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Abstract:

Virtual machines are commonly used in commercially-significant systems, for example, Sun
Microsystems’ Java and Microsoft’s .NET. The virtual machine offers many advantages to the
system designer and administrator, but complicates the task of workload characterization: it
presents an extra abstraction layer between the application and observed hardware effects.
Understanding the behavior of the virtual machine is therefore important for all levels of the
system architecture.

We have constructed a tool which examines the state of a Sun Java HotSpot™ virtual
machine running inside Virtutech’s Simics execution-driven simulator. We can obtain detailed
information about the virtual machine and application without disturbing the state of the simu-
lation. For data, we can answer such questions as: Is a given address in the heap? If so, in
which object? Of what class? For code, we can map program counter values back to Java
methods and approximate Java source line information. Our tool allows us to relate individual
events in the simulation, for example, a cache miss, to the higher-level behavior of the applica-
tion and virtual machine.

In this report, we present the design of our tool, including its capabilities and limitations, and
demonstrate its application on the simulation’s cache contents and cache misses.
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1. Introduction
Modern commercially-significant object-oriented programming systems, such as Sun
Microsystems’ Java™ and Microsoft’s C#, are based upon virtual machines. Applications
to be executed on the virtual machine (VM) are distributed in a platform-independent for-
mat (Java bytecodes [7] or Microsoft Intermediate Language, MSIL), simplifying the
development and deployment of applications on heterogeneous networks.

The virtual machine, in this case, is a piece of software which intermediates between the
applications and the underlying operating system and hardware, typically dynamically
compiling application code to the host’s instruction set and invoking platform-specific
libraries. The separation provided by the VM thus allows greater scope for operating sys-
tem and hardware architects, freeing them from the constraints of machine-code binary
compatibility. In theory, a new machine can be designed together with a VM to improve
the combined behavior of the system.

The VM, however, interferes with common performance analysis methods. For exam-
ple, the mapping of program counter values back to instructions and source information is
complicated when the code is compiled and perhaps recompiled or relocated during the
execution.

We have constructed a tool which extracts high-level information from a Java
HotSpot™ virtual machine running inside the Simics full-system simulator [8]. It obtains
information such as: Is a given virtual address in the heap? If so, which object? Which
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field? Of what class? For program counter values in generated code, we can derive sym-
bolic information all the way back to approximate Java source line numbers. We obtain
this information without modification of the VM sources and without disruption to the
state of the simulation, a significant improvement over existing techniques.

The remainder of this paper is structured as follows. We first explain our motivation in
more detail. Following that is a description of the tool itself, including our methods for
extracting data and its limitations. We conclude with an experiment which demonstrates
the kind of studies enabled by the tool.

2. Background & Motivation
One attractive feature of systems based on virtual machines is the freedom to evolve the
hardware and software together without the need to preserve the architectural interface.
The virtual machine is a point of high leverage for system engineers. Improvements in the
VM’s compiler technology, for example, may benefit all applications with a single
upgrade. Similarly, memory management and garbage collection, historically re-imple-
mented in each separately-compiled application, can be provided as a service to all appli-
cations. Hardware/software co-design is common in the embedded space, but it is not
frequently practiced in the commercial server area. One reason is that it disrupts the estab-
lished procedure for designing computer systems. Independent software vendors (ISVs)
are very reluctant to distribute machine-code binaries optimized for every platform,
because of the difficulty of maintaining and qualifying all the versions. Thus hardware is
commonly designed as a drop-in replacement for an existing system, with the aim of run-
ning existing user-mode applications without recompilation. Hardware architects are
accustomed to taking instruction-level traces of applications, characterizing their behavior
in terms of memory reference patterns, branch predictability and so on, and designing a
new machine optimized for these characteristics, with performance estimated using trace-
driven simulation. With the interposition of a VM, however, many of these characteristics
can be customized or indeed adapted at run time – they are no longer properties peculiar to
the application but are moderated by the virtual machine.

