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Safe Harbor Statement 
The following is intended to provide some insight into a line of research in Oracle Labs. It 
is intended for information purposes only, and may not be incorporated into any contract.  
It is not a commitment to deliver any material, code, or functionality, and should not be 
relied upon in making purchasing decisions. The development, release, and timing of any 
features or functionality described in connection with any Oracle product or service 
remains at the sole discretion of Oracle.  Any views expressed in this presentation are my 
own and do not necessarily reflect the views of Oracle. 
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Typical Stack of Java HotSpot VM Running Nashorn 
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Bytcode interpreter 

Client compiler 

Server compiler 

Java code (bytecode from .java file) 

JavaScript (dynamically generated bytecode) 

VM startup code 

Startup Java code 

Native code 

Java HotSpot VM 

JDK native code 

JNI native code 

Startup JavaScript code 

Hot Java code 

Hot JavaScript code 

Deoptimized JavaScript code 

VM runtime code 

Stack frame layout: Source of code: 

How do you find all the GC root pointers? 
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Duplication: Everything Implement Three Times 
Bytecode interpreter Compiled bytecode Native code (C/C++) 

Stack frame layout Close to JVM spec Spill slots Unspecified 

Stack frame size variable fixed per method unknown 

Root pointers for GC Bytecode liveness 
(expensive to compute) 

Pointer map from compiler Explicit handles 
(error prone) 

Exception handling Interpret metadata Compiled in (mostly) Explicit checks 
(error prone) 

Porting to new architecture Write assembly code Write client compiler and 
server compiler backends 

Write gcc backend 

Debugging Java debugger Java debugger gdb 
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Truffle System Structure 

Low-footprint VM, also 
suitable for embedding 

Common API separates 
language implementation, 
optimization system, 
and tools (debugger) 

Language agnostic 
dynamic compiler 

AST Interpreter for 
every language 

Integrate with Java 
applications 

Substrate VM 

Graal 

JavaScript Ruby LLVM R 

Graal VM 

… 

Truffle 
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Your language 
should be here! 

Tools 
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Speculate and Optimize … 
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Performance: Graal VM 
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Performance relative to: 
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Possible Stack of Java HotSpot VM Running Truffle 
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Bytcode interpreter 

Graal compiler 

Java code (bytecode from .java file) 

VM startup code 

Startup Java code 

Native code 

Java HotSpot VM 

JDK native code 

JNI native code 

Startup JavaScript code 

Hot Java code 

Hot JavaScript code 

Deoptimized JavaScript code 

VM runtime code 

Stack frame layout: Source of code: 

Our default configuration of Truffle still uses 
Client and Server compiler for Java code 
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The Substrate VM is … 

an embeddable VM 

for, and written in, a subset of Java 

optimized to execute Truffle languages 

ahead-of-time compiled using Graal 

integrating with native development tools. 

… 
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Typical Stack of Substrate VM Running Truffle 
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Graal compiler Java code (bytecode from .java file) 

VM startup code 

Startup Java code 

SystemJava code 

Startup JavaScript code 

Hot Java code 

Hot JavaScript code 

Deoptimized JavaScript code 

VM runtime code 

Stack frame layout: Source of code: 

Same compiler for ahead-of-time compiled Java 
code and dynamically compiled Truffle AST 

Substrate VM runtime is written in Java 

Transfer to AST interpreter (deoptimization) to 
Graal compiled code with extra deoptimization 
entry points 
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Substrate VM: Execution Model 
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Ahead-of-Time  
Compilation 

Points-To Analysis 

Substrate VM 

Truffle Language 

JDK 

Reachable methods,  
fields, and classes 

Machine Code 

Initial Heap 

All Java classes from  
Truffle language  

(or any application),  
JDK, and Substrate VM 

Application running  
without  dependency on JDK  
and without Java class loading 

DWARF Info 

ELF / MachO Binary 
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Substrate VM Building Blocks 
• Reduced runtime system, all written in Java 

– Stack walking, exception handling, garbage collector, deoptimization 
– Graal for ahead-of-time compilation and dynamic compilation 

 

• Points-to analysis 
– Closed-world assumption: no dynamic class loading, no reflection 
– Using Graal for bytecode parsing 
– Fixed-point iteration: propagate type states through methods 

 

• SystemJava for integration with C code 
– Machine-word sized value, represented as Java interface, but unboxed by compiler 
– Import of C functions and C structs to Java 

 

