

How to Tell a Compiler
What We Think We Know?

Guy L. Steele Jr.
Software Architect, Oracle Labs

SPLASH-I Keynote
Friday, November 4, 2016

Copyright c© 2016 Oracle and/or its affiliates (“Oracle”). All rights are reserved by Oracle except as ex-
pressly stated as follows. Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted, provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers, or to redistribute to lists, requires prior specific written permission of Oracle.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved.

We Begin with a Digression

Why do these slides have a strange aspect ratio?

If my slides are 4:3 but the projector is 16:9, 25% of the screen is wasted:

My 4:3 slide

25% wasted

And if my slides are 16:9 but the projector is 4:3, 25% of the screen is wasted:

My 16:9 slide

25% wasted

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 4

These Slides Have a 20:13 Aspect Ratio

The optimal compromise ratio is 8:3
√
3 = 1 + 1

1 + 1

1 + 1

5 + 1

1 + 1

4 + · · ·

.

Sucessive truncations of this continued fraction
produce approximants 1:1, 2:1, 3:2, 17:11, 20:13, 97:63, . . .

Using 20:13 with either 16:9 or 4:3 projection, less than 13.5% is wasted:

My 20:13 slide

13.46% wasted

My 20:13 slide

13.33% wasted

You may want to give this a try. If you can’t be bothered with 20:13, try 3:2
—at least until 16:9 projectors become ubiquitous.

(End of digression.)
Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 5

An Offhand Quote

If it’s worth telling another programmer,
it’s worth telling the compiler, I think.

—Guy Steele, in Coders at Work by Peter Seibel (2009)

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 6

A Modest Internet Meme

I’m always delighted by the light touch and stillness of early
programming languages. Not much text; a lot gets done. Old
programs read like quiet conversations between a well-spoken
research worker and a well-studied mechanical colleague,
not as a debate with a compiler. Who’d have guessed
sophistication bought such noise.

—Richard P. Gabriel, in 50 in 50 (2007)

https://vimeo.com/25958308 at 38:40
Google Search: 222 hits

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 7

Example Javadoc Comment #1

interface java.util.Collection<E>

boolean add(E e)

. . .

If a collection refuses to add a particular element for any reason other
than that it already contains the element, it must throw an exception
(rather than returning false). This preserves the invariant that a
collection always contains the specified element after this call returns.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 8

Example Javadoc Comment #2

interface java.math.BigInteger

public BigInteger shiftLeft(int n)

Returns a BigInteger whose value is (this << n).
The shift distance, n, may be negative, in which case this method
performs a right shift. (Computes floor(this * 2n).)

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 9

Example Javadoc Comment #3

interface java.lang.Math

public static float scalb(float f, int scaleFactor)

Returns f× 2scaleFactor rounded as if performed by a single
correctly rounded floating-point multiply to a member of the float
value set.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 10

Example Javadoc Comment #4

class java.lang.Object

public int hashCode()

. . .

If two objects are equal according to the equals(Object) method,
then calling the hashCode method on each of the two objects must
produce the same integer result.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 11

Example Javadoc Comment #5

class java.util.Vector<E>

public int IndexOf(Object o)

. . .

Returns the index of the first occurrence of the specified element
in this vector, or -1 if this vector does not contain the element.

More formally, returns the lowest index i such that
(o==null ? get(i)==null : o.equals(get(i))),
or -1 if there is no such index.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 12

Example Javadoc Comment #6

class java.lang.Object

public int equals(Object o)

The equals method implements an equivalence relation on non-null object references:

• It is reflexive: for any non-null reference value x, x.equals(x) should return true.

• It is symmetric: for any non-null reference values x and y, x.equals(y) should

return true if and only if y.equals(x) returns true.

• It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns

true and y.equals(z) returns true, then x.equals(z) should return true.

• It is consistent: for any non-null reference values x and y, multiple invocations

of x.equals(y) consistently return true or consistently return false,

provided no information used in equals comparisons on the objects is modified.

