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Abstract:

We present an experimental implementation of the Java Virtual Machine that runs inside the
kernel of the Solaris operating system. The implementation was done by porting an existing
small, portable JVM, Squawk, into the Solaris kernel. Our first application of this system is to
allow device drivers to be written in Java. A simple device driver was ported from C to Java.
Characteristics of the Java device driver and our device driver interface are described.
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1. Introduction

The C programming language enables the creation of flexible and efficient
software. C is traditionally used to write system software, including operating
system kernels. However, because of the lack of type and memory safety and
the burden of manual memory management, it is error-prone, unsafe, and the
resulting software is often vulnerable to security attacks, such as those
exploiting buffer overruns.

On the other hand, the Java™ programming language has been popular in the
last decade because of its type and memory safety, automatic memory
management, rich standard libraries, object-orientation, portability, and other
features. However, it has rarely been used to create system software; the Java
Virtual Machine (JVM™) typically runs as a user application, interpreting or
dynamically compiling an application compiled to Java bytecode.

In this report we describe the design and implementation of an experimental
in-kernel JVM that allows Java bytecode to run inside the Solaris™ operating
system kernel. Our system is based on a small and portable JVM, Squawk
[SCO0S5, SSB03]. We modified and extended Squawk to embed it within the
Solaris kernel. To demonstrate the use of the JVM in this environment, we
created a device driver framework in Java and rewrote a simple RAM disk
device driver, originally in C, in Java.

In this report we describe Squawk, our modifications and extensions to it, our
Java device driver interface, and our experience of porting the RAM disk
device driver to Java. As a result of our experiences we believe that running
Java code inside the kernel can provide the above-mentioned benefits of the
Java programming language for kernel development and in particular for
writing kernel extensions such as device drivers.



Extending, rather than rewriting, the operating system

There have been several attempts to write complete operating systems in Java,
such as JavaOS™ [Saulpaugh99], JX [GFWKO02] and JNode [JNode05].
These have attempted to build, largely from the ground up, an OS-like
environment around a JVM, without an underlying host operating system.
They extend the JVM to access the hardware directly, and add the components
necessary (e.g., a networking stack) to provide the functionalities required by
Java applications. When multiple applications and users are to be supported,
they also extend the computational model to support resource allocation,
protection, etc.

In contrast, we have added a JVM to an existing operating system kernel. Our
goal is not to have this JVM run user applications, but to serve as a vehicle for
operating system extensions, such as device drivers. This more limited goal
avoids the huge initial investment and risk incurred when building a new
operating system from scratch. It also allows us to focus just on those aspects
of the design that are relevant to the kernel environment, and omit the features
specific to user applications. The Java Standard Edition libraries are
substantial, and require a great deal of support from the JVM. The kernel
environment is much more limited, and the facilities required by kernel
extensions are more limited in scope, and different, from those of user
applications. Finally, this approach clearly separates the design of the JVM for
kernel extensions from the design of a JVM for user applications. State-of-the-
art JVMs are large and complex beasts; the complexity is a result of
maintaining the illusion of a rich virtual model of computation while
providing performance comparable to native binary code. Earlier work
(described in Section 10) persuaded us that we did not want to take on the task
of porting such a complex system into the kernel environment. While in the
longer term there may be value to fusing an in-kernel JVM to a user-level
JVM, for this project we decided to keep them separate.

As an example of how an in-kernel JVM might be used, we chose to explore
writing device drivers in Java. Solaris provides a device driver interface for
drivers written in C [Sun05]. Inspired by this, we built a prototype object-
oriented device driver interface for drivers to be written in Java, and ported a
sample driver from C to Java. The resulting device performs reasonably well,
given the limitations of the JVM we used.

