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Abstract

Current memory reclamation mechanisms for highly-concurrent
data structures present an awkward trade-off. Techniques such as
epoch-based reclamation perform well when all threads are running
on dedicated processors, but the delay or failure of a single thread
will prevent any other thread from reclaiming memory. Alternatives
such as hazard pointers are highly robust, but they are expensive
because they require a large number of memory barriers.

This paper proposes three novel ways to alleviate the costs of
the memory barriers associated with hazard pointers and related
techniques. These new proposals are backward-compatible with ex-
isting code that uses hazard pointers. They move the cost of memory
management from the principal code path to the infrequent mem-
ory reclamation procedure, significantly reducing or eliminating
memory barriers executed on the principal code path.

These proposals include (1) exploiting the operating system’s
memory protection ability, (2) exploiting certain x86 hardware
features to trigger memory barriers only when needed, and (3)
a novel hardware-assisted mechanism, called a hazard lookaside
buffer (HLB) that allows a reclaiming thread to query whether
there are hazardous pointers that need to be flushed to memory.
We evaluate our proposals using a few fundamental data structures
(linked lists and skiplists) and libcuckoo, a recent high-throughput
hash-table library, and show significant improvements over the
hazard pointer technique.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques — concurrent programming

General Terms  Algorithms, Performance

Keywords memory reclamation, concurrent data structures, hazard
pointers, memory barriers

1.

The widespread use of multicore platforms has produced a growing
interest in the design and implementation of concurrent data struc-
tures that minimize the use of locks. These data structures typically
consist of a collection of nodes linked by pointers. Threads navigate
through these links, adding nodes to or removing nodes from the
structure. These data structures present the problem of memory man-
agement: when a node is unlinked from the structure, the memory
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it occupies must eventually be reclaimed. In managed languages
such as Java or Go, unused memory is reclaimed automatically by a
garbage collector. For languages like C and C++, however, memory
management is the explicit responsibility of the programmer.

Current memory reclamation mechanisms present an awkward
trade-off. Techniques such as epoch-based reclamation [15] perform
well when all threads are running on dedicated processors, but the
delay or failure of a single thread will prevent any other thread from
reclaiming memory. Alternatives such as hazard pointers [29]] are
highly robust, but they are expensive because they require additional
memory barriers (also known as memory fences) [[18]]. In particular,
on mainstream multicore architectures with a total-store ordering
(TSO) memory model, such as SPARC and x86, the hazard pointer
technique requires a store-load memory barrier after every store of
a hazard pointer.

The principal shortcoming of hazard pointers is that the common
case is expensive: every thread that traverses a data structure must
incur the cost of a memory barrier at each node it encounters, no
matter how infrequently memory reclamation actually occurs or even
if it does not occur at all (e.g., in read-only workloads). It would be
preferable to displace such costs to the reclamation process itself,
moving them out of the principal code paths.

In this paper, we propose three novel ways to alleviate the costs
of the memory barriers associated with hazard pointers and related
techniques. These proposals are backward-compatible with existing
code that uses hazard pointers, in the sense that they require only
minor changes to the module that manages hazard pointers, and
no other changes to the application itself. Apart from preserving
the simplicity of hazard pointers, the common ground for all these
proposals is an attempt to move the cost of memory reclamation
from the principal code path to the infrequent memory reclamation
procedure. In particular, all these ideas significantly reduce or
eliminate memory barriers executed on the principal code path.

The first idea uses the operating system’s memory protection
ability, available in most modern operating systems, to replace
(frequent) memory barriers during traversals with (infrequent) global
memory barriers executed by all threads during memory reclamation.
The second idea does not require any operating system support,
but it is x86-specific, and relies on a less known feature of this
architecture that allows to force a global barrier. While this idea is
not portable to other architectures, it allows us to get a better sense
of the inherent costs of global memory barriers. Finally, instead of
using indirect techniques to trick the hardware into making hazard
pointers visible at the right time, we propose a simple hardware-
assisted mechanism, called a hazard lookaside buffer (HLB), that
allows a reclaiming thread to query whether there are hazardous
pointers that need to be flushed to memory. As we discuss later in
the paper, the functionality of HLB can be implemented as a part
of store buffers employed by modern architectures, or as a separate
unit operating in parallel with the store buffer. Given that most data