• For any non-null reference value x, x.equals(null) should return false.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 13

Example Javadoc Comment #7

interface java.util.Collection<E>

public int equals(Object o)

. . . programmers who implement the Collection interface “directly” (in other words, create a class that

is a Collection but is not a Set or a List) must exercise care if they choose to override the

Object.equals. It is not necessary to do so, and the simplest course of action is to rely on Object’s

implementation, but the implementor may wish to implement a “value comparison” in place of the default

“reference comparison.” (The List and Set interfaces mandate such value comparisons.)

The general contract for the Object.equals method states that equals must be symmetric (in other

words, a.equals(b) if and only if b.equals(a)). The contracts for List.equals and

Set.equals state that lists are only equal to other lists, and sets to other sets. Thus, a custom equals

method for a collection class that implements neither the List nor Set interface must return false

when this collection is compared to any list or set. (By the same logic, it is not possible to write a class

that correctly implements both the Set and List interfaces.)

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 14

Example Javadoc Comment #8

class java.util.stream.Stream<T>

T reduce(T identity,

BinaryOperator<T> accumulator)

. . .

The identity value must be an identity for the accumulator function.
This means that for all t, accumulator.apply(identity, t) is
equal to t. The accumulator function must be an associative function.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 15

Example Javadoc Comment #9

interface java.util.Collection<E>

default Stream<E> stream()

Returns a sequential Stream with this collection as its source.

This method should be overridden when the spliterator() method
cannot return a spliterator that is IMMUTABLE, CONCURRENT,
or late-binding.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 16

Example Javadoc Comment #10

class java.util.regex.Matcher

. . .

Instances of this class are not safe for use by multiple concurrent threads.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 17

Example Javadoc Comment #11

class java.util.concurrent.ConcurrentLinkedDeque<E>

. . .

Concurrent insertion, removal, and access operations execute safely
across multiple threads.

. . .

Iterators and spliterators are weakly consistent .

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 18

Example Javadoc Comment #12

interface java.awt.dnd.DropTargetListener

void drop(DropTargetDropEvent dtde)

This method is responsible for undertaking the transfer of the data associated with the gesture. The

DropTargetDropEvent provides a means to obtain a Transferable object that represents the

data object(s) to be transfered.

From this method, the DropTargetListener shall accept or reject the drop via the

acceptDrop(int dropAction) or rejectDrop() methods of the DropTargetDropEvent

parameter.

Subsequent to acceptDrop(), but not before, DropTargetDropEvent’s getTransferable()

method may be invoked, and data transfer may be performed via the returned Transferable’s

getTransferData() method.

At the completion of a drop, an implementation of this method is required to signal the success/failure of

the drop by passing an appropriate boolean to the DropTargetDropEvent’s

dropComplete(boolean success) method.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 19

What Is the Role of the Compiler (or IDE)?

• To translate code for machine execution

• To perform various optimizations

• To prevent “incorrect” programs from executing

– Type-checking

– Interfaces

– Contracts

– More generally, to verify certain claims by the programmer

• To report various properties of the program to the programmer

• To take directions from the programmer about how to carry out all of
these activities

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 20

What Do We Want to Say?

Compilers contain specialized theorem provers (such as type analysis and
flow analysis), and they are becoming somewhat more general.

What sort of claims would we like a compiler to verify?

How should we express such claims?

Will the claims themselves, in effect, become programs that need all the help
and tools and abstractions of the base language?

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 21

Relationships and Contraints among Entities

• Various kinds of entities

– Different data structures

– Same data structure at different points in time

– Different methods

– One method and its arguments

• Various kind of relationships

– Types; sources and sinks; invariants; temporal sequencing

• Expressed in various ways

– “Plain English”; technical English

– Chunks of code; mathematical notation

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 22

Attributes of a Single Function or Method

• Pure (free of side effects)

• Symmetric / commutative / antisymmetric

• Associative, idempotent

• Has an identity and/or a zero

• Injective (one-to-one) / surjective (covers entire range) / bijective

• Performance or algorithmic complexity

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 23

Relationships among Functions and Methods

• Distributive: a× (b+ c) = (a× b) + (a× c)

– Less obvious example: a+ (b max c) = (a+ b) max (a+ c),
an important characteristic of the tropical semiring, recently used to get
practical parallel speedups on a class of optimization algorithms
Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. Efficient parallelization using rank convergence in

dynamic programming algorithms. CACM 59, 10 (September 2016), 85–92. DOI: http://dx.doi.org/10.1145/2983553

• Must call f before calling g

• f produces an argument suitable for g

• g requires a value produced by f

• Homomorphisms (when length maps strings to integers, in effect it also
maps concatenation to integer addition—this is a monoid homomorphism)

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 24

Describing Relationships among Data Items

Often we simply refer to these as invariants.