Overview of this report

The rest of this report is organized as follows: Section 2 outlines the design
considerations of running a JVM within the Solaris kernel. Section 3 describes
our starting point, the Squawk JVM. Section 4 covers the differences between
executing applications and device drivers from the perspective of Java.
Section 5 discusses how to access existing kernel services from within Java.
Section 6 describes the structure of our kernel modules to support Java device
drivers, and Section 7 describes miscellaneous other modifications we made to



Squawk. Section 8 describes our framework for writing device drivers, and
Section 9 presents our sample Java device driver (code is listed in the
Appendix). We discuss related work in Section 10, possible future work in
Section 11, and summarize in Section 12.

2. Considerations when embedding a JVM in the
kernel

The main design issues we encountered in porting Squawk into the Solaris
kernel were:

1. Different execution model The Java Virtual Machine was intended to
run a single user application, potentially composed of many threads. The
lifetime of a JVM instance is determined by the execution behavior of
the application. The application is typically initiated by a user and
begins by calling the main method. Normal termination occurs by either
the main method returning, or the application calling System.exit.
Abnormal termination can be due to an internal cause (e.g., an uncaught
exception within the application) or an external cause (e.g., the JVM
process being terminated in response to a signal).

Little of this is appropriate within the kernel. We chose to restructure the
execution model to make it appropriate for device drivers, described in
Section 4.

2. Access to C state and functions The Java Native Interface (JNI)
[Liang99] is usually used to access state and functions external to a Java
application. However, Squawk does not implement the JNI; further, it is
a heavyweight mechanism for access to kernel services, providing more
generality than is required. We chose to devise and implement a simpler
mechanism, described in Section 5.

3. Division into kernel modules Extensions to the kernel are structured as
loadable kernel modules. We need to choose an appropriate partition of
our system into modules (Section 6).

4. Lack of library support The kernel does not have the C libraries
available to applications, including the standard C library (/ibc).
Therefore, it is not possible to simply take an existing user-level JVM
and run it, as is, within the kernel. If some feature from the C libraries is
needed, it may have to be re-implemented in the kernel. We minimized
this effort by starting with a JVM that has few library requirements.

In developing and debugging the virtual machine, one must also overcome the
difficulties of developing within the kernel environment. First, there is no
memory protection. Kernel address space is visible to all kernel components,
and hence there is no protection from wild pointer bugs in one module
corrupting other modules. A pointer bug in the virtual machine can (and
does!) cause a kernel crash. We were fortunate in that we started with a virtual



machine that had already been debugged in user space. Second, there is much
less support for debugging. Kernel-level debuggers are available, but they are
not as sophisticated as the debuggers for user programs.

3. The Squawk Virtual Machine

Our system is based on the Squawk virtual machine [SC05, SSB03]. It has a
Java Micro Edition heritage and features a small memory footprint. It was
developed to be simple, with a minimum of external dependencies. Having
few external dependencies was the key to embedding it quickly within the
kernel (more on this in Section 10). Its simplicity made it easy to extend for
our purposes.

The Squawk virtual machine core is mostly written in Java. It has an
interpreter, and a just-in-time compiler is under development. The version we
used had no compiler. The lower-level parts and the main loop of the
interpreter are written in C, while the more complex instructions (such as
those dealing with monitors) are implemented in Java. A ROM image, created
ahead of time, stores the virtual machine code and its initialized state.
Application code can be incorporated into the image when it is created, or
loaded at runtime. At startup a tiny interpreter executable loads the image
from the file system into memory and starts the virtual machine bootstrap.

The Squawk system also sports a graphical instruction tracing tool which
allows postmortem debugging at the Java bytecode instruction level. This tool
greatly helped us debug our changes.

The following sections describe our modifications to Squawk.

4. An execution model suited to device drivers

A Java application executes from the main method of the main class and
terminates when either control reaches the end of the main method, the
System.exit method is called, or there is an uncaught exception. In contrast, a
typical device driver is passive, responding only when a kernel thread calls it.
A device driver goes through a two-stage startup, first being loaded, and then
having one or more devices attached. Thereafter, it responds to calls
(typically, open, read, write, ioctl and close) and when called executes the
appropriate function and returns. Devices may be detached (and re-attached,
etc.); finally, the module may be unloaded. In the JVM we had to support an
execution model suitable for such behaviors.

