upcall requesting the binding
of a Java method (specified as a triple: {name, signature,
defining class}) to a particular function addressrFptr in n-
processobtains an anonymous proxyap; ap is then passed
on to the actual JNI upcall inj-process. A static variable in
ap is used to initialize it with the following information: the
number of arguments this method should expect during
invocations (computed from the signature) andrFptr. This

j-process n-process
libproxy IPC layer

JNI_i

call _xxx

call _yyy

JVM

upcall JNI_i

Original native
methods library

serverIPC layer

door
context 1 upcall JNI_i

_xxx

_yyy
door
context 2

door
context 3

door
context 1

Method invocation context

DowncallRequest

UpcallRequest

DowncallRequest

DowncallReturn

UpcallReturn

EndOfInvocation

Figure 3. Preserving the context of the JVM thread and the context of native method execution. Black ovals
representucontextswaps.

9

information is then used during the registered downcall
invocations to fetch all its arguments and pass them along
with rFptr to n-process.

This solution is portable but limits the number of explicitly
registered native functions. Solutions without this
constraint include generating machine-code stubs
dynamically (non-portable) or generating and loading new
libraries, filled with anonymous proxies (requires operating
system-specific code to load a library). An unconstrained
and fully portable solution would require JNI to offer a
standard way to obtain the name and signature of the
currently executing Java method which, from the
perspective of native code, is the topmost Java method on
the execution stack (currently this information is available
via the JVM Debugging Interface [Sun00a], but not via
standard JNI). With such a mechanism, only one
anonymous proxy would be needed. It would be linked
with each explicitly registered native code and, on
invocation, it would use the information from the topmost
frame on the stack of Java method invocations to compute
the size of arguments and to determine the native function
to be called via a lookup based on the name of the
downcall. Such a mechanism would also address the issues
highlighted in Section 5.3.

5.5 Thread-related Issues

An important design question was whether the upcalls
should be handled in the context of the thread that
originally issued the downcall. Allowing different contexts
could potentially simplify the implementation but would
lead to various problems. For instance, an exception thrown
in an upcall has to be dispatched to the thread that caused
the downcall. Similarly, requests to obtain a stack trace
should look identical to those generated by traditional JNI
systems. This may be hard to achieve if different threads
generate a downcall and then handle subsequent upcalls.
Another example of problematic behavior is executing
Thread.currentThread().setPriority() via a
sequence of upcalls. Yet another potential problem is
caused by monitors acquired by application’s threads;
handling upcalls in a thread context different from that of
the downcall may lead to having to re-acquire monitors and
to deadlocks.

In order to avoid these problems, all upcalls are handled in
j-processby the thread that has issued the corresponding
downcall. Hence, a thread in thel-proxy code may return
from a downcall for two reasons: because the native
method completed, or because of an upcall issued by that
native method. In the latter case, thel-proxy calls the JNI
locally, and returns its results to then-process. How upcall
requests are delivered to the thread that has invoked the
initial downcall is taken care of by theIPC layer, described
below.

5.6 IPC-specific Issues

The design is independent of any particular IPC mechanism
chosen to exchange data betweenj-processand n-process,
although the chosen mechanism can substantially change
the performance of crossing the JNI interface.
Our IPC layer isolates the rest of the system from details
such as how upcalls are guaranteed to execute in the correct
context (Section 5.5). It enables simple replacements of one
IPC mechanism with another, simplifying cross-OS
porting. Typically, an IPC layer based on mechanisms
optimized for the underlying hardware and operating
system platform would be favored.

Our implementation of the IPC layer uses doors [HK93],
which is an efficient IPC mechanism available on the
Solaris Operating Environment and on Linux [Lang98].
Doors achieve low latency by transferring control directly
(handoff scheduling) back and forth between the caller's
and the callee's threads [MM00]. We have also
experimented with a sockets-based implementation, but the
overheads were much larger than those of doors (Section
6).

Maintaining the performance advantages of doors handoff
scheduling is not straightforward because of upcalls: an
upcall from the native code requires a transparent transfer
of control back to the original thread without losing the
native method execution context on then-processside.
Another door call directed at the original JVM thread (from
n-processto j-process) cannot be made, since this thread is
already waiting on a door call for the native method. One
way to circumvent this problem is to use an intermediate
thread to perform the door call for the method invocation so
that the original thread can service subsequent door calls
from the n-process. However, this adds two additional
threads for each thread executing native methods; it also
adds additional full thread context switches. The
alternative, adopted in our design, is to implement upcalls
as a return from the original door call.