// shared table of hazard pointers
Nodexx hazardTable;

1

2

3

4+ | Nodex hazardRead(Nodexx object, int index) {
5 while (true) {

6 Nodex read = *object;

7 hazardTable[index]
8 membar();

9 Nodex reread = xobject;
10 if (read == reread) {
1 return read;

12 }

13 }

|}

read;

Figure 1: Creating a hazard pointer

// thread—local list of retired nodes
___thread Node *retired,;

1

2

3

4 |void reclaim() {

5 Nodex prev = retired;
6 Nodex curr = retired —>next;

7 while (curr = NULL) {

8 if (contains(hazardTable, curr)) {
9 curr = curr—>next; // hazardous!
10 } else {

1 prev—>next = curr—>next; // safe

12 free (curr);

13 curr = prev—>next;

14 }

15 }

16 }

Figure 2: Reclaiming a node using hazard pointers

structures that use hazard pointers store them in a circular buffer,
using HLB of a size as large as the circular buffer will eliminate all
hazard-induced barriers, including the ones that might be required
by the reclamation procedure.

We evaluate the first two of our ideas in the context of a
few fundamental data structures (linked lists and skiplists) and
libcuckoo [23]], a recent high-throughput hash-table library, and
show significant improvements over the hazard pointer technique. In
addition, we use the Pin tool [3] to evaluate the potential benefits of
HLB. We find based on the Pin traces that in practice, depending on
the size of the store buffer, even a very small HLB of a few entries
can eliminate all hazard-induced memory barriers.

2. Background

Many data structures, such as linked lists [[17], skiplists [14} 20],
B-trees [4], queues [28]], heaps [23], and hash maps [32], consist
of a collection of nodes linked by pointers. Often, threads navigate
through these nodes without acquiring locks. For example, using
the lazy list algorithm [17}|19]], threads traverse the data structure
speculatively, without acquiring locks, then validate the target nodes
(using locks or atomic operations) before making changes.

While lock-free navigation is typically more efficient than lock-
based navigation, it requires more complex memory management,
because nodes unlinked from the data structure cannot be reclaimed
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right away. The problem is that a thread might still have a reference
to that node in a local variable at the time the node is unlinked. If
the node’s memory is immediately reclaimed, then that thread may
dereference that address and find that node in an unexpected state.
Instead, when a node is unlinked from the data structure, it is said
to be retired, and a grace period must elapse before its memory can
be safely reclaimed.

Using hazard pointers [29] (and related techniques [21]]), a thread
about to dereference an address publishes that address to warn other
threads not to reclaim that memory. The procedure for reading a
memory location using a hazard pointer protection is shown in
Figure [I] (we omit C-style volatile keywords for clarity). In this
example, the hazard table is implemented as a shared array, in which
each thread is assigned an equal number of entries. The thread
repeatedly reads the given pointer (Line [)), stores it in the shared
hazard table (Line [7), performs a memory barrier (Line [§), and
rereads the pointer (Line[). If the pointer in memory is unchanged,
that pointer is returned, and otherwise the loop resumes. As noted,
this frequently-invoked memory barrier is the expensive part of this
method.

A retired node is added to a thread-local list of retired nodes. As
shown in Figure[2] to reclaim memory, the thread iterates through
its retired list, testing whether that pointer is present in the shared
hazard table (Line [8). The auxiliary contains() procedure simply
scans the hazard table and checks whether any of its entries contains
the given pointer. If not, it is safe to reclaim the node.

Hazard pointers are expensive because memory barriers are
expensive, and a thread traversing a structure must execute a
memory barrier each time a new node is traversed, making common
operations expensive. Hazard pointers, however, are robust: a failed
or delayed thread can prevent certain nodes from being recycled, but
will not prevent other threads from allocating, retiring, and recycling
memory.

By contrast, using epoch-based reclamation [15]), threads execute
in a succession of stages called epochs. Nodes retired during
one epoch can be recycled as soon as all active threads have
reached a sufficiently later epoch. The Read-Copy-Update (RCU)
synchronization technique [27] is closely related to the epoch-
based reclamation. To allow concurrency between multiple readers
and an updater, RCU maintains multiple copies of shared objects
(composing a shared data structure) and ensures that old copies
are not freed up until all readers potentially accessing these copies
complete their critical sections.

