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Cache Coherence Issue

* A shared memory multiprocessor system with a separate cache for each
processor.

* Multiple copies for the same data in both main memory and caches.

* Coherence defines the proper access behaviors to the same memory

location.
Cache

: Coherency P errilgry
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Cache Coherence Issue

* No cache coherence guarantee in hardware level.

* Must be dealt with explicitly in software by programmers.
— Writing back data from the cache into the memory if the cacheline is “dirty”.
flush(void* addr, size t size)

— Invalidating a cacheline in a cache such that the next load has to fetch data from
memory.

Invalidate(void* addr, size t size)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |



Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue
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Cache Coherence Issue

 Hardware
— 32 Cores
— 8 GB DRAM

* Software
—~50,000 lines of C code

* Approach

— Investigate software model checking to verify cache coherence
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Model Checking

* A formal technigue which automatically verifies the desired behavioral

properties p of a given system , on the basis of a user-defined model M and
initial state s.

M,s |=p

* Verification procedure is an exhaustive search of the state space of the
design.
— No proofs
— Counterexamples

— State-space explosion
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Model Checking Tools

* Initial investigation suggests SPIN is the best choice.

Model Properties Concurrency .
Scalability
Language Language Support
SPIN Promela LTL Ves Multi-core, State compression,
(C-like) User assertions Partial order reduction
Built-in options . SAT-solver/ SMT-solver
++
CBMC / LLBMC ¢/C User assertions Partial Bounded checking
NuSMV / NuSMV?2 SMV LTL and CTL Yes SAT-solver
BLAST / c Program No Counterexample-driven,
CPAChecker instrumentation Refinement
A :
CADP / FDR2 LOTOS / CSP LRSI | Yes Compressing states

User assertions

ORACLE
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Cache Coherence Model in Promela

* Model the main memory
— Accurate
— Flat memory: an array of bytes

byte DRAM[MAX ELEMENT] ;

* Each Clanguage pointer in Promela is an integer, which is used to index the DRAM array.

* Model the cache
— For each particular memory location, it has 4 possible states (U/1/S/M) at all N cores.

U: Unknown
typedef CACHE ({
State state[N]; I: Invalid
} S: Shared
CACHE cache [MAX ELEMENT] ;
o M: Modified

ORACLE
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Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE
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Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE
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Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE
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Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE
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Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE
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Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE
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Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE
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—— Local operations
—— Local operations with CC-related assertions
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Cache Coherence Model in Promela
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Automated Translation of C code to Model

* Translation of program from LLVM IR to Promela

* Generates Promela model with equivalent semantics to original program
— With instrumentation added for each memory operation to check cache coherence

Parfait Model Checker
C/C++ Parfait CI Translat IE SPIN
et [ ot s e ->|| — EEE —_— O [ |
MODEL ‘
VERIFIER I_
C SOURCE IE
Gce ’
C COMPILER
Bug Reporting — [ |
ERROR
TRACES
. B
RESULTS
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Automated Translation of C code to Model

* Optimisations

— Group consecutive non-memory operations into atomic blocks
* Avoids exploration of different interleavings of operations that cannot affect each other
* 10x speedup in verification

— Use SPIN’s bounded context switch mode

* “Relatively low bounds on the number of context switches suffice for a model checker to visit all the
reachable states of a model at least once.” (Musuvathi, PLDI2007)

* Only explore execution paths with the number of preemptions less than a specified bound
* 8x speedup in verification with a bound of 2
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Results - Scalability

* Larger synthetic example:
concurrent quicksort

—~200 lines of code
* Tested performance of model

checking with different
configurations

— Number of concurrent cores

Runtime (mins)

— Number of elements to be sorted

* Largest test: 256 elements, 3 cores
— Verification took ~5 hours

ORACLE
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Results - Scalability
* Translated model for a C code base for about 50,000 LoC
—~6,000,000 lines of Promela (~1,150,000 with no function inlining)

* SPIN cannot process a model this large
Model Checker

MMMMMMMMMMMMM

* Optimisations implemented in SPIN

— Compiling the model did not terminate after 90 hours
— Compiling the model completes in 4 hours -‘

Ve ([

v

— Verifier code generated is 100,000,000 lines of C code occ...

—  Verifier
ooooooooooo

— Compiling with gcc ran out of memory (64G)

* Current approach using SPIN does not scale for our project.
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Further Investigation into Other Model Checkers

* More model checkers have been evaluated
— Explicit State model checkers: Murphi/PReach, DIVINE
— Symbolic model checkers: CBMC, LLBMC, ESBMC, SAL, Mocha, Alloy, SATABS, CSeq
— Hybrid: LTSmin

* Initial experimental result

— Many of them are designed for state transition systems, and only work well for
algorithm verification.

— Some of them use inlining to handle method calls and then exclude recursive calls.
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Further Investigation into Other Model Checkers

Model Concurrency Recursion Quicksort Quicksort Quicksort
Checker 8 elements, 1 core 32 elements, 1 core 8 elements, 2 cores
SPIN Yes Yes 38s 42 s 112 s
LLBMC No Yes (bounded) 40 s 1500 s N/A
CSeq Yes No N/A N/A N/A
LTSMin Yes Yes >4 h >4 h >4 h
SATABS Partial (doesn’t No (ignores >4 h >4 h N/A
support shared recursion)
dynamic memory)
CBMC Yes Yes (bounded) 48 s >2h >2h

* SPIN still appears to be the best choice
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Conclusion

* Current approach of full software model checking for the verification of
cache coherence will not scale for our 50k LoC codebase.

— Accurate model of program memory and execution produces large models and causes
state explosion
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Next Steps

* Reduce model size and complexity via abstraction of the program
— No longer verification (may have false positives / negatives)
— Use abstracted memory model (e.g. based on points-to analysis)

— Use slicing to separate the program into multiple smaller parts involving a subset of
cores and verify independently
* May be applied to either accurate or abstracted memory models

— Manually abstract some auxiliary functions

* Reduce the number of interleavings explored

— Group successive operations that only have local effects as one atomic operation
* Use static analysis to determine which memory accesses do not access shared memory

— Partial Order Reduction
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