One way would be to structure the device driver like a server application. We
would insert each call request into a call queue and have a thread process
calls, first come, first served. When the call queue became empty the thread
would wait for a call request to arrive. This approach does not require any
change to the existing Java execution model, but has drawbacks. First, extra
threads are required. We would have to choose whether each driver had its
own thread (or even multiple threads per driver), and synchronize these
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threads with the requesting threads. The call queue could become a
performance bottleneck.

A simpler way is to mimic existing driver structure, by allowing the Java
driver to act, in effect, as a modularized library of functions. To do this we
altered Squawk's behavior so that control can transfer out of Squawk without
the JVM state being lost. We encapsulate a single device driver within an
instance of Squawk.

Our version of Squawk executes a device driver as follows. When the device
driver is loaded into the kernel, the JVM starts up normally and the main
method of the main class (a subclass of DeviceDriver) is executed. The main
method creates and initializes an instance, and registers it in a static variable.
The last thing the main method does is to call a Squawk native method,
VM.stopVM, in such a way as to cause the JVM to exit while leaving the JVM
state (heap, loaded classes, static fields and threads) intact. When a call is later
made to the driver, a C trampoline routine transfers control back into the JVM,
forcing the main thread to call the corresponding Java method in the registered
instance. For example, a driver call to read executes the C trampoline
squawk_callback read, which calls DeviceDriver.do_read, which calls read
in the registered driver. When do_read returns, it does so using VM.stopVM
again, to preserve the JVM's state. When the device driver is to be unloaded
from the Solaris kernel, the JVM is terminated and deallocates its global data
structures (heap, etc.).

5. Accessing kernel services from Java

Device drivers may need to access kernel services. For that purpose, we must
provide a way for a Java device driver to call kernel functions and access
kernel data structures.

Calling kernel functions

The original Squawk JVM has a simple native interface used within the virtual
machine system code. It does not have a native interface (such as JNI) for
application code. For system code, a list of native methods appearing in the
virtual machine is constructed at the time a ROM image is created. Each
method is assigned an identifying number. All calls to these native methods
are replaced with the invokenative bytecode, with the identifier as an
argument. Within the interpreter, the implementation of invokenative uses a
switch statement to dispatch to the appropriate native method. We used this
technique to call kernel functions, extending the switch statement as
necessary.

Accessing kernel data structures

For each type of kernel struct we wished to access we created a Java wrapper
class; all such classes inherit from our class AddressWrapper. A device driver



accesses a struct via an instance of this class (a wrapper object). We were
faced with a choice in the design of the wrapper objects. In one design, a
wrapper would contain only a pointer to the underlying struct. Every attempt
to access a field of a struct would result in a native method call to read or
write the field. A drawback is the performance overhead of the calls.
Alternatively, the wrapper object would duplicate the state of the struct. The
object's fields could be accessed by Java code directly, but copying between
the struct and the wrapper object would be required at the right times. We
adopted the latter approach. The task of reconciling the contents of a wrapper
object with the underlying struct was considerably simplified by only
performing the reconciliation when a wrapper was passed to or from native
code. We had to deal with the following three argument-passing conventions:

1. Caller-allocated, callee only reads The caller allocates and initializes
the struct and passes a pointer to it to the callee. The callee only reads
the contents of the struct.

2. Caller-allocated, callee reads and writes The caller allocates and
initializes the struct and passes a pointer to it to the callee. The callee
may read and modify the contents of the struct.

3. Callee-allocated The callee allocates and initializes the struct, and
either returns a pointer to it or stores the pointer into a location specified
as an argument.

Once it has been determined which of these patterns applies to a given call, it
is straightforward to insert the appropriate copying behavior into the wrapper
class.