Under normal circumstances, epoch-based reclamation is typ-
ically faster than hazard pointers [18] because it requires fewer
memory barriers, but it is not robust: if even a single thread is
delayed, epoch-based reclamation prevents every thread from re-
cycling retired nodes. Furthermore, while hazard pointers allow
prompt reclamation of deleted objects, epoch-based approaches can
allow quite a bit of “garbage" to accumulate between epochs, im-
pacting memory footprint and cache residency. This is because these
approaches have to wait for all threads to move into a later epoch,
which may take a while if even one thread runs a long operation
(e.g., scans a long linked list).

To illustrate these effects, we compared how these memory
management algorithms perform on two simple highly-concurrent
list implementations. As mentioned above, in the lazy list [19]
threads search through the list without acquiring locks. An operation
that modifies the list then locks the affected nodes, validates that
they are correct, and then perform the modifications. By contrast,
the lock-free list [17] replaces the lazy list’s lock acquisitions with
atomic compare-and-swap operations.

We ran a simple synthetic benchmark comparing the lazy and
lock-free list implementations. We used an Intel Haswell processor
(Core i7-4770), running at 3.40 GHz. The machine has a total of §GB
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Figure 3: Linked lists with varying memory management algorithms (lower is better)

of RAM shared across four cores, each having a 32 KB L1 cache.
Hyper-threading was enabled, yielding a total of eight hardware
threads. Threads were not pinned to cores. The list implementations
were compared using the following settings. List values range from
zero to 10,000, and the list is initialized to hold approximately half
of those values. The number of threads varies from 1 to 12, and
collectively they call 100,000 operations, divided equally among the
threads. Each time a thread calls an operation, it searches the list
with 80% probability, and otherwise adds or removes list elements
with equal probability.

Figure 3] shows the results. The left-hand bar shows the bench-
mark running time with no memory reclamation, the middle bar with
hazard pointers, and the right-hand bar with epoch-based memory
management. We are left with an unattractive choice: the hazard
pointer mechanism is slower but tolerates thread delays and fail-
ures, while the epoch-based mechanism is normally faster, but easily
disrupted by delays such as cache misses or by thread failures.

3. Related Work

A thread is said to be quiescent if it holds no references to any
shared nodes in local variables. It is safe to reclaim a retired
node’s memory after every thread that accesses that shared data
structure has passed through one or more quiescent states. Proposals
such as quiescent state-based reclamation (QSBR) [[18] and epoch-
based reclamation [15]] require each thread to report to the memory
management library each time its application reaches a quiescent
state. A retired node can be reclaimed after every thread has made
such a report.

Although quiescence-based techniques have been observed to
perform well in general [18]], they are not robust: the delay (or
failure) of a single thread will delay (or completely prevent) any
thread from reclaiming any retired memory, arguably undermining
the robustness benefits of lock-free traversals in the first place. By
contrast, hazard pointers are more robust: the delay (or failure) of a
single thread will inhibit reclaiming that thread’s retired memory,
but it will not inhibit reclamation of any other memory for any other
thread.

Braginsky et al. [5] attempts to reduce the costs of hazard pointer
memory barriers by updating hazard pointers (and triggering the
associated memory fences) less frequently than proposed by the
original technique [29]. To ensure robustness, a costly recovery
procedure is invoked if a thread is suspected to fail. This recovery,
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which is expected to be executed very infrequently, requires copying
the part of the data structure that the suspected thread may still
be referencing. Here, memory fence overhead is shifted off the
common path onto the more complicated failure recovery path.
While Braginsky et al. [5] showed that this trade-off substantially
improves performance of linked lists, applying their ideas to other
data structures is challenging.

Morrison and Afek [31]] observe that fence-free hazard pointers
are possible in a so-called temporally bounded total store ordering
(TBTSO) memory model, where the time it takes a store to drain
from the store buffer to memory is bounded. They discuss hardware
extensions required to provide such a bound in systems implement-
ing total-store order. Furthermore, they show how to adapt TBTSO
to existing x86 systems by generating periodic timer interrupts on
every core [31]. In practice, however, these interrupts impose a con-
stant overhead on the system even when none of the threads accesses
a shared data structure and/or reclaims memory.