Consider, for example, a virtual machine designed for a simple processor with a ‘classic
RISC’ short single-issue pipeline and a small instruction cache. On such a machine the
penalty for indirect branches may be low, with priority given to limiting the size of gener-
ated code. In this case the VM may compile method calls as indirect jumps through virtual
method tables (v-tables). An instruction trace taken from this VM may lead the designers
of a subsequent CPU, with a deeper, more complex pipeline, to optimize indirect
branches, perhaps by adding branch target buffers and multiple levels of speculation. Yet
the characteristics could be changed completely with the introduction of inline caches [1]
and method inlining, thus converting some indirect branches to direct, eliminating others,
and placing quite different demands on the hardware.

Ideally, then, the design of virtual machines and hardware platforms would proceed in
concert, each informed by the choices inherent in the other. Current commercial systems
must of course also balance the performance of legacy statically-compiled applications,
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but we do not consider them further here on the grounds that their characterization is much
better understood. Some experiments may be performed on existing systems, using perfor-
mance counters or sampling, as long as the existing and proposed systems are sufficiently
similar. Other experiments may be carried out under simulation; execution-driven simula-
tion allows feedback between the proposed architecture’s state and virtual machine activ-
ity in a way which trace-driven simulation does not. Both of these methods produce very
low-level data, whether of individual events, for example the program counter values of
loads which caused cache misses, or in aggregate, such as the total number of cache
misses.

Here we pursue execution-driven simulation, so that we can non-disruptively inspect the
state of the simulated machine. That is, we want to be able to look inside and examine the
contents of the caches, say, or the CPU’s branch prediction information, without executing
code on the system and disturbing that state. Execution-driven simulation has had a repu-
tation for being slow, but modern systems such as Simics may have a slowdown of only
around 15–20x, at least in a warm-up mode with caches disabled (see later). While run-
ning on a real machine may offer some of the same information, if interfaces are available
which expose the desired state, sampling can trade disruption off against completeness. At
the cost of increased simulation time, our technique potentially offers complete informa-
tion without any disruption, and for hardware arbitrarily different from existing machines.

To gain understanding of the system’s behavior, one must relate the low-level events
back to the activity of the VM and application. Simics gives very good visibility into the
hardware state at the level of instructions, registers and physical addresses, but symbols,
classes and methods are more meaningful for the VM and application programmer
(Fig. 1). For example, a given static load instruction may frequently miss in the cache, but
is it part of the VM binary or is it in generated code compiled by the VM? If it is in gener-
ated code, is the target a field in an object, and if so, of what class and which field? Such
questions are not easy to answer under simulation; interpreting the raw machine state
requires considerable knowledge about the operating system (process and virtual memory
mappings) and virtual machine data structures. The following section describes how we
obtain this information.

Fig. 1: Abstraction layers
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3. The HotSpot Serviceability Agent in Simics
Our tool runs as a module inside the Simics execution-driven simulator, and examines a
Java HotSpot virtual machine running on a simulated SPARC® system with the Solaris™
operating system. Solaris and the HotSpot executable are not modified in any way: we do
not recompile the VM to indicate its state or report events. Instead, we rely on knowledge
of the layout of the HotSpot data structures, including VM structures (i.e., C++ objects in
the HotSpot source code) and Java objects.

3.1 The HotSpot Serviceability Agent
Our tool is based on the HotSpot Serviceability Agent (SA) [11], which was developed by
the HotSpot product team for its own internal use. In its original role, the SA is attached to
a HotSpot process or core file via a system debugger interface, for example the Solaris dbx
debugger or /proc pseudo-filesystem. The SA has knowledge of the layout of the C++ data
structures in a particular version of HotSpot, and can navigate around the memory image
by following pointers from known locations.

For our purposes we can consider the Serviceability Agent as being composed of three
layers of code. At the bottom, some platform-specific code sits between the higher layers
and the Solaris debugger interfaces (dbx or the /proc pseudo-filesystem). The functionality
required here is small: reading words from virtual memory locations, and obtaining the
virtual addresses of certain symbols in the HotSpot shared library (libjvm.so). These static
locations, identified by C/C++ symbols, are the roots for the traversal of the HotSpot data
structures.

The middle layer of SA code, the majority, is written in Java, and replicates the data
structures in a particular version of HotSpot. For example, in the HotSpot source a piece of
runtime-generated code is represented by a C++ object of class nmethod (Fig. 2). In the
Serviceability Agent there is a corresponding Java class NMethod. An NMethod instance
serves like a proxy for an nmethod, and has accessors for all of an nmethod’s state; the
NMethod instance is filled out by reading bytes from the HotSpot process’s virtual mem-

Fig. 2: The Serviceability Agent
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ory image, calling the platform-specific debugger through the Java™ Native Interface
(JNI).