Reference arguments The common C convention of passing a pointer to
mimic call-by-reference is accommodated in two ways. When calling a Java
method from C, we pass the pointer as a value of a special Squawk class,
Addr. Although Addr is a class, its values are immediate addresses (C
pointers), which the garbage collector ignores.' Native methods are provided
to access the underlying location, convert between Addr and long and for
Addr arithmetic. When calling C from Java, we pass a reference to a single-
element Java array; conveniently, the layout of arrays in Squawk placed the
first element at offset zero. When we need to pass a pointer to a field of a

wrapper, we add a native method to the wrapper class which returns the
address of the field as an Addr.

6. Kernel modules for Squawk and Java device drivers

We packaged our system into loadable Solaris kernel modules so that it could

1 The Squawk garbage collector is written in Java, and uses Addr to manipulate memory
locations directly. Values of type Addr are also used within the Java heap to reference C
entities outside the heap.



be used without the need for Solaris kernel source code. Our system is
composed of three kernel modules (see Fig. 1):

kfileio contains a kernel version of the file I/O operations (open, close,
read, write, etc.), written in C. We derived the source from the Solaris
implementation of the corresponding system calls. They differ in that
they do not add entries to the per-process file descriptor table (so as to
not pollute the file descriptor table of the invoking process). Also,
because all data are consumed within the kernel address space, the
mechanism for copying data in and out must be different. This module

does not depend on any of our other modules. It is loaded using
modload(1).

squawk contains the in-kernel version of the Squawk virtual machine
and the core libraries. This module depends on kfileio. It is loaded after
kfileio using modload(1).

squawkddi implements the C portion of our device driver interface.
This module is the bridge between the Solaris Device Driver Interface
and our Java device driver interface (see Section 8). It is loaded after
kfileio and squawk using add_drv(1).

In our current implementation, squawk has hard-coded in the path to the ROM
image containing the bytecodes of the device driver to be executed, and
squawkddi has hard-coded in the name of the main device driver class.

7.Other modifications to Squawk
We further modified Squawk in the following ways:

1. 64-bit object references Since the target version of the Solaris kernel,
Solaris 10 for SPARCY, is a 64-bit kernel we had to make a 64-bit
version of the original 32-bit Squawk VM. The major modifications
included extending the size of object references (pointers) to 64 bits
within a ROM image and extending the local variable and evaluation
stack slots to 64 bits.

2. Termination The original Squawk terminates using exit. We added an
exit flag, which when set would cause the interpreter loop to terminate,
and replaced all calls to exit with code that sets the flag.

3. Multiple JVM instances To allow each driver to reside within a separate
instance of the JVM, we made it possible for multiple instances to co-
exist. To do this we moved Squawk's global state into a per-VM-
instance structure, initialized at JVM startup. The Squawk JVM is not
re-entrant, however, and we did not undertake to rectify this. This limits
its utility; more on this in Section 11.
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Figure 1. Kernel module arrangement

8. Writing device drivers in Java

This section describes our Java device driver interface, and the existing Solaris
device driver interface on which it is based [Sun05].

The Solaris device driver interface

A device driver will typically be a loadable kernel module containing
implementations of the required functions. In response to system calls, the
kernel locates and calls the appropriate device driver function. For example,
when a driver module is first loaded, the driver's_init function is called so that
the device driver can perform initializations, such as allocating kernel
resources. Conversely, fini is called before the module is unloaded. This is a
partial list of required device driver functions:

probe checks that the device is ready

attach is called when a device is attached

detach is called when a device is detached

getinfo gets configuration information from the driver
open opens the device

close closes the device

read reads from the device

write writes to the device

A device driver developer has to implement the device-specific version of
each function. Pointers to the functions are passed, encapsulated in a struct
dev_ops, to the modinstall function, which installs the driver and is typically
called from within the driver's _init function.



The Java device driver interface

Our device driver interface uses a single object to contain the methods that
would correspond to the functions and the pointers to them within a struct
dev_ops. A driver is written by subclassing the abstract device driver class,
DeviceDriver. DeviceDriver provides access to various kernel functions and
data structures in the form of Java native methods and classes that wrap
pointers to structs, as well as abstract method declarations for the driver
functions.