• “1 ≤ i ≤ 100” or “i < j” or “n = |a| for array a”

• “These arrays are all the same length”

• “This array is one element longer than that one”

• “This array can hold anything that one can”

• “This array contains all the same values as that one, except . . . ”

• “i is a valid index for a”

• “i is the index of the first element of a that satisfies p”

• “m is a count of the elements of a that satisfy p”

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 25

Describing Attributes of Aggregate Data

• Sorted

• Has no duplicates

• Some field has no duplicates

– For example, the keys of a map (regarded as a set of pairs)

– More generally, map(f, a) has no duplicates

• Is in “normal form”

• This tree is a heap (no node has a larger value than any of its descendants)

• The Red-Black tree property

• Monoid-cached trees (every node contains reduce(f) of leaves below it)

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 26

Transformations on Programs

Sometimes we derive a program by starting with a simple working version
and then transforming it:

• Changes of representation

• Loop unrolling, loop interchange, and loop fusion

• Deforestation (“recursion fusion”)

• Conversion to continuation-passing style

• Refactoring

We don’t yet have a good and well-accepted metalanguage for recording and
replaying such transformations.

We do have tools for version control that record all the different versions of a
file over time, but precious little in the way of tools that record, analyze, and
report relationships between successive versions (other than simple diff).

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 27

These Are Very Rich Ideas

Associated with all these ideas is
a vast literature of theorems
and application techniques.

How can we begin to communicate them
to a compiler?

Baby steps, baby steps.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 28

Haskell Type Classes: Semiring

class Eq s => Semiring s where

zero :: s

one :: s

(.+.) :: s -> s -> s

(.*.) :: s -> s -> s

https://hackage.haskell.org/package/weighted-regexp-0.1.0.0/docs/Data-Semiring.html

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 29

Haskell Type Class Semiring Built on Monoid?

class Eq s, Monoid s => Semiring s where

zero :: s

one :: s

(.+.) :: s -> s -> s

(.*.) :: s -> s -> s

But there is a problem here . . .

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 30

Haskell Type Class Semiring Built on Monoid??

class Eq s, Monoid s (.+.) zero, Monoid s (.*.) one

=> Semiring s where

zero :: s

one :: s

(.+.) :: s -> s -> s

(.*.) :: s -> s -> s

Underlined part is not actually valid Haskell syntax!

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 31

Haskell Type Class Semiring Built on Monoid???

class Eq s, Monoid s (.+.) zero, Monoid s (.*.) one

=> Semiring s (.+.) zero (.*.) one where

zero :: s

one :: s

(.+.) :: s -> s -> s

(.*.) :: s -> s -> s

That is, .+. and zero and .*. and one must become bindable parameters.

Underlined part is not actually valid Haskell syntax!

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 32

Haskell Type Class Semiring: Comments

A semiring is an additive commutative monoid with identity zero:
a .+. b == b .+. a

zero .+. a == a

(a .+. b) .+. c == a .+. (b .+. c)

A semiring is a multiplicative monoid with identity one:
one .*. a == a

a .*. one == a

(a .*. b) .*. c == a .*. (b .*. c)

Multiplication distributes over addition:
a .*. (b .+. c) == (a .*. b) .+. (a .*. c)

(a .+. b) .*. c == (a .*. c) .+. (b .*. c)

zero annihilates a semiring with respect to multiplication:
zero .*. a == zero https://hackage.haskell.org/

package/weighted-regexp-0.1.0.0/
docs/Data-Semiring.html

a .*. zero == zero

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 33

Organization versus Enforcement

Haskell type classes provide a way to organize such algebraic abstractions,
but they do not enforce them.