• Substitutions for JDK methods that use unsupported features 
– JNI code replaced with SystemJava code that directly calls to C library 
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Key Features of Graal 
• Designed for speculative optimizations and deoptimization 

– Metadata for deoptimization is propagated through all optimization phases 
 

• Designed for exact garbage collection 
– Read/write barriers, pointer maps for garbage collector 

 

• Aggressive high-level optimizations 
– Example: partial escape analysis 

 

• Modular architecture 
– Configurable compiler phases 
– Compiler-VM separation: snippets, provider interfaces 

 

• Written in Java to lower the entry barrier 
– Graal compiling and optimizing itself is also a good optimization opportunity 
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Deoptimization 
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Deoptimization 
• Transfer from optimized machine code back to unoptimized code 

 

• Enables speculative optimizations 
– Optimized code does not need to deal with corner cases 

• No control flow merges from slow-path code back into the fast path 
• More potential for optimizations 

– Optimized code does not need to check assumptions 
• Instead, it gets invalidated externally when assumption is no longer valid 

 

• Speculative optimizations are essential for optimizing dynamic languages 
– Speculate on JavaScript type stability 
– Speculate that Ruby operators for primitive types are not changed by program 
– Polymorphic inline caches for function calls, property accesses, ... 

17 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.  | 18 

Mapping from optimized to bytecode interpreter frames 
 

Deoptimization on HotSpot VM 
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f1() bci 42 

f2() bci 7 

f3() bci 11 

42 
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Mapping from optimized to unoptimized stack frames 
 

Deoptimization on Substrate VM 
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Deoptimization on Substrate VM 
• Source and target are Graal compiled frames 

– Both have metadata that describes the layout with respect to JVM specification 
– Stack frame location of all used local variables and expression stack elements 
– Source and target describe the same bytecode index (bci), i.e., a matching state 

 

• Source is a fully optimized Graal frame 
– Method inlining: multiple target frames for one source frame 
– Escape analysis: virtual objects that are re-allocated during deoptimization 
– Global value numbering: elimination of duplicate computations 

• Targets are Graal frames with limited optimizations 
– No method inlining: multiple target frames restored when source frame has inlined methods 
– No escape analysis: all objects are re-allocated during deoptimization 
– Limited value numbering: only values in Java frame state can be live across a deoptimization entry 

point 
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Example: Graal IR for Deoptimization 

public class BasicDeoptTest { 
  static int field; 
 
  static int proxyNeeded(int x) { 
    field = x * 2; 
    return x * 2; 
  } 
} 

Java source code: 

Graal IR for optimized compilation: 

Graal IR for compilation with deoptimization entry points: 

Two explicit DeoptEntry points 

No elimination of second 
multiplication 
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SystemJava 
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SystemJava 

• Legacy C code integration 
– Need a convenient way to access preexisting C functions and structures 
– Example: libc, database 

 

• Legacy Java code integration 
– Leverage preexisting Java libraries 
– "Patch" violations of our reduced Java rules 
– Example: JDK class library 

 

• Call Java from C code 
– Entry points into our Java code 

New 
System Java  

Code 

Preexisting  
C Code 

Preexisting 
Java Code 

Call Java from C 

Legacy C Code  
Integration 

Legacy Java Code  
Integration 
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SystemJava vs. JNI 
• Java Native Interface (JNI) 

– Write custom C code to integrate existing C code with Java 
– C code knows about Java types 
– Java objects passed to C code using handles 

 

• SystemJava 
– Write custom Java code to integrate existing C code with Java 
– Java code knows about C types 
– No need to pass Java objects to C code 

24 
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Word type for low-level memory access 
• Requirements 

– Support raw memory access and pointer arithmetic 
– No extension of the Java programming language 
– Pointer type modeled as a class to prevent mixing with, e.g., long 
– Transparent bit width (32 bit or 64 bit) in code using it 

 

• Base interface Word 
– Looks like an object to the Java IDE, but is a primitive value at run time 
– Graal  does the transformation 

 

• Subclasses for type safety 
– Pointer: C equivalent void* 
– Unsigned: C equivalent size_t 
– Signed: C equivalent ssize_t 
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public static Unsigned strlen(CharPointer str) { 
  Unsigned n = Word.zero(); 
  while (str.read(n) != 0) { 
    n = n.add(1); 
  } 
  return n; 
} 
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Java Annotations to Import C Elements 

#include <time.h> @CContext(PosixDirectives.class) 

#define CLOCK_MONOTONIC 1 

struct timespec { 
  __time_t tv_sec; 
  __syscall_slong_t tv_nsec; 
}; 

int* pint; 

int** ppint; 

@CConstant static native int CLOCK_MONOTONIC(); 

@CPointerTo(nameOfCType="int") interface CIntPointer extends PointerBase { 
  int read(); 
  void write(int value); 
} 

@CPointerTo(CIntPointer.class) interface CIntPointerPointer ... 