The device driver interface kernel module (squawkddi)

We built our Java device driver interface on top of the C-based Solaris device
driver interface using a C-based device driver module called squawkddi which
bridges the two interfaces. The base module is a normal device driver from the
viewpoint of the Solaris kernel and is written so that each driver call is
redirected to the Java device driver in the squawk kernel module.

9. An example driver: A RAM disk

Using our Java device driver interface, we implemented a RAM disk device
based on a sample driver, written in C, available from Sun's web site [Sun].
We chose this driver because we wanted to experiment with a relatively small
pseudo-device driver that did not deal with a real I/O device. We had to fix the
sample driver code before porting it to Java since it was outdated and did not
work on Solaris 10. The fixed C driver had 578 lines of code including
occasional comments. The Java version has 422 lines of code, and is a little
simpler than the C version. The Java source is listed in the Appendix (with
some debugging lines elided).

RamDiskDeviceDriver's main method is called when the virtual machine starts
up. It creates an instance of the driver class and registers it for calls. The other
methods in the class are semantically equivalent versions of the C functions
defined in the C version.

We performed the following simple performance measurements to compare
the Java version of the driver to the C version. The measurements were
performed on a Sun E420R system with four 450MHz UltraSPARC II CPUs
and 1GB of RAM, using Solaris 10 (Build 76).

1. Raw system call overhead We measured the time to call the close
system call on the RAM disk device. Because the c/ose function of the
RAM disk driver is empty, the measurement yields the total overhead
from the system call down to the device driver routine and back. We
repeated the measurement ten times and computed the average time.
The Java version took 4.48 microseconds whereas the C version took
3.84 microseconds, an overhead of 16.7%. The virtual machine was
given 512 KB of heap.



2. Throughput We measured the time to copy a IMB file within the
RAM disk. This measurement should indicate the performance of the
block I/O of the driver. We repeated the measurement ten times and
computed the average time. The Java version took 178 microseconds
and the C version took 63 microseconds. When a GC occurred during
a copy, the Java version took 230 microseconds. The Java version took
approximately 2.8 times and 3.8 times longer than the C version
without and with a GC, respectively. The virtual machine was given
512 KB of heap. We believe the overhead in the Java version is mainly
due to bytecode interpretation. The results are encouraging because the
Squawk virtual machine we used was an early unoptimized version,
with a just-in-time compiler in development.

As a demonstration of the safety properties provided by Java, we introduced a
null pointer dereferencing bug into both the C and Java versions of the RAM
disk device. The effect in the Java version was that a Java exception was
thrown, resulting in an error code being returned from the kernel to the calling
application. The C version caused a panic crash of the Solaris kernel. (This
was not unexpected, but it does make for a dramatic conclusion to a
presentation!)

10. Related work

Operating systems written in pointer-safe and type-safe languages

Many operating systems have been implemented entirely or primarily in
pointer- and type-safe programming languages. SPIN was implemented in
Modula-3 [BSP*95]. Pilot was implemented in Mesa [RDH*79]. Native
Oberon was based on Oberon [WG92]. JavaOS, JX and JNode are operating
systems primarily written in Java [Saulpaugh99, GFWKO02, JNode05].
Singularity is a research operating system to be written in C# [HL04]. These
systems use to their advantage the robustness and safety inherent in high-level
programming languages. Our system exploits Java in the same way, but
differs in that it extends an existing commercial operating system, Solaris,
written in C, rather than building an operating system from scratch.

OS-like functionalities for Java applications. MVM is a multitasking virtual
machine implementation [CDO1]. It modifies a JVM to enable multiple Java
applications to run within a single address space for better startup performance
and scalability. Security and isolation between multiple applications are
ensured by careful isolation of application states. It also provides resource
control for Java applications. KaffeOS is a Java runtime system that provides
application isolation and resource management [BHLOO]. JRes provided a
resource accounting interface for Java applications [CE98]. J-Kernel provides
multiple protection domains for Java applications [HCC*98]. These systems
provide some of the functions traditionally associated with an operating
system within a user-space JVM, rather than in the kernel space.