Monads use the Haskell type system to enforce restrictions on access to data
and ordering of operations, at the expense of single-threading the entire
program (or the relevant parts of the program), but the algebraic monad laws
that every monad should obey are not enforced upon the monads themselves;
they are merely documented :

Instances of Monad should satisfy the following laws:
return a >>= k = k a

m >>= return = m

m >>= (x -> k x >>= h) = (m >>= k) >>= h

https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Monad.html

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 34

These Ideas Have Been in the Air for Nearly Three Decades

Wadler and Blott speculated when they first introduced type classes in 1988:

It is natural to think of adding assertions to the class declaration, specifying properties that

each instance must satisfy:
P. Wadler and S. Blott. How to make
ad-hoc polymorphism less ad hoc. Proc.
16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages.
ACM, New York, 1988, 60–76.
http://dx.doi.org/10.1145/75277.75283

class Eq a where

(==) :: a -> a -> Bool
% (==) is an equivalence relation

class Num a where
zero, one :: a
(+), (*) :: a -> a -> a
negate :: a -> a
% (zero, one, (+), (*), negate) form a ring

It is valid for any proof to rely on these properties, so long as one proves that they hold for

each instance declaration. Here the assertions have simply been written as comments;

a more sophisticated system could perhaps verify or use such assertions.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 35

Fortress Traits for Binary Predicates and Operators

trait BinaryPredicate
[[
T extends BinaryPredicateJT,∼K, opr ∼

]]
comprises T extends Any

abstract opr ∼(self, other :T): Boolean

end

trait BinaryOperator
[[
T extends BinaryOperatorJT,�K, opr �

]]
comprises T extends Any

abstract opr �(self, other :T):T

end

trait Z extends
{

BinaryPredicateJZ,=K,BinaryOperatorJZ,+K, . . .
}

opr =(self, other :Z): Boolean = . . .

opr +(self, other :Z):Z = . . .

. . .

end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 36

The “mixin” Abbreviation I Wish We Had Used

mixin BinaryPredicateJT, opr ∼K extends Any *� I wish!

abstract opr ∼(self, other :T): Boolean

end

mixin BinaryOperatorJT, opr �K extends Any *� In my dreams

abstract opr �(self, other :T):T

end

trait Z extends
{

BinaryPredicateJZ,=K,BinaryOperatorJZ,+K, . . .
}

opr =(self, other :Z): Boolean = . . .

opr +(self, other :Z):Z = . . .

. . .

end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 37

Fortress Summation Method (Incomplete)

sum
[[
U extends BinaryOperatorJU,+K

]](
x: ListJUK

)
:U =

if x.empty then . . . else x.first + sum(x.rest) end

(We could have used a loop, but this keeps the example simple.)

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 38

“Fortress”: Declared Characteristics of Predicates

mixin ReflexiveJT, opr ∼K extends
{

BinaryPredicateJT,∼K
}

property ∀(a:T) (a ∼ a)

end

trait SymmetricJT, opr ∼K extends
{

BinaryPredicateJT,∼K
}

property ∀(a:T, b:T) (a ∼ b)↔ (b ∼ a)

end

trait TransitiveJT, opr ∼K extends
{

BinaryPredicateJT,∼K
}

property ∀(a:T, b:T, c:T)
(
(a ∼ b) ∧ (b ∼ c)

)
→ (a ∼ c)

end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 39

“Fortress”: Equivalence Relations

mixin EquivalenceRelationJT, opr ∼K
extends

{
ReflexiveJT,∼K,SymmetricJT,∼K,TransitiveJT,∼K

}
end

trait Z extends
{

EquivalenceRelationJZ,=K,BinaryOperatorJZ,+K, . . .
}

opr =(self, other :Z): Boolean = . . .

opr +(self, other :Z):Z = . . .

. . .

end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 40

“Fortress”: Associativity and Commutativity

mixin ApproximatelyAssociativeJT, opr �, opr ≈K
extends

{
BinaryOperatorJT,�K,ReflexiveJT,≈K,SymmetricJT,≈K

}
property ∀(a:T, b:T, c:T)

(
(a� b)� c

)
≈

(
a� (b� c)