The top layer of the SA is a set of command-line and graphical tools through which the
user can interactively display and investigate the state of the HotSpot process, as mim-
icked in the SA’s Java representation. We do not use this code, as we do not currently
present a user interface when running under simulation; instead we query the HotSpot
state programmatically, for example in the event of a cache miss.

3.2 Adapting the SA
We run the Serviceability Agent inside a ‘hotspot-sa’ Simics module, alongside the exist-
ing CPU, cache, disk, etc. modules (Fig. 3). The middle layer of the SA, the part which
embodies information on the HotSpot data structures, is unchanged, and runs inside a
JVM ‘embedded’ in the Simics module (i.e., our Simics module is linked with the
HotSpot library, and creates a JVM using JNI routines). All of our modifications are at the
lowest level, replacing the SA’s dbx or /proc back-end with code to extract state from
inside the Simics simulator, using the standard Simics APIs and inter-module communica-
tion.

The two essential low-level capabilities on which the SA is built are (1) reading words
from virtual memory addresses inside the target HotSpot process, and (2) obtaining the
addresses of symbols.

Reading data from a process inside Simics is complicated by the simulated operating
system. Just like the hardware it is simulating, Simics has no knowledge of the OS’s inter-
nal data structures. It has virtual-to-physical address translations only for pages which are
currently in its translation buffer; when a page fault occurs, the OS will provide an appro-
priate translation. We cannot assume that an address required by the SA will be recently
touched in the simulation; indeed, the SA sometimes requires data from a page in the tar-

Fig. 3: The Serviceability Agent inside Simics
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get HotSpot’s address space which has not yet been brought in from disk, because Solaris
lazily pages binaries into physical memory after they are mapped. We track changes to the
page tables by watching TLB map and demap events, using the SPARC context identifier
to associate changes with a particular process. In practice, as is common in benchmark
configurations, the simulated OS is lightly loaded, so the target HotSpot process may be
uniquely identified by its 13-bit context ID. It remains possible that in a heavily loaded
system (i.e., thousands of processes) Solaris could reallocate the context ID, in which case
our tool would produce incorrect results. However, we have never observed this behavior.

When the target HotSpot process is invoked we pass an environment variable to the
Solaris dynamic linker (ld.so) requesting it to load an ‘audit library’ [13]. The audit library
is notified by the dynamic linker as it populates the target process’s address space: a call-
back function is invoked when a new shared object (.so) is loaded, and at that point we
execute the Simics ‘magic instruction’, a no-op which causes an event to be reported to
our Simics module. Our module receives the notification and records the shared object’s
path and the virtual address at which it was mapped into the HotSpot process’s address
space. As a side effect, we also discover the SPARC context ID of the HotSpot process
from the CPU which executed the magic instruction.

The few extra instructions executed whenever a shared object is loaded are our only dis-
ruption to the execution of the target HotSpot virtual machine. In particular, there is no
disruption once the Java application of interest has started up.

Given the shared object’s path (on the simulated machine), plus the contents of the sim-
ulated disk image, we can recover the on-disk contents of the newly-loaded shared object.
This gives us the virtual addresses of symbols in the library, used by the SA for navigating
the HotSpot image, and also for mapping program counter values back to function names
in C or C++ source. We also cache a copy of the on-disk contents of library segments
mapped into the target HotSpot process’s address space, to provide the contents should the
SA request data from a page which has not yet been paged in. We do not currently track
the eviction of modified pages from virtual memory to swap space, but paging of the target
JVM does not occur in the benchmark studies of interest.

3.3 Limitations
Our tool has very good visibility into the data structures of the virtual machine. However,
we are lacking equivalent abilities for the Solaris kernel and C libraries. We can recon-
struct some required information, in particular virtual memory mappings, and knowledge
of the ELF shared object format gives us some basic symbolic information.