In order to transparently retain the native method execution
context, the standarducontextfacility available on modern
commercial UNIX® systems is used as shown in Figure 3.
A pool of ucontextstructures is pre-initialized at startup
time byn-process. Door calls are issued byl-proxy for both
invoking native methods and for returning results of JNI
upcalls. That way,j-processis always issuing door calls
and the n-processis always returning from door calls.
The returned information indicates whether it is a return
from a downcall or an upcall request. Upcall request
messages carry aucontextidentifier (currently, a pointer to
the actualucontextstructure) that is always included in data
returned back byl-proxy so that the proper context can be
re-established inn-process.When the last active native
method completes, the correspondingucontextis returned
to the pool. This solution takes full advantage of the
handoff scheduling of doors, and guarantees that a chain of

10

native methods executes with the same stacks and contexts
in both thej-processand then-process.

5.7 JVM-specific Issues

There are no issues specific to or dependent upon a
particular JVM implementation. This is a very important
point, worth stressing in boldface:There are no JVM-
specific issues. In particular, this means that the design
presented in this paper can be implemented and used
treating the JVM as a black box, and regardless of the
version or the vendor of the JVM, as long as it complies
with the JNI specification and as long as the chosen
communication and threading mechanism does not conflict
with the internals of the JVM. We have tested our
prototype with three different implementations of the JVM
available from Sun Microsystems and encountered no such
conflicts.

It is important to note that, depending on the
implementation of the JVM, native code contained inn-
processmay still cause a crash or malfunctioning of the
JVM executing inj-process. This may happen when the
JVM does not check whether class and object references
and method and field identifiers passed to it via JNI calls
are valid. For instance, native code could pass an arbitrary
number in place of an expected valid method identifier.
JVM implementations with proper checks in place would
detect such situations and, for instance, throw an exception
or return an error-signaling value. JVMs without such
safeguards are vulnerable to these kinds of problems.

5.8 Safe Composition of Multiple Libraries

The description so far assumes that all calls to all native
libraries were routed to a singlen-processserver. As
mentioned earlier, isolating native methods from different
native libraries may also be needed. A simple solution is to
create as manyn-processes as there are user-defined native
method libraries. Since the corresponding proxy library
createsn-processes, routing a native method call to the
right n-processis straightforward.

To avoid a proliferation ofn-processes, it may be useful to
perform the processing of native methods from multiple
libraries by a singlen-processwhen isolation between these
libraries is not a requirement. Library groups may be
described in a simple configuration file, whose location is
known to each proxy library.

Another library management issue, not investigated in this
paper, is loading the same native library by multiple tasks
in a multitasking JVM. Multiple n-processes are then
acceptable, but more logic has to be put into proxies to
multiplex/demultiplex calls based on the task id of the
down-caller.

6 PERFORMANCE ISSUES

The purpose of this work is primarily to increase
debuggability and reliability of applications consisting of
safe and unsafe code. Nevertheless, it is interesting to know
the overheads introduced in our prototype. The cost is
directly proportional to the number of JNI downcalls and
upcalls executed by an application, as these are the only
places where any overheads were introduced. They are also
dominated by the cost of the IPC mechanism chosen and by
the cost of thread context management.

Table 1 summarizes the overheads introduced by our
approach. The measurements were obtained on a Sun
Enterprise™ 3500 with four UltraSPARC™ II processors
clocked at 400MHz running the Solaris Operating
Environment, version 2.7. The Java HotSpot™ virtual
machine, client version 1.3.1, was used. The “downcall”
column reports the cost of a very simple downcall, which
takes no arguments and returns immediately, while
“downcall + upcall” additionally issues theGetVersion
upcall, which returns immediately with an integer
specifying the JNI version used. The 54µs overhead of a
downcall breaks down as follows: 18.5µs is taken by a door
call and return, 30.8µs is the cost of twoucontextswaps
and the rest (4.7µs) are various bookkeeping and data
copying overheads. Similar analysis applies to the
overheads associated with upcalls. This number would be
much higher if sockets were used – a one-word round-trip
message takes about 128µs.