In a different context of work-stealing algorithms, Gidron et
al. [16], inspired by ideas from Dice et al. [10], describe a way to
eliminate fences by binding the slow thread (the stealer in their
context) directly to the core on which the fast thread (the consumer)
is currently running. In the setting of memory reclamation, the slow
thread would be the one reclaiming memory and the fast thread
would be one of the threads accessing the data structure. As in
the instance of TBTSO emulation, however, this approach is quite
intrusive, and requires paying the cost of multiple thread migrations
even when none of the threads accesses the data structure during
memory reclamation.

Several recent papers describe alternative approaches to memory
reclamation. Dragojevic et al. [13]] and Alistarh et al. [[1] show how
to exploit hardware transactional memory and its strong atomicity
feature to achieve effective memory reclamation. Multiple papers
explore the use of inter-process signaling for memory reclamation.
For instance, Brown describes an efficient extension to an epoch-
based reclamation to support fault-tolerance [6]. When a thread
reclaiming memory suspects that another thread T has failed, it
signals T. In the signal handler, T jumps to specially-designed
recovery code that restarts the current operation. Devising recovery
code requires non-trivial reasoning about the correctness of the
memory reclamation scheme. Furthermore, to avoid starving threads
with long-running operations (such as traversals of long lists), one
has to carefully tune the signaling timeouts.



Alistarh et al. [2] also utilize signaling to automatically detect
which memory locations are accessed by concurrent threads. More
specifically, threads keep retired nodes in a shared buffer; when
this buffer overflows, the last thread reclaiming a node initiates a
reclamation procedure, which includes sending signals to all other
threads, requesting them to scan their stack and registers to identify
any references to the retired nodes. Without maintaining a set of
active threads, i.e., threads currently applying operations on the
data structure, however, this approach might introduce unnecessary
overhead to threads not accessing the data structure. Besides, this
technique assumes that threads may have references to shared nodes
only in their registers or on their stacks. This assumption does
not hold for some data structure implementations, e.g., when heap-
allocated pointers are used for traversals.

Finally, Cohen and Petrank [7]] present a hybrid technique, where
hazard pointers (and accompanying fences) are used for writes only.
For reads, they employ an optimistic approach, where the validity
of a read instruction is established after the read is performed.
Specifically, each thread is equipped with a so-called warning bit,
which is turned on by a reclaiming thread to notify threads that
there is a danger of stale read access; a thread that performs a read
and finds its warning bit set restarts its operations. This techniques
aims to provide fast read operations. However, it requires that reads
from stale memory location never trap. (A trap might happen if,
for instance, the deallocated memory is unmapped by the operating
system). Furthermore, this technique can be applied only to data
structures expressed in a special normalized form [[1].

In summary, the techniques introduced in this paper take advan-
tage of the relative simplicity and robustness of the hazard pointer
technique, which does not require refactoring the original data struc-
ture implementation. Moreover, our techniques are substantially less
intrusive than those proposed by the prior work cited above, impos-
ing virtually no overhead on threads that do not access shared data
structures. This lack of overhead is achieved without introducing
additional restrictions on the underlying system or data structure
implementations: for example, there is no need to track the active set
of threads or to use non-trapping loads. Furthermore, our techniques
significantly reduce, and in some cases completely eliminate, the
number of required memory fences by moving them to the infre-
quently executed reclamation procedure, away from the principal
code pat

4. Exploiting Memory Protection

Modern operating systems provide the ability to write-protect
memory pages. If a thread write-protects a page, then any thread
that attempts to write to that page takes an interrupt, passing control
to that thread’s signal handler. When the signal handler returns, the
interrupted write instruction is retried. The memory protection call
forces a global memory barrier, flushing any pending writes to that
page from store buffers to memory before that page can be protected.