The most significant deficit is the ability to inspect thread and stack state. The debugger
interfaces usually used by the SA ensure that the target HotSpot’s threads are suspended
and the thread and stack state are restored to the canonical representation specified by the
API and calling conventions. Under simulation we can observe other machine states which
are not observable in the real machine. For example, a thread’s stack may be distributed
between memory and register windows [16], and even a descheduled thread may still have
state in register windows somewhere in the system. It is non-trivial to look at a CPU and
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find out which thread-library thread or Java Thread is executing on it, or to recover the
state of a given thread.

Such information could in theory be recovered with a hypothetical ‘Solaris kernel ser-
viceability agent’ and ‘thread-library serviceability agent’. In their absence, we restrict
ourselves to looking at the top stack frame of a running thread, i.e. the register contents of
a particular CPU.

We also cannot obtain precise information when mapping program counter values in
dynamically-compiled code back to Java source line information. The HotSpot compiler
does not maintain such mappings for every generated instruction, and in general it is not a
straightforward relationship because of the optimizations employed.

4. Previous work
Characterization studies of Java workloads have generally fallen into two groups. One
approach has been to remain close to the Java level, investigating such properties as the
relative frequencies of bytecodes [9], object lifetimes and demographics [2], or properties
of Java method invocations [15]. This work may involve bytecode-level tracing of applica-
tion behavior [17]. These studies have the advantage that the data obtained are indepen-
dent of the underlying virtual machine, and thus remain valid for as long as the
benchmarks used are representative of the workloads of interest. They have the disadvan-
tage that not all metrics will imply characteristics of interest to the system designer. For
example, the frequencies of individual bytecodes are arguably of marginal utility in the
presence of a highly optimizing dynamic compiler.

Many other studies have examined the low-level behavior of various Java benchmarks
on a particular virtual machine and platform, whether on real hardware or under full-sys-
tem simulation [6], and data have been obtained on, for example, instruction profiles [5]
and cache and TLB miss rates [4]. However, such work may date rapidly with improve-
ments in VMs; compiler and garbage collection implementations are now very different
from the Java 1.1 VMs used in many early studies. Our tool is also dependent on a partic-
ular VM version, although we aim to relate the observed effects back to higher levels, to
obtain results of wider applicability. Porting our tool to a new version of HotSpot is
straightforward, as our modifications are limited to the lowest level of the SA with no
changes to HotSpot itself.

Although these studies measure the virtual machine’s effects, they have limited visibil-
ity into the VM. More information may be obtained by instrumenting the VM to record
state transitions, for example when switching from a mutation to garbage collection mode
[10]. This is complicated when transitions may appear in generated code, for example
instructions in an inlined write barrier, or when the system does not transition cleanly from
one mode to another, as with a concurrent garbage collector. The VM may also be modi-
fied to generate low-level traces during execution, by instrumenting generated code [12].
This can provide good information for the VM’s data memory references, for example
field information even after optimizing compilation, but omits the behavior of the OS and
disturbs the instruction stream.
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Vertical profiling shares the goal of relating virtual machine behavior and architectural
effects [3]. The VM is instrumented to include monitors, for example a (software-imple-
mented) count of the number of fast-path lock acquisitions in generated code. Periodically
the VM’s counter values are sampled, along with CPUs’ hardware performance counters
(of, for example, instructions executed or data cache misses) and other software perfor-
mance monitors provided by the operating system. The result is a data set spanning multi-
ple levels of the system at each sampling point, and visualization tools help in correlating
the behaviors observed at the different levels. Correlation does not imply causality, and the
user can infer cause and effect only with a good understanding of the system. Vertical pro-
filing has the advantage that it runs directly on real hardware, but like all such techniques
it is disruptive to the execution and cannot observe hardware state for which no software
interface is provided (for example, the current contents of the caches). The data serve to
give a summary of the system’s behavior over relatively long intervals (millions of instruc-
tions, for a millisecond sampling interval) without details on any individual event; in con-
trast, our simulation-based approach lets us obtain a great deal of information about
individual operations, but at a high cost in execution speed.