-lrt @CLibrary("rt") 

@CStruct interface timespec extends PointerBase { 
  @CField long tv_sec(); 
  @CField long tv_nsec(); 
} 

int clock_gettime(clockid_t __clock_id, struct timespec *__tp) @CFunction static native int clock_gettime(int clock_id, timespec tp); 
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static long nanoTime() { 
  timespec tp = StackValue.get(SizeOf.get(timespec.class)); 
  clock_gettime(CLOCK_MONOTONIC(), tp); 
  return tp.tv_sec() * 1_000_000_000L + tp.tv_nsec(); 
} 

Implementation of System.nanoTime() using SystemJava: 
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Points-To Analysis 
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Graal as a Static Analysis Framework 
• Graal and the hosting Java VM provide 

– Class loading (parse the class file) 
– Access the bytecodes of a method 
– Access to the Java type hierarchy, type checks 
– Build a high-level IR graph in SSA form 
– Linking / method resolution of method calls 

 

• Static points-to analysis and compilation use same intermediate representation 
– Simplifies applying the analysis results for optimizations 

 

• Goals of points-to analysis 
– Identify all methods reachable from a root method 
– Identify the types assigned to each field 
– Identify all instantiated types 

• Fixed point iteration of type flows: Types are propagated from sources (allocations) to usages 
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bar 

Example Type Flow Graph 
Object f; 
 
void foo() { 
  allocate(); 
  bar(); 
} 
 
Object allocate() { 
  f = new Point() 
} 
 
int bar() { 
  return f.hashCode(); 
} 

putField f 

new Point 

getField f 

obj vcall hashCode 

this 

allocate 

Point.hashCode 

[Point] 

[Point] 

[Point] 

f 

[Point] 

[Point] 

Analysis is context insensitive:  
One type state per field 
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bar 

Example Type Flow Graph 
Object f; 
 
void foo() { 
  allocate(); 
  bar(); 
} 
 
Object allocate() { 
  f = new Point() 
} 
 
int bar() { 
  return f.hashCode(); 
} 

putField f 

new Point 

getField f 

obj vcall hashCode 

this 

allocate 

Point.hashCode 

[Point] 

[Point] 

[Point, String] 

f 

[String] 

[Point, String] 

[Point, String] 

this 

String.hashCode 

Analysis is context insensitive:  
One type state per field 

f = "abc"; 
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Results 
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Microbenchmark for Startup and Peak Performance (1) 
function benchmark(n) { 
   var obj = {i: 0, result: 0}; 
   while (obj.i <= n) { 
      obj.result = obj.result + obj.i; 
      obj.i = obj.i + 1; 
   } 
   return obj.result; 
} 

Function benchmark is invoked in a loop by harness 
(0 to 40000 iterations) 

n fixed to 50000 for all iterations 

JavaScript VM Version Command Line Flags 

Google V8 Version 4.2.27 [none] 

Mozilla Spidermonkey Version JavaScript-C45.0a1 [none] 

Nashorn JDK 8 update 60 build 1.8.0_60-b27 -J-Xmx256M 

Truffle on HotSpot VM graal-js changeset a8947301fd1e from Nov 30, 2015 
graal-enterprise changeset f47fff503e49 from Nov 30, 2015 

-J-Xmx256M 

Truffle on Substrate VM substratevm changeset 45c61d192d43 from Dec 1, 2015 
graal-enterprise changeset d8ee392c83e3 from Nov 21, 2015 

[none] 
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Microbenchmark for Startup and Peak Performance (2) 

Background compilation 

Background compilation finished 

00.10.20.30.40.50.60.70.8

0

Google V8
Mozilla Spidermonkey
Nashorn JDK 8u60
Truffle on HotSpot VM
Truffle on Substrate VM
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Summary 
• Substrate VM uses a "One Compiler" approach 

– For ahead-of-time compilation and dynamic compilation 
– For all levels: Java, SystemJava, JavaScript, all other Truffle languages 
– For deoptimization entry points 
– For static points-to analysis 

 

• Graal is flexible enough to support all these use cases 
– Snippets for compiler-VM separation 
– Configuration of phases 
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