)
end

mixin AssociativeJT, opr �K
extends

{
ApproximatelyAssociativeJT,�,=K,EquivalenceRelationJT,=K

}
end

mixin ApproximatelyCommutativeJT, opr �, opr ≈K
extends

{
BinaryOperatorJT,�K,ReflexiveJT,≈K,SymmetricJT,≈K

}
property ∀(a:T, b:T) (a� b) ≈ (b� a)

end

mixin CommutativeJT, opr �K
extends

{
ApproximatelyCommutativeJT,�,=K,EquivalenceRelationJT,=K

}
end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 41

“Fortress”: Monoids (Associative Operators with Identity)

mixin MonoidJT, opr �K
extends

{
AssociativeJT,�K

}
*� Approximate cases omitted

where
{
T coerces IdentityJ�K

}
end

trait CommutativeMonoidJT, opr ⊕K
extends

{
MonoidJT,⊕K,CommutativeJT,⊕K

}
*� Approximate cases omitted

where
{
T coerces IdentityJ⊕K

}
end

trait Z extends
{

EquivalenceRelationJZ,=K,CommutativeMonoidJZ,+K, . . .
}

opr =(self, other :Z): Boolean = . . .

opr +(self, other :Z):Z = . . .

coercion
(
x: IdentityJ+K

)
= 0

. . .

end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 42

Fortress Summation Method (Complete)

sum
[[
U extends MonoidJU,+K

]](
x: ListJUK

)
:U =

if x.empty then IdentityJ+K else x.first + sum(x.rest) end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 43

Fortress Summation Method (Complete)

sum
[[
U extends MonoidJU,+K

]](
x: ListJUK

)
:U =

if x.empty then IdentityJ+K else x.first + sum(x.rest) end

object IdentityJopr �K end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 44

“Fortress”: SemiRings and Rings

trait SemiRingJT, opr ⊕, opr ⊗K
extends {CommutativeMonoidJT,⊕K,MonoidJT,⊗K,

DistributiveJT,⊗,⊕K,ZeroAnnihilationJT,⊗K }
where

{
T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K

}
end

trait RingJT, opr ⊕, opr 	, opr ⊗K
extends

{
AbelianGroupJT,⊕,	K,SemiRingJT,⊕,⊗K

}
where

{
T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K

}
end

trait CommutativeRingJT, opr ⊕, opr 	, opr ⊗K
extends

{
RingJT,⊕,	,⊗K,CommutativeMonoidJT,⊗K

}
where

{
T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K

}
end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 45

“Fortress”: Properties of Integers Z
trait Z extends {EquivalenceRelationJZ,=K,CommutativeRingJZ,+,−,×K,

TotalOrderOperatorsJZ, <,≤,≥, >, CMPK, . . . }
opr =(self, other :Z): Boolean = . . .

opr +(self, other :Z):Z = . . .

coercion
(
x: IdentityJ+K

)
= 0

opr ×(self, other :Z):Z = . . .

coercion
(
x: IdentityJ×K

)
= 1

coercion
(
x: ZeroJ×K

)
= 0

opr <(self, other :Z): Boolean = . . .

opr ≤(self, other :Z): Boolean = . . .

opr ≥(self, other :Z): Boolean = . . .

opr >(self, other :Z): Boolean = . . .

opr CMP(self, other :Z): TotalComparison = . . .

. . .

end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 46

“Fortress”: Boolean Algebras

trait Boolean extends {EquivalenceRelationJBoolean,=K,
BooleanAlgebraJBoolean,∧,∨,∼,⊕K, . . . }

opr ∧(self, other : Boolean): Boolean = . . .

coercion
(
x: IdentityJ∧K

)
= true

coercion
(
x: ZeroJ∧K

)
= false

opr ∨(self, other : Boolean): Boolean = . . .

coercion
(
x: IdentityJ∨K

)
= false

coercion
(
x: ZeroJ∨K

)
= true

opr ∼(self): Boolean = . . .

opr ⊕(self, other : Boolean): Boolean = . . .

coercion
(
x: IdentityJ⊕K

)
= false

end

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 47

Advantages of This Approach

• Expressive (at least for “classical algebraic properties”)

• Modular

• Programmer can provide multiple implementations

– Which to use can depend on declared data characteristics

? Reduction of an associative function can be parallelized,
but the non-associative case can also be addressed

? Searching of a sorted array can use binary search instead of linear
? Polymorphic method dispatch supports automatic selection

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 48

Disadvantages of This Approach

• Data-centric (applied only to methods, not to global functions)

• Complete checking requires a theorem prover

• No mechanism for abstraction of “where {T coerces . . . } ”

– Such material had to be repeated over and over

– Using getter methods and name parameters would have been better

• Could be overkill

– Maybe parametric polymorphism is really needed only for collections

– Likewise, maybe this stuff is really needed only for a limited set of
algebraic properties that could just be built into the compiler?