Recent versions of the Sun ONE Studio Compiler Collection include performance tools
[14] which can profile the execution of Java code running on the HotSpot virtual machine,
extending the existing tools for C, C++ and Fortran code. The higher-level information is
obtained with the cooperation of the VM, through profiling interfaces, and augments the
data obtained on the VM binary itself. The caller/callee relationships are thus correctly
reported for a call stack containing interleaved C/C++ and Java frames across the user
application, library and virtual machine code; the Solaris 10 Dynamic Tracing (DTrace)
feature adds kernel profiling too. As with any tool based on periodic sampling of the call
stack there will be a small amount of disruption, although because the information is
derived by sampling this will be significantly less than with vertical profiling’s counters.
Again, there is no direct observability of hardware effects other than the coarse CPU
counters for instructions executed, cycles, etc., but the tools are intended for application
and system programmers, not microarchitecture studies.

5. An experiment: cache contents and misses
In all of the subsequent experiments our simulated system consists of an UltraSPARC III+
processor core with 512MB of main memory, a four-way associative 64kB L1 data cache
(D-cache) with 32-byte lines, and a direct-mapped 1MB L2 cache ("external cache", or E-
cache) with 64-byte lines. The CPU runs at 750MHz, which equals 750 MIPS in the
absence of a timing model; we are simulating cache behavior, but not including miss pen-
alties. The instruction stream is excluded from the cache traffic. Unless otherwise stated,
the Java virtual machine is a production build of HotSpot 1.5.0 with no command-line
flags used, running on the Solaris 9 operating system.

For our first experiment, we sample the contents of the caches every 10M instructions.
Each cache line in the cache is classified as part of the Java heap, code generated by the
dynamic compiler, other non-heap data structures (e.g. C++ objects), or belonging to
8



another process. The Java heap is subdivided into the new, old and permanent generations;
the permanent generation contains objects such as java.lang.Class instances, which are not
managed by the garbage collector.

We present results for three of the SPECjvm_98 benchmarks, which have the advantages
that they are widely used in the existing literature and also sufficiently trivial to be simu-
lated to completion in a few hours. The three benchmarks, javac, jack and jess, are each
reported as three graphs: the D-cache and E-cache contents, plus the heap occupancy for
each generation. Javac is an early version of the Java source to class file compiler, jack is a
parser generator, and jess is an expert system that applies inference rules to a database of
facts.

The three benchmarks show very different behaviors on the graphs of cache contents.
Javac’s cache contents, for the first three quarters of its execution, are heavily dominated
by the VM data structures, with intrusions of heap objects around the garbage collection
points (Fig. 4). A new-space (semi-space scavenging) collection appears as a sharp
decrease in new-space usage atop a stair-step rise in old-space caused by the promoted
objects; the full heap mark-sweep collections are drops in old-space size. After around
17B cycles the allocation rate (slope of the heap usage sawteeth) increases and the heap
contents dominate the cache. There is sufficient application code that the cache behavior is
dominated by the virtual machine’s compiler, even when the default "client" compiler is
used; although not graphed here, the heavily-optimizing "server" compiler, invoked by a
command-line flag, extends run time significantly for a single run of these small bench-
marks in a single-processor configuration. As seen in Fig. 5, jack exhibits more uniform
behavior; there is a gradual increase in allocation rate as compilation is completed, but the
GC survival ratio is very low and the heap barely dents the E-cache, except during full
heap GCs, suggestive of an application working set of young objects much smaller than
the VM’s working set. The E-cache occupancy drop at 2.6B cycles shows where the VM
was pre-empted for a daemon. Jess (Fig. 6), demonstrates the other extreme. Compilation
is substantially finished by 1.5B cycles, and thereafter the behavior is a rapid turnover in
new space with slow accumulation into old space. The cache occupancy graphs show that
access to the longer-lived old-space data structures is significant; old objects generally
occupy more of the D-cache than new objects.

For an alternative view of the cache behavior, we look at the program counter value of
every instruction causing an E-cache miss. For instructions in the virtual machine we
report C/C++ function symbols, except in the VM’s interpreter loop where we instead
obtain information on the Java method being interpreted. For runtime-generated code we
report Java method information.

Fig. 7 shows the source of javac’s E-cache misses, for a short period (1.4B cycles) start-
ing just before the first full-heap garbage collection. A large block of misses around 11.2B
instructions caused by C and C++ code indicates the activity of the collector itself. During
this time the mutator is mostly suspended, as shown by the lack of misses caused by inter-
preted and compiled code. Contrast this to Fig. 8, from a portion with little GC activity.
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Here the application code causes the majority of misses, with only a small spike of C++
code at 15.1B instructions for a new-space collection.