When a thread traverses a data structure, it stores the address in
the hazard table as in Figure[I] except it omits the memory barrier
at Line

For ease of presentation, we assume that the hazard table holding
hazard pointers of all threads resides in a single memory page; the
scheme works the same when the hazard table spans multiple pages.
To test whether a retired node can be reclaimed, a thread scans the
hazard table as shown in Figure [2] except that before it scans the
table it write-protects the page where it resides and immediately

I'We note that "asymmetric” techniques, i.e., techniques that shift work
from a fast path to a slow path, exist in other contexts as well. One such
example is a biased locking approach [[121[24,31], in which a lock is reserved
for a thread that acquires it frequently; the reservation allows subsequent
acquisitions to take place without atomic operations.
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removes write protection. Protecting the page forces to memory any
pending writes to the table, so the execution looks as if traversing
threads had been doing memory barriers all along.

If a thread tries to write a hazard pointer to a write-protected
table, it takes an interrupt and jumps to a signal handler, which
simply blocks until the page becomes writable again. When the
page is writable, the thread returns from the signal handler and the
write is retried. Note that the read retry loop of Figure [I] is still
needed because the block could have been reclaimed between when
its address was read and when its address was written to the hazard
table.

This technique relies on the fact that write-protect operations
are synchronous across all processors. That is, the write-protect
operation involves a Translation Lookaside Buffer (TLB) coherence
protocol, and does not return until all its effects have been made
visible to all other processors and all pending stores to the write-
protected page have been made visible as well. (For more details,
see [11]]). The technique is safe on x86 and SPARC TSO. However,
proving the safety of this approach on architectures with weaker
memory models or alternative TLB coherence mechanisms is left
for future wor

This scheme blocks threads accessing the hazard table as long as
the page remains write-protected. Although this typically happens
for a very brief moment, some delays in removing write protection
are possible, e.g., if the thread performing memory reclamation is
swapped out. To alleviate possible performance implications, one
may extend this scheme by allocating hazard pointers to each thread
on a separate page. During memory reclamation, a thread will write-
protect the pages holding hazard pointers of other threads one by
one, thus potentially blocking only one other thread at a time. As
long as the memory reclamation is invoked infrequently, the increase
in its cost due to using an API for protecting and unprotecting pages
multiple times would be negligible.

We note that some Linux kernels provide a new system call,
sys_membarrier(), which implements a system-wide memory barrier
on all threads of the current process [8]]. Conceptually, this system
call has a similar functionality to the memory-protection technique
described above, but without involving a memory management
unit. It was introduced primarily in order to enhance an RCU
implementation, and in particular, eliminate memory fences from
reader code paths in liburcu, a library providing user-space RCU
implementation (available at http://1liburcu.org). While the
Linux kernels of our systems do not support this system call, our
future work includes evaluating it once it becomes more widely
available.

5. Exploiting Hardware Features

Here is another way to force an infrequent global memory barrier
(when memory is to be reclaimed), instead of frequent memory
barriers (when data structures are traversed).

It turns out that on certain x86 architectures, an attempt to exe-
cute a split compare-and-swap instruction (i.e., a compare-and-swap
instruction that spans two cache lines) will also force a global barrier.
This feature exists for backward compatibility with legacy code de-
veloped for older processors. These processors implemented atomic
instructions (e.g., compare-and-swap) by locking the memory bus
([26] pp.78-79. For additional details, a reader is referred to [9]).
This was a conceptually simple implementation, but it impaired
overall performance as unrelated atomic operations could not be
executed concurrently (and in fact, any operation that required a
memory bus could not execute concurrently with an atomic oper-

2 We believe that putting more code between the calls to write-protect the
page and remove this protection (e.g., scanning the hazard pointer table
before removing write protection from its page) might suffice.
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ation). Modern x86 architectures switched to use cache-locking,
where atomic instructions are implemented directly in the local
cache of each processor by locking a single cache line holding the
target memory location of the atomic operation. (This design is used
by other architectures as well, e.g., SPARC [9]). Along with that,
the bus locking was preserved to handle the case of atomics that
span two cache lines. Clearly, it may not hold for all future x86
implementations, yet we investigate it here because it gives insight
into how future hardware might be adapted to provide better support
for this kind of memory management. We want to emphasize that
this technique should not be considered a general-purpose approach
nor a portable solution to the problem of enhancing hazard pointer
performance.