The overheads (about 400 times higher than the plain in-
proc JNI downcall) seem very large. And they are indeed,
for downcalls that do not compute much. To see how
quickly the overheads become tolerable, let us analyze a
simple program which performsA = A2 for matrix A. The
matrix is coded as an array of floating point numbers and
squaring it requires one downcall (to initiate the native call)
and two upcalls (to fetch the matrix entries and to set the
computed result). Figure 4 summarizes the overheads as a
function of array size. For small arrays the overheads are
prohibitive. For 40x40 arrays they become tolerable, and
virtually disappear when the array size approaches 90.

Another insight into the costs is obtained as follows. All
upcalls and downcalls performed by SPEC JVM98
[Spec98] benchmarks were counted. These calls were

JNI in-proc JNI out-of-proc

Downcall 0.136µs 54µs

Downcall + upcall 0.163µs 106µs

Table 1. Overheads of executing native code in
a separate process.

11

caused by core Java classes, since there are no user-level
native libraries associated with the benchmarks. The counts
were used to estimate the overheads of the scenario in
which all native code of core libraries was executed in a
separaten-process, each downcall adding 56µs and each
upcall adding 52µs of performance overhead. The results,
summarized in Table 2, show that the number and
frequency of native calls issued by core classes varies
greatly across the benchmarks, and so would the

performance overhead of the proposed isolation. These
numbers are no substitute for more realistic benchmarks,
and serve only as an evidence of the high dependence of
the frequency and number of native calls (and the
associated overheads when the JNI isolation scheme is
used) on the behavior of a particular application.

The main utility of the proposed system is increased
debuggability and reliability of native code, and
performance issues are typically of secondary importance
in such settings. Whenever performance matters and the
proposed isolation scheme is preferable over standard JNI,
the number of native calls to libraries executed asn-
processes should be minimized. Also, if the system is used
for debugging, a tested library can be moved back into the
same process as the JVM, which removes the overheads.

7 RELATED WORK

The efforts to contain native code can be characterized as
whether it can run in the same address space as the “main”
program or not. Specific solutions in each of these areas are
discussed below.

7.1 Controlling Native Code

In order to be able to safely co-locate native code with
other application and runtime components, the behavior of
binaries must be constrained to ensure memory safety. A
dynamic approach is software fault isolation (SFI)
[WLA+93], which parses binaries and inserts runtime

0%

1000%

2000%

3000%

4000%

5000%

6000%

1 21 41 61 81

0%

10%

20%

30%

40%

50%

60%

70%

20 40 60 80 100

Figure 4. The overheads of computing the second power of a matrix in a native method in a separate
process. The overheads are reported relative to executing the method under standard JNI. The
overheads are plotted as a function of the matrix size. The matrix size is the number of rows (which is
equal to the number of columns) and is shown on the horizontal axis.

Benchmark Downcalls Upcalls Overhead [%]

compress 2267 4911 1.03

db 101963 45127 15.46

jack 2573766 42123 887.88

javac 4204338 46541 680.87

jess 2681855 40509 859.22

mpeg 1252532 14595 170.14

mtrt 192095 7092 40.23

raytrace 169160 7064 37.26

Table 2. JNI downcalls and upcalls caused by core Java
classes and the overheads if they were to execute in a
separate process.

12

checks on memory operations. Several flavors of SFI exist,
depending on the desired level of memory safety. In the
general case, when all read and write operations have to be
checked, the overheads of runtime checks can amount to
20% [WLA+93]. SFI toolkits must be very carefully
crafted. Otherwise, the overheads may be much higher. For
instance, the VINO extensible operating system [SES+96]
uses SFI for protecting the kernel from mischievous
extensions (grafts). The worst-case runtime overheads of
applying straightforward (not optimized) SFI to grafts can
be as high as 100%.

In contrast to the dynamic approach of SFI, Proof-Carrying
Code (PCC) [NL96] advocates static analysis of unsafe
code. The code producer is required to generate a formal
proof that the code complies with the certain policy. The
client (i.e. receiver of the untrusted code) can easily
validate the code against the proof and execute it only if the
validation is positive. Thus, the runtime costs are
negligible. However, the general problem of proving the
memory safety of arbitrary binary code is undecidable.
Inserting some runtime checks in strategic locations so that
the proof can be generated can mitigate this problem. On
the other hand, the potential of PCC is much larger than
SFI, since more than just memory safety can be encoded in
proofs.