• Does not capture temporal constraints (such as sequencing)

• Not always clear when it’s doing you any good

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 49

Equivalence Relations in Coq (A Proof Assistant)

Class Reflexive (R : relation A) :=

reflexivity : forall x : A, R x x.

Class Symmetric (R : relation A) :=

symmetry : forall x y, R x y -> R y x.

Class Transitive (R : relation A) :=

transitivity : forall x y z, R x y -> R y z -> R x z.

Class Equivalence (R : relation A) : Prop := {
Equivalence_Reflexive :> Reflexive R ;

Equivalence_Symmetric :> Symmetric R ;

Equivalence_Transitive :> Transitive R }.

https://coq.inria.fr/library/Coq.Classes.RelationClasses.html

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 50

Semirings in Coq

Class SemiRing A {e: Equiv A}
{plus: RingPlus A} {mult: RingMult A}
{zero: RingZero A} {one: RingOne A}: Prop :=

{ semiring mult monoid:> CommutativeMonoid A (op:=mult)(unit:=one)

; semiring plus monoid:> CommutativeMonoid A (op:=plus)(unit:=zero)

; semiring distr:> Distribute mult plus

; semiring left absorb:> LeftAbsorb mult zero }

Bas Spitters and Eelis van der Weegen. Type Classes for Mathematics in Type Theory. Mathematical Structures
in Computer Science 21, 4 (August 2011), 795–825. http://dx.doi.org/10.1017/S0960129511000119

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 51

We Are Now Beginning to See These Technologies in Haskell

• Testing the declared properties of type classes using QuickCheck
Johan Jeuring, Patrik Jansson, and Cláudio Amaral. Testing type class laws.
Proc. 2012 Haskell Symposium. ACM, New York, 2012, 49–60. http://dx.doi.org/10.1145/2364506.2364514

• Using a theorem prover to prove declared properties of type classes
Andrew Farmer, Neil Sculthorpe, and Andy Gill. Reasoning with the HERMIT: Tool support for equational
reasoning on GHC Core programs. Proc. 2015 Haskell Symposium. ACM, New York, 2015, 23–34.
DOI=http://dx.doi.org/10.1145/2804302.2804303

Andreas Arvidsson, Moa Johansson, and Robin Touche. Proving type class laws for Haskell.
Proc. 17th Symposium on Trends in Functional Programming, June 2016.
https://tfp2016.org/papers/TFP 2016 paper 20.pdf

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 52

I can say many things to the compiler.

But will they be relevant?

If not, I will be wasting:

• My effort (writing them down)

• The compiler’s effort (verifying and re-verifying them)

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 53

Hanabi: A Cooperative Card Game

• Each card has a color (red, blue, green, yellow, white)
and a number (1, 2, 3, 4, 5).

• Except for the 5’s, there is more than one card of each kind.

• Each player is dealt five cards (if 2 or 3 players) or four cards (if 4 or 5).

• You must not look at your own hand!

• Each player can see all other hands.

• Players must help each other to make correct plays.

(Winner of Spiel des Jahres 2013. Available at Amazon or your friendly local game store.)

http://www.cocktailgames.com/en/game/hanabi/

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 54

Hanabi: The Goal

5
5

1
1

5
5

2
2

5
5

3
3

5
5

4
4

5
5

5
5

1

1

2

2

3

3

4

4

5

5
1

1

2

2

3

3

4

4

5

5

1
1

2
2

3
3

4
4

5
5

1

1

2

2

3

3

4

4

5

5
The goal is to make five piles, one
of each color, putting down cards
in ascending order from 1 to 5.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 55

Hanabi: The Play (Simplified for This Talk)

Players take turns in the usual way in clockwise order.
On a turn, a player must choose to do exactly one of three things:

• Try to play one card (sight unseen!), then draw to replace

– If the card cannot be played, it is a mistake (and is discarded)
– On the third mistake, the game is lost

• Give information to another player:

– Choose either a color or a number
– Point out every card in that other player’s hand

that has that color or number

? Or say, “You have no blue cards,” “You have no 2’s,” etc.