An earlier Sun Labs project, undertaken by Greg Czajkowski, Glenn Skinner
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and Ben Titzer, attempted to port Sun's Java HotSpot™ virtual machine
[Sun99] into the Solaris kernel. The Java HotSpot VM is orders of magnitude
more complicated than Squawk, and the project ultimately foundered due to
this complexity. It has many dependencies on external libraries. Problems
included bridging the gap between user and kernel space threading models,
dynamic linking, limitations on kernel module size, and signals. They ported a
substantial part of /ibc into the kernel. One of the reasons for choosing
Squawk for our project was that we observed first hand the difficulties
presented by a complex virtual machine with so many external dependencies.

11. Future work

Our experience in porting the sample driver falls far short of the complexity in
creating drivers for real devices. There is likely much to learn in
implementing non-trivial drivers in Java.

At present, interfacing to Solaris kernel services requires the tedious creation
of wrapper classes. A tool to automate much of this work, which could parse
C header files and generate appropriate wrappers, would be useful. Perhaps
SWIG (www.swig.org) could be used for this.

There are various enhancements to Squawk which would make the system
more useful:

The current implementation of Squawk schedules threads cooperatively,
like the “green threads” of early JVMs intended for desktop applications.
This is a reasonable design for a JVM intended for embedded applications.
However, the result is that the JVM is not reentrant and only one kernel
thread can be executing within a single instance. To enable multiple threads
to execute within a driver simultaneously, Squawk would need to be made
reentrant.

- Incorporating performance enhancements to Squawk, especially in the area
of compilation, should dramatically improve the performance and utility of
our system.

«  Our current design isolates drivers one from another by embedding them
within different JVM instances. Another direction would be to use isolates
within a single JVM instance [JCP05]. There is work in progress adding
isolate support to Squawk. To make this complete, one would also have to
modify the kernel modules to accept configuration information for different
drivers (currently, each module is hard-coded for a particular driver, as
described in Section 6).

Our native method interface does not support passing a reference to a Java
method to a C function expecting a function pointer, but this has proved
unnecessary so far.
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12. Summary

We have described our port of the Squawk JVM into the Solaris kernel
environment and its initial use for writing Solaris device drivers. We believe
that this experience demonstrates that it is feasible to port a Java virtual
machine into the Solaris kernel, thereby deriving the benefits of Java for
kernel extension, and provides a basis for further experimentation.
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Appendix: source code

Below, we present selected parts of the Java class DeviceDriver, other
auxiliary classes, and the RAM disk driver subclass, RamDiskDeviceDriver.

public abstract class DeviceDriver {
private static DeviceDriver dd; // The registered device driver

public static void register(DeviceDriver d);

// device driver call back methods — all follow the same pattern
public static void do__initQ { VM.returnFromCallbackint(dd == null ? 0:dd._init0); }
public static void do__fini(Q { VM.returnFromCallbackint(dd == null ? 0: dd._fini(0); }

public static void do__info(Addr modinfop) {
VM.returnFromCallbackint(dd == null ? 0: dd_info(new Modinfo(modinfop))); }

public static void do_probe(Addr dip) { ... }

public static void do_attach(Addr dip, int cmd) { }
public static void do_detach(Addr dip, int cmd) { ... }
public static void do_getinfo(Addr dip, int cmd, Addr arg, Addr result) { ... }

public static void do_open(Addr devp, int flag, int otype, Addr cred) {
VM.returnFromCallbackint(dd == null ? 31 : dd.open(new Ptr(devp), flag, otype, new Cred(cred))); }

public static void do_close(Addr dev, int flag, int otype, Addr cred) {
VM.returnFromCallbackint(dd == null ? 0 : dd.close(new Dev(dev), flag, otype, new Cred(cred))); }

public static void do_write(Addr dev, Addr uiop, Addr cred) { ... }

public static void do_read(Addr dev, Addr uiop, Addr cred) { ... }

public static void do_print(Addr dev, bytel[] str) { ... }

public static void do_strategy(Addr buf) { ... }

public static void do_ioctl(Addr dev, int cmd, Addr arg, int mode, Addr cred, Addr rvalp) { ... }

