ORACLE

Model Checking Cache Coherence in System-
Level Code

Nicholas Allen and Yang Zhao
Oracle Labs Brisbane
June 2016

ORACLE

Program Agenda

E®» Cache Coherence

E» Model Checking Approach
) C to Promela Translation
E» Experimental Result

IB) Conclusion and Next Steps

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

* A shared memory multiprocessor system with a separate cache for each
processor.

* Multiple copies for the same data in both main memory and caches.

* Coherence defines the proper access behaviors to the same memory

location.
Cache

: Coherency P errilgry

Cache

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Cache Coherence Issue

* No cache coherence guarantee in hardware level.

* Must be dealt with explicitly in software by programmers.
— Writing back data from the cache into the memory if the cacheline is “dirty”.
flush(void* addr, size t size)

— Invalidating a cacheline in a cache such that the next load has to fetch data from
memory.

Invalidate(void* addr, size t size)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

Corel Core 2
a="*p;
Sync I
JE—
X ="p;
*p=x+1;
flush(p);

~—~ Sync

A
invalidate(p);

l

— ¥
Z="pP,
e

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

DRAM

2]

ORACLE

Cache 1 Cache 2

Core 1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Core 2

Cache Coherence Issue

DRAM

2]
2]

ORACLE

Cache 1 Cache 2

HEE EEE
HEE EEN

Core 1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Cache Coherence Issue

DRAM

2]
2]
2]

ORACLE

Cache 1 Cache 2

HEE EEE
HEE EEN
HEN

Copyright © 2016, Oracle an

Core 1

d/or its affiliates. All rights reserved.

Cache Coherence Issue

DRAM

2]
2]
2]
2]

ORACLE

Cache 1 Cache 2

HEE EEE
HEE EEN
HEN
HEN

Core 1

X ="p;

*p=x+1;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Cache Coherence Issue

DRAM

2]
2]
2]
2]
N E

ORACLE

Cache 1 Cache 2

HEE EEE
HEE EEN
HEN
HEN
HEN

Core 1

Sync

Core 2

a="p;

e

X ="p;
*p=x+1;

flush(p);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Cache Coherence Issue

DRAM

|
1
HE
|

|
2 . [
|

|

|

2 I
2
|

|

|

HEE
|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

I

Cache 1 Cache 2 Core 1 Core 2

EEE —
.. a=*p;

PR
.. X =*p;
.. *o=x+1;
.. flush(p);

~—~ Sync

I
.-. invalidate(p);

N E
N

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

DRAM

|
1
HE
|

|
2 . [
|

|

|

2 I
2
|

|

|

HEE
|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

I

Cache 1 Cache 2 Core 1 Core 2

EEE —
.. a=*p;

PR
.. X =*p;
.. *o=x+1;
.. flush(p);

~—~ Sync

I
.-. invalidate(p);
|
HER 2= *p;

N E
N
=

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

DRAM : Cache 1 Cache 2
HEN IEE EEE
N EEE PN

.
e EER
_ EER
mEm 2]
mam | EEE
.
HE. EEE
.
.

N

ORACLE

(09)

3]

Corel Core 2
a="%*p
Sync _
JR—
X =*p;
*o=x+1;
flush(p);
~ Sync
A

invalidate(p);

— ¥
Z="pP,
e

y=*p; ¢y:z

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

Corel Core 2
a="*p;
Sync I
—
X ="p;
*p=x+1;

::::ﬁmﬁhiﬁjz:: e

A
invalidate(p);

l

— ¥
Z="pP,
e

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

DRAM

2]
2]
2]
2]

ORACLE

Cache 1

HEE EEE
HEE EEN
HEN

Cache 2

2]

Core 1

X ="p;

*p=x+1;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Cache Coherence Issue

DRAM

2]