• Discard one card, then draw to replace

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 56

Hanabi: The 60 Possible Utterances

You have 5 reds. You have 5 blues. You have 5 greens. You have 5 yellows. You have 5 whites.

You have 4 reds. You have 4 blues. You have 4 greens. You have 4 yellows. You have 4 whites.

You have 3 reds. You have 3 blues. You have 3 greens. You have 3 yellows. You have 3 whites.

You have 2 reds. You have 2 blues. You have 2 greens. You have 2 yellows. You have 2 whites.

You have 1 reds. You have 1 blues. You have 1 greens. You have 1 yellows. You have 1 whites.

You have no reds. You have no blues. You have no greens. You have no yellows. You have no whites.

You have five 1’s. You have five 2’s. You have five 3’s. You have five 4’s. You have five 5’s.

You have four 1’s. You have four 2’s. You have four 3’s. You have four 4’s. You have four 5’s.

You have three 1’s. You have three 2’s. You have three 3’s. You have three 4’s. You have three 5’s.

You have two 1’s. You have two 2’s. You have two 3’s. You have two 4’s. You have two 5’s.

You have one 1. You have one 2. You have one 3. You have one 4. You have one 5.

You have no 1’s. You have no 2’s. You have no 3’s. You have no 4’s. You have no 5’s.

Augmented by pointing, of course.
This is a small (and artificial) language.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 57

Hanabi: Sample Three-Player Game

4

4

4

4

2

2

5

5

3

3

3

3

Alice

1

1

4

4

3

3

1

1

5

5

Bob

Chris

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 58

Hanabi: Alice Gives Bob a Clue

4

4

4

4

2

2

5

5

3

3

3

3

Alice

1

1

4

4

3

3

1

1

5

5

“Each of these is a 1.”

Bob

Chris

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 59

Hanabi: Bob Plays a Card . . .

4

4

4

4

2

2

5

5

3

3

3

3

Alice

4

4

3

3

1

1

5

5

Bob

Chris

1

1

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 60

Hanabi: . . . and Draws a New Card

4

4

4

4

2

2

5

5

3

3

3

3

Alice

2

2

4

4

3

3

1

1

5

5

Bob

Chris

1

1

Now what should Chris do?
Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 61

Hanabi: Chris Gives Alice a Clue

4

4

4

4

2

2

5

5

3

3

3

3

“This is a 2.”

Alice

2

2

4

4

3

3

1

1

5

5

Bob

Chris

1

1

Now what should Alice do?
Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 62

Hanabi: Alice Plays a Card . . .

4

4

4

42

5

5

3

3

3

3

Alice

2

2

4

4

3

3

1

1

5

5

Bob

Chris

1

1

2

2

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 63

Hanabi: . . . and Draws a New Card

4

4

4

4

2

2

5

5

3

3

3

3

Alice

2

2

4

4

3

3

1

1

5

5

Bob

Chris

1

1

2

2

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 64

Hanabi: Should Bob Play His Yellow 1?

4

4

4

4

2

2

5

5

3

3

3

3

Alice

2

2

4

4

3

3

1

1

5

5

Bob

Chris

1

1

2

2

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 65

Hanabi: Bob Can Give Alice a Clue

4

4

4

4

2

2

5

5

3

3

3

3

Alice

“Each of these is a 3.”

2

2

4

4

3

3

1

1

5

5

Bob

Chris

1

1

2

2

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 66

Hanabi: Bob Can Give Alice an Actionable Clue

4

4

4

4

2

2

5

5

3

3

3

3

Alice

“This is blue.”

2

2

4

4

3

3

1

1

5

5

Bob

Chris

1

1

2

2

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 67

Hanabi: Bob Can Give Alice a Clue Clearly for Future Use (?)

4

4

4

4

2

2

5

5

3

3

3

3

Alice

“Each of these is a 4.”