/* methods to be implemented by each device driver */

public abstract int _init();

public abstract int _info(Modinfo modinfop);

public abstract int _finiQ;

public abstract int probe(Devinfo dip);

public abstract int attach(Devinfo dip, int cmd);

public abstract int detach(Devinfo dip, int cmd);

public abstract int getinfo(Devinfo dip, int cmd, Ptr arg, Ptr result);
public abstract int open(Ptr devp, int flag, int otype, Cred cred);
public abstract int close(Dev dev, int flag, int otype, Cred cred);
public abstract int read(Dev dev, Uio uiop, Cred cred);

public abstract int write(Dev dev, Uio uiop, Cred cred);
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public abstract int strategy(Buf buf);
public abstract int ioctl(Dev dev, int cmd, Ptr arg, int mode, Cred cred, Ptr rvalp);

public abstract int print(Dev dev, String str);

7%
* Constants from the Solaris kernel header files
*/
public static final int DDI_SUCCESS = 0;
public static final int DDI_FAILURE = -1;

public static class AddressWrapper { ... }
public static class Ptr extends AddressWrapper { ... }
public static class KMem extends AddressWrapper {
public static KMem alloc(long size, int flag) { ... }
public void free(Q { ... }
public long size() { ... }
public Addr seek(long offset) { ...}
}
// Wrappers for C kernel structs. Class X wraps struct x.
public static class DkCinfo extends AddressWrapper { ... } // struct dk_cinfo
public static class DkGeom extends AddressWrapper { ... } // struct dk_geom
public static class Vtoc32 extends AddressWrapper { ... }
public static class Vtoc extends AddressWrapper { ... }
public static class Uio extends AddressWrapper { ... }
public static class Buf extends AddressWrapper { ... }
public static class Dev extends AddressWrapper { ...} // dev_t
public static class DevOps extends AddressWrapper { ... }
public static class Devinfo extends AddressWrapper { ... } // dev_info_t
public static interface Physiolnterface {
public int strategy(Buf buf);
public void mincnt(Buf buf);
public int getinfo(Devinfo dip, int cmd, Ptr arg, Ptr result);
}
public static class lovec extends AddressWrapper { ... }
public static class As extends AddressWrapper { ... }
public static class Proc extends AddressWrapper { ... }
public static class Cred extends AddressWrapper { ...} // cred_t
public static class Modinfo extends AddressWrapper { ... }

// support routines
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public static int physio(Physiolnterface physioi, Buf bp, Dev deyv, int rw, Uio uio) { ... }

public static int ddi_copyout(AddressWrapper from, AddressWrapper to, long size, int mode) { ... }
public static int ddi_writeout(int val, AddressWrapper to, int mode) { ... }

public static void bcopy(Addr src, Addr dst, long size) { ... }

public static Addr kmem_alloc(long size, int flag) { return VM.kmem_alloc(size, flag); }

public static void kmem_free(Addr p, long size) { VM.kmem_free(p, size); }

public static void console_printf(String msg) { ... }

public static void console_printf_long(long v) { ... }

publicclass RamDiskDeviceDriver extends DeviceDriver implementsDeviceDriver.Physiolnterface {

publicstaticvoid main(String[] args) {
DeviceDriver dd = newRamDiskDeviceDriver();
DeviceDriver.register(dd);
DeviceDriver.waitForCallbacks();

}
privatestaticclassDevstate {
KMem ram;
long rd_size;
int maxphys;
Devinfo dip;
Vtoc rd_vtoc;