Cache 1 Cache 2

|

|

 EEE EEe
|

MmO EEE EOE
|

_ EEn
|
|

_ 1
|
|

_ AN
|
1
|
1
|
1
|
|
|
1

ORACLE

Corel Core 2

a="%*p
Sync _
JR—
X ="p;
*p=x+1;
~ Sync

D

invalidate(p);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

DRAM

|
1
HE
|

|
2 . [
|

|

|

2 I
2
|

|

|

2 .
|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

I

Cache 1 Cache 2

|
HEN
HEN
2]
|
2]

2]
2]

ORACLE

Corel Core 2

a="%*p
Sync _
JR—
X ="p;
*p=x+1;
~ Sync

D

invalidate(p);

— X
Z= p;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

DRAM

|
1
HE
|

|
2 . [
|

|

|

2 I
2
|

|

|

2 .
|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

I

Cache 1 Cache 2

|
HEN
HEN
2]
|
2]
CEl

2]
2]
2]

ORACLE

Corel Core 2

a="%*p
Sync _
JR—
X ="p;
*p=x+1;
~ Sync

D

invalidate(p);

— X
Z= p;

Xyl=z

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

 Hardware
— 32 Cores
— 8 GB DRAM

* Software
—~50,000 lines of C code

* Approach

— Investigate software model checking to verify cache coherence

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Model Checking

* A formal technigue which automatically verifies the desired behavioral

properties p of a given system , on the basis of a user-defined model M and
initial state s.

M,s |=p

* Verification procedure is an exhaustive search of the state space of the
design.
— No proofs
— Counterexamples

— State-space explosion

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Model Checking Tools

* Initial investigation suggests SPIN is the best choice.

Model Properties Concurrency .
Scalability
Language Language Support
SPIN Promela LTL Ves Multi-core, State compression,
(C-like) User assertions Partial order reduction
Built-in options . SAT-solver/ SMT-solver
++
CBMC / LLBMC ¢/C User assertions Partial Bounded checking
NuSMV / NuSMV?2 SMV LTL and CTL Yes SAT-solver
BLAST / c Program No Counterexample-driven,
CPAChecker instrumentation Refinement
A :
CADP / FDR2 LOTOS / CSP LRSI | Yes Compressing states

User assertions

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

* Model the main memory
— Accurate
— Flat memory: an array of bytes

byte DRAM[MAX ELEMENT] ;

* Each Clanguage pointer in Promela is an integer, which is used to index the DRAM array.

* Model the cache
— For each particular memory location, it has 4 possible states (U/1/S/M) at all N cores.

U: Unknown
typedef CACHE ({
State state[N]; I: Invalid
} S: Shared
CACHE cache [MAX ELEMENT] ;
o M: Modified

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

e3011vw A'e

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

STORE? ¥ Modified

Shared

eaowww .

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

LOAD / STORE
STORE? ¥ Modified

{k

wn
_|
@)
)
m
-

LOAD?

Shared

eaowww .

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

LOAD / STORE
STORE? ¥ Modified

{k

FLUSH

wn
_|
@)
)
m
-

LOAD?

/

Shared

eaowww .

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

LOAD / STORE
STORE? ¥ Modified

Z d
> @)
C -
Q ™ LOAD?

Unknown < Shared

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

* State Transition Diagram
— Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

LOAD / STORE

STORE? Modified

< \ 4

Ll

E = LSADP >< %LOAD?

il > '

A oR

s\

Unknown FREE Shared

LOAD?

—— Local operations
—— Local operations with CC-related assertions

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

DRAM

2]
2]
2]
2]
2]
2]
2]

ORACLE

Cache 1

Cache 2
IIII
HER

S

HEN

S

2]

S

2]
CEl

U: Undefined I: Invalid

S: Shared

M: Modified

Corel Core 2
\L‘OAD(Z, p addr, a);
LOAD (1, p addr, x); a="p;
. ’ ’ Sync ___—
e
X =*p;
STORE (1, p_ addr, x+1);
*p=x+1; INVALIDATE (2, p addr);
~ Sync L
—

invalidate(p);
LOAD (2, p addr, z); l

— X
Z= p;