2

2

4

4

3

3

1

1

5

5

Bob

Chris

1

1

2

2

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 68

Hanabi: One Could Give a Conventional Clue

One could invent elaborate conventions for Hanabi such as:

• The first time I give you a clue, if it’s about color and points out exactly two
cards, then it also implies that none of your cards is currently playable.

• If my clue is about color and points out exactly three cards, then it implies
that both of the other cards are currently playable.

I haven’t actually tried these, though I think they are plausible.

But a simple one I have used is:

• If I point out exactly one card and say anything other than “This is a 5,”
assume it is playable unless you can prove otherwise.

Such conventions are beyond the rules of the game and may be invented and
adapted freely. Think of them as a kind of slang.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 69

A Crazy Good Hanabi Strategy

For mathematical geeks: Hanabi is like a super hat-guessing puzzle.

With a sufficiently complicated convention, a single clue can give useful
information to every other player simultaneously.

Christopher Cox, Jessica de Silva, Philip Deorsey, Franklin H. J. Kenter, Troy Retter, and Josh Tobin.

How to make the perfect fireworks display: Two strategies for Hanabi. Mathematics Magazine 88, 5

(December 2015), 323–336. http://www.jstor.org/stable/10.4169/math.mag.88.5.323

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 70

Contract Bridge: The 38 Possible Utterances

7♣ 7♦ 7♥ 7♠ 7NT

6♣ 6♦ 6♥ 6♠ 6NT

5♣ 5♦ 5♥ 5♠ 5NT

Pass Double Redouble

4♣ 4♦ 4♥ 4♠ 4NT

3♣ 3♦ 3♥ 3♠ 3NT

2♣ 2♦ 2♥ 2♠ 2NT

1♣ 1♦ 1♥ 1♠ 1NT

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 71

Bidding in Contract Bridge

The bid “2♥” is a factual statement meaning, “If no one else bids higher,
then my team will undertake to win at least 8 (that is, 6+2) tricks out of 13
with hearts (♥) as the trump suit.”

The bid “2♣” is a factual statement meaning, “If no one else bids higher,
then my team will undertake to win at least 8 (that is, 6+2) tricks out of 13
with clubs (♣) as the trump suit.”

The bid “3NT” is a factual statement meaning, “If no one else bids higher,
then my team will undertake to win at least 9 (that is, 6+3) tricks out of 13
with no trump suit.”

(In each case, there are scoring bonuses for success and penalties for failure.)

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 72

Bridge Bidding Conventions: What Do 2♥ and 2♣ Mean?

If you bid 1♥, partner bids 1NT, you bid 2♥: you really do want ♥ as trumps.
If you bid 1♣, partner bids 1NT, you bid 2♣: you really do want ♣ as trumps.

If partner opens 1NT and you respond 2♥, it means “Partner, please bid 2♠.”
If partner opens 1NT and you respond 2♣, it means “Partner, please:

if you have at least 4 cards in ♥, bid 2♥; otherwise,
if you have at least 4 cards in ♠, bid 2♠; otherwise, bid 2♦.”

If you open with 2♥, you have 6 cards in ♥ and a relatively weak hand.
If you open with 2♣, you have a very powerful hand (no promises about ♣).

Goal: communicate as much useful information as possible in as many
situations as possible to win as many games as possible (there are tradeoffs).

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 73

“It’s raining.”

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 74

In a conversational context,
the interpretation of a proposition

can depend on not only
beliefs about whether it is true

but also beliefs about
context and relevance and intention.

This can make conversation more efficient.

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 75

This Talk Is an Essay (I Didn’t Know Where It Would Go)

I started out wanting to tell things to a compiler (or IDE).

• Specifically, I want to tell a compiler far more than types.

• I thought the conclusion would be that compilers need theorem provers.

That’s not a bad goal. But I have ended up wanting much more:

• I want a conversational partner that will track what I am doing.

• I want it to react to context and intention.

• I want it to give me relevant information.

This is much harder than “Just the facts, Ma’am.”

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 76

“Let’s change the type of x

from short to long.”

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 77

“These arrays should be kept sorted.”

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 78

“Let’s try the same set of

loop-interchange transformations

that we used last week

on that other algorithm.”

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 79

Questions?

Comments?

Copyright c◦ 2016 Oracle and/or its affiliates. All rights reserved. 80