DkGeom  rd_dkg;
DkCinfo rd_ci;
}

privateDevstate[] rsp = newDevstate[16];

publicint_initQ) { return0; }
publicint _info(Modinfo modinfop) { return0; }
publicint_fini() { return0; }

publicintprobe(Devinfo dip)  { returnnulldev(); }
publicintattach(Devinfo dip, intcmd) { ... }

publicintdetach(Devinfo dip, intcmd) { ... }

publicintgetinfo(Devinfo dip, intcmd, Ptr arg, Ptr result) {
switci{cmd) {
caseDDI_INFO_DEVT2DEVINFO:
result.store(rsp[newDev(arg).getMinor()].dip);
returnDDI_SUCCESS;
caseDDI_INFO_DEVT2INSTANCE:
result.store((long (newDev(arg).getMinor()));
returnDDI_SUCCESS;
default
returnDDI_FAILURE;
}
}

publicintopen(Ptr devp, intflag, intotype, Cred cred) {
if (otype != OTYP_BLK && otype != OTYP_CHR)
returnEINVAL;
return0;
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}

publicintclose(Dev dev, intflag, intotype, Cred cred) { ... }

publicintread(Dev dev, Uio uiop, Cred cred) {
intinstance = dev.getMinor();
if (uiop.getOffset() >= rsp[instance].rd_size)
returnEINVAL;
returnphysio(this null dev, Buf.B_READ, uiop);
}
publicintwrite(Dev dev, Uio uiop, Cred cred) {
intinstance = dev.getMinor();
if (uiop.getOffset() >= rsp[instancel.rd_size)
returnEINVAL;
returnphysio(this null dev, Buf.B_WRITE, uiop);

}

publicintioctl(Dev dev, intcmd, Ptr arg, intmode, Cred cred, Ptr rvalp) {
intminor;
interror;
intdkstate;

minor = dev.getMinor();
switchcmd) {
caseVOLIOCINFO:
/* pcfs does this to see if it needs to set PCFS_NOCHK */
/* 0 means it should set it */
returno0;
case DKIOCGVTOC:
switch(modelConvertFrom(mode & FMODELS)) {
caseDDI_MODEL_ILP32: {
Vtoc32 vtoc32 = newVtoc32(rsp[minorl.rd_vtoc);
vtoc32.allocInternal();
vtoc32.sync();
if (ddi_copyout(vtoc32, arg, Vtoc32.sizeofCStruct(), mode) != 0) {
vtoc32.freelnternal();

returnEFAULT;
}
vtoc32.freelnternal();
}
break

caseDDI_MODEL_NONE: {
Vtoc vtoc = rsp[minor].rd_vtoc;
vtoc.allocInternal();
vtoc.sync();
if (ddi_copyout(vtoc, arg, Vtoc.sizeofCStruct(), mode) != 0) {
vtoc.freelnternal();
returnEFAULT;
}
vtoc.freelnternal();
break
}
}// end switch
return0;
caseDKIOCINFO: {
DkCinfo ci = rsp[minor].rd_ci;
ci.allocInternal();
ci.sync();
error = ddi_copyout(ci, arg, DkCinfo.sizeofCStruct(), mode);
if (error != 0) {
ci.freelnternal();
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returnEFAULT;
}
ci.freelnternal(;
return0;
}
case DKIOCG_VIRTGEOM:
case DKIOCG_PHYGEOM:
case DKIOCGGEOM: {
DkGeom dkg = rsp[minor].rd_dkg;
dkg.allocInternal();
dkg.sync();
error = ddi_copyout(dkg, arg, DkGeom.sizeofCStruct(), mode);
if (error != 0) {
dkg.freelnternal();
returnEFAULT;
}
dkg.freelnternal();
return0;
}
case DKIOCSTATE:
/* the file is always there */
dkstate = DKIO_INSERTED;
error = ddi_writeout(dkstate, arg, mode); /* write an int to memory */
if (error != 0)
returnEFAULT;
returnO;
default
returnENOTTY;
}
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