Typed Assembly Language (TAL) [MCG+99] is a low-
level, statically typed target language. The goal of that
work is to identify typing abstractions that have general
utility for encoding a variety of high-level language
constructs and security policies, but that do not interfere
with compiler optimizations. This approach may be well
suited for producing high-performance, memory-safe native
code, when the source files are available.

A more radical approach is to disallow any unsafe native
code. For this to be practical, enough compiler and
infrastructure support should be provided so that code
written in the safe language executes reasonably fast and so
that there is no need to resort to native code to access
underlying operating system services. The SPIN extensible
operating system [BSP+95a] is an example of this
approach. Kernel extensions are written in a type safe
subset of Modula-3 [Nels91] and installed in the kernel.
The extensions can install handlers for any kernel events in
which they are interested and for which they have
appropriate permissions. Even though the use of a safe
language simplifies some of the safety issues, certain
aspects of cleaning up after an errant extension are
problematic in SPIN. For instance, dealing with resource
hoarding is a challenge. While we share the view of the
SPIN authors that protection is a software issue
[BSP+95b], it is important to stress that ensuring memory
safety is just one aspect of taming native code. Other
aspects, such as conflicting use of OS interfaces, are

equally important and as dangerous as errant memory
writes.

7.2 Using Address Spaces for Protection

Virtual memory hardware is now ubiquitous, and most of
today's operating systems rely on it for ensuring protection,
both between the kernel and applications and among
applications themselves. Memory protection is enforced by
the hardware and is relatively inexpensive.

Most operating systems limit their use of hardware-based
protection mechanisms to protection between address
spaces. The recent Palladium system [CVP99] is a notable
exception. Palladium exploits the Intel x86 virtual memory
hardware support for variable-length segments to provide
intra-address space memory protection. The basic idea is to
put mutually untrusted parts of a program (e.g., a program
core and some user-defined extensions of it) into disjoint
segments within an address space. A lightweight segment
boundary crossing mechanism is provided, and is
significantly faster than the best reported IPC mechanisms.
However, this approach has several limitations that make it
unsuitable for the Java platform. First, extensions must be
single threaded. Second, they cannot make arbitrary system
calls, which must be mediated by the extended application.
Third, it is unclear how extensions can share operating
system resources.

Microsoft’s Common Object Model (COM) [Roge97]
allows for the same COM components to execute in the
same process (in-proc) or in a separate process (out-of-
proc). This is accomplished with the help of an interface
definition language (IDL), used to describe data passed into
and out of out-of-proc components. The reasons behind
enabling out-of-proc COM components are very similar to
our motivation. The main differences are the level of
transparency and automation achieved in our design.

8 CONCLUSIONS

Isolating native code as described in this paper could have
significant benefits for JVM development groups and for
the users. Several important areas where this is useful
include:

• increased debuggability of a single JVM running a
single application,

• increased reliability of systems with native libraries
which use OS resources in a way conflicting with the
use intended by the JVM,

• enabling user-supplied native code in embedded JVMs
and in multitasking systems based on the JVM,

• enabling mixed-mode debugging, that is, debugging of
an application that contains a mix of Java code and of
native code, independent of the JVM, with any Java
application debugger and with any C/C++ debugger

13

(we were able to step through Java code using the
Forte™ for Java IDE [Sun00b] and then step through
native calls made by the program with gdb; gdb was
executingn-process),

• using 32-bit libraries with 64-bit JVMs, or vice-versa
(we have successfully experimented with running a 32-
bit JVM which used a 64-bit native library). The
prototype infrastructure is JVM-independent,
automated, and portable.

This technique addresses all the identified issues arising
when arbitrary native code is used. In addition to offering
memory protection, this approach prevents conflict of
interfaces and various interferences between the JVMs and
native libraries.

The prototype was tested with several implementations of
the JVM available on the Solaris Operating Environment.
In all cases the system operated properly, without any need
to change the runtime. Another important property is that
the infrastructure is very easy to use – the names of native
libraries to be executed have to be supplied and the rest is
being taken care of by a makefile and a set of code-
generating scripts. Overall, the functionality, usability,
portability and transparency of the infrastructure make it an
attractive mechanism for achieving a high degree of control
and isolation of native code.