Fig. 9 shows a section of Fig. 7, with more detail on the VM’s C++ methods. Each C++
method is classified by its place in the VM source tree as GC, Memory (heap manage-
ment), Runtime, Compiler, Code (primarily managing generated methods in the code
cache), or Other. Interpreted or compiled Java methods are shown as Application in this
graph. The full-heap collection starts at 11.17B cycles with a large spike in cache misses
(‘Code’); this is due to a traversal of the code cache to locate root references. The GC runs
until 11.29B cycles, after which the application and compiler resume. It is interesting to
note that, except for the spike in cache misses caused by the code cache traversal, the GC
itself has a miss rate comparable with the rest of the execution. This effect was observed in
all three benchmarks.

Fig. 10 shows misses to the E-cache while running a portion of the jess benchmark. This
period occurs after the initial compilation phase has completed, so the vast majority of
misses are caused by compiled code. A series of spikes in C and C++ code indicate new-
space garbage collections. An isolated region of misses caused by other contexts is seen at
2.5B instructions. This is due to a context switch by the OS, and can be seen to align with
the drop in cache occupancy for the VM process seen in Fig. 6. A full-heap GC follows
shortly afterwards at about 2.6B cycles, then an isolated compilation phase at 2.8–2.9B
cycles. In Fig. 6 the GC is evident as a marked increase in the permanent generation in the
cache; the compilation then displaces all of the heap for VM data structures, and is also
visible as a plateau in the allocation graph.

A breakdown of the top 10 classes for 1.5B cycles of javac, towards the end of the exe-
cution, is shown in Table 1. This table shows that the contributions made by the standard
library classes to cache miss rates are significant, which suggests that these classes (partic-
ularly String and Hashtable) may be good targets for cache optimizations in the VM or
library code. This is an opportunity for further investigation.

6. Conclusions
We have introduced a tool for obtaining high-level information from a Java virtual
machine running inside an execution-driven simulator, and demonstrated some applica-
tions of it on three Java benchmarks. We have shown the contents of the caches, and also
source-level information on which code is causing cache misses. We know of no previous
studies which collected non-disruptive, exact data on cache behavior and mapped them
back to the JVM and application level. Some observations result from these data: Full-
heap garbage collections are disruptive to the cache state (as shown clearly in Fig. 5 and
Fig. 6) but do not cause a large increase in average miss rate (compare Fig. 7 with Fig. 8).
The disruptive effect of compilation, even late in the execution, is significant (Fig. 5 and
Fig. 6), We therefore caution against using single runs of these small benchmarks for
detailed performance analysis work. We also observed that standard Java library classes
(Table 1) are responsible for a significant fraction of the cache misses, at least within the
accuracy limitations of our tool (§3.3).
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We believe that the kind of information produced by our tool will prove of value to sys-
tem architects and virtual machine implementors, and encourage further studies relating
observed effects back to VM and application behavior and interactions. Much further
work remains, both in development of the tool and its application to larger, more complex,
benchmarks.
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Fig. 4: javac D- & E-cache contents, and heap usage
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Fig. 5: jack D- & E-cache contents, and heap usage
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Fig. 6: jess D- & E-cache contents, and heap usage
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Fig. 7: javac E-cache misses (including a full-heap GC)

Fig. 8: javac E-cache misses (without full-heap GC)
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Fig. 9: javac E-cache misses, greater detail (including a full-heap GC)

Fig. 10: jess E-cache misses
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Table 1: E-cache misses by Java class, top ten, javac (19-20.5B cycles)

Java class
Contribution to

Misses/1k instructions

java.util.Hashtable$Enumerator 1.84

java.util.Hashtable 1.32

java.lang.String 1.22

spec.benchmarks._213_javac.Assembler 1.21

java.io.BufferedInputStream 0.55

spec.benchmarks._213_javac.Scanner 0.53

java.lang.AbstractStringBuilder 0.47

spec.benchmarks._213_javac.Environment 0.42

spec.benchmarks._213_javac.Type 0.37

spec.benchmarks._213_javac.Instruction 0.35
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