Assertion fails, since
there exists a Modified
state at Core 1.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Automated Translation of C code to Model

* Translation of program from LLVM IR to Promela

* Generates Promela model with equivalent semantics to original program
— With instrumentation added for each memory operation to check cache coherence

Parfait Model Checker
C/C++ Parfait CI Translat IE SPIN
et [ot s e ->|| — EEE —_— O [|
MODEL ‘
VERIFIER I_
C SOURCE IE
Gce ’
C COMPILER
Bug Reporting — [|
ERROR
TRACES
. B
RESULTS

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Automated Translation of C code to Model

* Optimisations

— Group consecutive non-memory operations into atomic blocks
* Avoids exploration of different interleavings of operations that cannot affect each other
* 10x speedup in verification

— Use SPIN’s bounded context switch mode

* “Relatively low bounds on the number of context switches suffice for a model checker to visit all the
reachable states of a model at least once.” (Musuvathi, PLDI2007)

* Only explore execution paths with the number of preemptions less than a specified bound
* 8x speedup in verification with a bound of 2

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Results - Scalability

* Larger synthetic example:
concurrent quicksort

—~200 lines of code
* Tested performance of model

checking with different
configurations

— Number of concurrent cores

Runtime (mins)

— Number of elements to be sorted

* Largest test: 256 elements, 3 cores
— Verification took ~5 hours

ORACLE

250

150

100

50

0

16

32 64
Array Size

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

128

256

Cores

Results - Scalability
* Translated model for a C code base for about 50,000 LoC
—~6,000,000 lines of Promela (~1,150,000 with no function inlining)

* SPIN cannot process a model this large
Model Checker

MMMMMMMMMMMMM

* Optimisations implemented in SPIN

— Compiling the model did not terminate after 90 hours
— Compiling the model completes in 4 hours -‘

Ve ([

v

— Verifier code generated is 100,000,000 lines of C code occ...

— Verifier
ooooooooooo

— Compiling with gcc ran out of memory (64G)

* Current approach using SPIN does not scale for our project.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Further Investigation into Other Model Checkers

* More model checkers have been evaluated
— Explicit State model checkers: Murphi/PReach, DIVINE
— Symbolic model checkers: CBMC, LLBMC, ESBMC, SAL, Mocha, Alloy, SATABS, CSeq
— Hybrid: LTSmin

* Initial experimental result

— Many of them are designed for state transition systems, and only work well for
algorithm verification.

— Some of them use inlining to handle method calls and then exclude recursive calls.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Further Investigation into Other Model Checkers

Model Concurrency Recursion Quicksort Quicksort Quicksort
Checker 8 elements, 1 core 32 elements, 1 core 8 elements, 2 cores
SPIN Yes Yes 38s 42 s 112 s
LLBMC No Yes (bounded) 40 s 1500 s N/A
CSeq Yes No N/A N/A N/A
LTSMin Yes Yes >4 h >4 h >4 h
SATABS Partial (doesn’t No (ignores >4 h >4 h N/A
support shared recursion)
dynamic memory)
CBMC Yes Yes (bounded) 48 s >2h >2h

* SPIN still appears to be the best choice

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Conclusion

* Current approach of full software model checking for the verification of
cache coherence will not scale for our 50k LoC codebase.

— Accurate model of program memory and execution produces large models and causes
state explosion

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Next Steps

* Reduce model size and complexity via abstraction of the program
— No longer verification (may have false positives / negatives)
— Use abstracted memory model (e.g. based on points-to analysis)

— Use slicing to separate the program into multiple smaller parts involving a subset of
cores and verify independently
* May be applied to either accurate or abstracted memory models

— Manually abstract some auxiliary functions

* Reduce the number of interleavings explored

— Group successive operations that only have local effects as one atomic operation
* Use static analysis to determine which memory accesses do not access shared memory

— Partial Order Reduction

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Integrated Cloud

Applications & Platform Services

ORACLE

ORACLE