The described design and implementation are heavily
influenced by the scope of JNI and as such are specific to
the Java programming language. However, the basic
approach can be useful to designers of new native
interfaces and for those struggling with the very same
problems addressed in this paper but in the context of a
different programming language.

9 ACKNOWLEDGEMENTS

The authors are grateful for the comments and suggestions
made by Dave Dice, Mick Jordan, Hideya Kawahara, Brian
Lewis, Tim Lindholm, Bernd Mathiske, Glenn Skinner,
Pete Soper, and Dave Ungar.

10 REFERENCES

[AG98] Arnold, K., and Gosling, J.The Java Programming
Language. Second Edition. Addison-Wesley, 1998.

[BHL00] Back, G, Hsieh, W, and Lepreau, J.Processes in
KaffeOS: Isolation, Resource Management, and
Sharing in Java. Operating Systems: Design and
Implementation. In Proceedings of the Fourth
Symposium on Operating Systems Design and
Implementation, San Diego, CA, 2000.

[BG97] Balfanz, D., and Gong, L.Experience with Secure
Multi-Processing in Java. Technical Report 560-97,
Department of Computer Science, Princeton
University, September, 1997.

[BSP+95a] Bershad, B., Savage, S., Pardyak, P., Sirer, E.,
Fiuczynski, M., Becker, D., Eggers, S., and Chambers,
C. Extensibility, Safety and Performance in the SPIN
Operating System. 15th ACM Symposium on Operating
Systems Principles, Copper Mountain, CO, December
1995.

[BSP+95b] Bershad, B., Savage, S., Pardyak, P., Becker,
D., Fiuczynski, M., Sirer, E.Protection is a Software
Issue. 5th Workshop on Hot Topics in Operating
Systems, Orcas Island, WA, May 1995.

[BV99] Bryce, C. and Vitek, J.The JavaSeal Mobile
Agent Kernel.3rd International Symposium on Mobile
Agents, Palm Springs, CA, October 1999.

[CVP99] Chiueh, T., Venkitachalam, G., and Pradhan, P.
Integrating Segmentation and Paging Protection for
Safe, Efficient and Transparent Software Extensions.
In Proceedings of 17th ACM Symposium on Operating
Systems Principles, Kiawah Island, SC, December
1999.

[Czaj00] Czajkowski, G.Application Isolation in the Java
Virtual Machine. In Proceedings of ACM
OOPSLA'00, Minneapolis, MN, October 2000.

[DBC+00] Dillenberger, W., Bordwekar, R., Clark, C.,
Durand, D., Emmes, D., Gohda, O., Howard, S.,
Oliver, M., Samuel, F., and St. John, R.Building a
Java virtual machine for server applications: The JVM
on OS/390.IBM Systems Journal, Vol. 39, No 1, 2000.

[Enge00] Engelschall, R.Portable Multithreading: The
Signal Stack Trick for User-Space Thread Creation.
USENIX Annual Technical Conference, San Diego,
CA, June 2000.

[HK93] Hamilton, G., and Kougiouris, P.The Spring
Nucleus: a Microkernel for Objects.Summer USENIX
Conference, Cincinnati, June 1993.

[HCC+98] Hawblitzel, C., Chang, C-C., Czajkowski, G.,
Hu, D. and von Eicken, T. Implementing Multiple
Protection Domains in Java. USENIX Annual
Conference, New Orleans, LA, June 1998.

[Lang98] Lango, J.An Implementation of the Solaris Doors
API for Linux.http://www.rampant.org/doors.

[Lian99] Liang, S. The Java Native Interface.Addison-
Wesley, June 1999.

[LY99] Lindholm, T., and Yellin, F. The Java Virtual
Machine Specification. 2nd Edition. Addison-Wesley,
1999.

[MM00] Mauro, J., and McDougall, R.Solaris Internals:
Core Kernel Architecture.Prentice Hall, 2000.

[Morg98] Morgenthal, J.A Case for Embedding the JVM
into Apps.InternetWeek, June 22, 1998, Issue 720.

[MCG+99] Morrisett, G., Crary, K., Glew, N., Grossman,
D., Samuels, R., Smith, F., Walker, D., Weirich, S.,
and Zdancewic, S.TALx86: A Realistic Typed

14

Assembly Language.In Proceedings of ACM
SIGPLAN Workshop on Compiler Support for System
Software, Atlanta, GA, May 1999.

[Nels91] Nelson, G., ed.System Programming in Modula-
3. Prentice Hall, 1991.

[NL96] Necula, G., and Lee, P.Safe Kernel Extensions
without RuntimeChecking.In Proceedings of the
Second Symposium on Operating Systems Design and
Implementation, Seattle, WA 1996.

[Roge97] Rogerson, D.Inside COM. Microsoft Press,
1997.

[SBB+00] Suri, N., Bradshaw, J., Breedy, M., Groth, P.,
Hill, G., Jeffers, R., and Mitrovich, T.An Overview of
the NOMADS Mobile Agent System.2nd International
Symposium on Agent Systems and Applications,
ASA/MA2000, Zurich, Switzerland, September 2000.

[SES+96] Seltzer, M., Endo, Y., Small, C., and Smith, K.
Dealing with Disaster: Surviving Misbehaved Kernel
Extensions.2nd Symposium on Operating Systems
Design and Implementation, Seattle, WA 1996.

[Skin00]. Skinner, G.Personal Communication.

[Solo98] Solomon, D.Inside Windows NT.Second Edition.
Microsoft Press, 1998.

[Spec98] Standard Performance Evaluation Corporation.
SPEC Java Virtual Machine benchmark suite.August
1998. http://www.spec.org/osg/jvm98.

[Sun00a] Sun Microsystems, Inc. The Java Virtual
Machine Debugging Interface. http://java.sun.com/
products/jpda.

[Sun00b] Sun Microsystems, Inc.Forte™ Tools: Forte™
for Java™.http://www.sun.com/forte/ffj.

[WLA+93] Wahbe, R., Lucco, S., Anderson, T., and
Graham, S.Efficient Software Fault Isolation. 14th

ACM Symposium on Operating Systems Principles,
Asheville, NC, December 1993.

[WG94] Weaver, D., and Germond, T.The Sparc
Architecture Manual – Version 9.Prentice Hall, 1994.

15

About the Authors

Grzegorz Czajkowski is a Staff Engineer in Sun Labs, and the Principal Investigator for the Barcelona project, which
focuses on issues related to safe and scalable execution of multiple applications in a single instance of the Java virtual
machine. His interests include the implementation of programming languages, virtual machines, operating systems, and
application servers. He holds a Ph.D. in Computer Science from Cornell University.

Laurent Daynes is a Staff Engineer in Sun Labs. His research interests include virtual machine design, language-based
extensible operating environment, operating systems, persistent programming languages and advanced transaction processing
systems. Before joining Sun Labs in October 1997, he was a research fellow at the University of Glasgow, Scotland, where
he was the lead designer and implementer of the first prototype of PJama, a Java virtual machine with a provision of
orthogonal persistence. At Sun Labs, he has contributed to the Forest project and is now a member of the Barcelona project.
He holds a Ph.D. in Computer Science from the University Pierre & Marie Curie (Jussieu Paris 6), France.

Mario Wolczko is a Senior Staff Engineer in Sun Labs. His interests include the implementation of object-oriented
languages, especially the tradeoffs between hardware and software techniques. He has contributed to the Self project, the
Exact VM (also known as the Solaris 1.2.2 Production Release), and the KVM. He holds a Ph.D. in Computer Science from
the University of Manchester.

	Automated and Portable Native Code Isolation
	Abstract
	Copyright
	1 INTRODUCTION
	2 MOTIVATION
	2.1 Conflict of Interfaces
	2.2 Reliability and Resource Guarantees
	2.3 Debuggability

	3 PROCESS-BASED ISOLATION
	3.1 Advantages
	3.2 Disadvantages

	4 OVERVIEW OF JNI
	5 THE PROTOTYPE
	5.1 Upcalls that Invoke Methods
	5.2 Upcalls that Access Arrays and Strings
	5.3 Architecture-specific Issues
	5.4 Explicit Native Method Registration
	5.5 Thread-related Issues
	5.6 IPC-specific Issues
	5.7 JVM-specific Issues
	5.8 Safe Composition of Multiple Libraries

	6 PERFORMANCE ISSUES
	7 RELATED WORK
	7.1 Controlling Native Code
	7.2 Using Address Spaces for Protection

	8 CONCLUSIONS
	9 ACKNOWLEDGEMENTS
	10 REFERENCES
	About the Authors