As before, a thread traverses the data structure without executing
memory barriers. When a thread seeks to reclaim memory, it
performs a split compare-and-swap instruction immediately before
reading the hazard table.

6. Architectural Extensions

In this section, we propose a simple hardware-assisted mechanism
that combines the robustness of hazard pointers with the perfor-
mance of epoch-based reclamation. It requires the following archi-
tectural changes:

e Two new instruction codes are needed, a special test operation,
and a special store operation.

e One new hardware unit, the hazard lookaside buffer (HLB),
snoops on the cache coherence protocol and interacts with the
store buffer.

e There are no changes to the native cache coherence protocol.

This proposal makes minimal changes to the memory hierarchy.
It replaces the frequent memory barriers required by hazard pointer
reclamation with an infrequent additional cache-coherence trans-
action, while providing the same level of robustness as the hazard
pointer scheme. In more detail, each core has a hazard lookaside
buffer (HLB), a device, similar to a store buffer, that snoops on
coherence traffic, and keeps track of hazardous pointers that may
be in the store buffer. Before a thread reclaims a potentially haz-
ardous memory block, it issues a cache-coherence transaction for
that pointer, which queries the HLBs, who respond if that pointer is
being written to memory. If no HLB responds, then as in the usual
hazard pointer algorithm [29]], the querying thread must check the
hazard table residing in memory. However, recycling memory is
done infrequently, out of the critical path.

Comparing this approach to the mechanisms discussed in Sec-
tions[d]and 5] we note one important difference. Just like virtually
any mechanism forcing a global barrier on the system, the two mech-
anisms discussed in Section [ and 5] may present an opportunity
for malicious code to harm system performance (e.g., by repetitive
invocation of write-protection operations on a shared page). The
HLB-based mechanism, however, does not force a global barrier
and thus is less susceptible to malicious side effects. It relies on
cache-coherence queries, while the cost of such an HLB query is
comparable to that of a load instruction.

6.1 Hazard Lookaside Buffers

We introduce two new instructions. The first is hstore (ptr,tab),
which replaces the store and memory barrier calls at Lines [7Hg]in
Figurem The second is htest (ptr), which returns a Boolean (or
sets a flag). If it returns true, then ptr is hazardous. Otherwise, the
caller must check the hazard table to finish determining whether that
pointer is hazardous.

There are now two steps to deciding whether it is safe to reclaim a
node. First, if htest (ptr) returns true, then the pointer is a potential
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hazard. Otherwise, if that pointer is present in the hazard table, then
it is a potential hazard. As explained below, every hazardous pointer
will fail at least one of these two tests, so there is no need for a
memory barrier after every store to a hazard pointer.

For ease of exposition, we assume a conventional bus-based
architecture consisting of multiple CPUs, each with a store buffer
and an L1 cache, where the caches run a MESI protocol over a
shared bus (Figure ). We assume that all addresses on the bus are
cache-aligned (multiples of the cache line size). If a is an address,
let line (a) denote the address of the first word in a cache line
containing a.

There is one additional unit: each CPU has an HLB in parallel
with the store buffer. The HLB also snoops on the buﬂ

The HLB is a set of entries, where each entry is a pair consisting
of a hazard pointer and a table address. The HLB can be smaller
than or the same size as the store buffer. Each HLB entry keeps track
of a hazard pointer that has not yet been written to memory and the
address to which it will be written. The HLB is searchable by both
pointer and table fields.

Normally, when the CPU stores value v at address a, it creates
an entry (v,a) in the store buffer, and the L1 issues a read-to-own
bus transaction for address line (a). (If the store buffer is full, the
store stalls while the contents of the store buffer are moved to the
L1 cache). If the CPU issues two stores to address a, and the second
store takes place while the first is still in the store buffer, the second
store’s entry overwrites the first store’s entry in the store buffer, a
process called write absorption. A CPU can issue a memory fence
that forces all entries in the store buffer into the L1 cache.

When the CPU issues a hstore(ptr, tab) instruction, it adds
a (ptr,tab) entry to the HLB, and a (ptr,tab) entry to the store
buffer. The HLB, like the store buffer, performs write absorption.
If the HLB is full, it signals a memory fence to the store buffer,
emptying both buffers. Conversely, if the store buffer is flushed by a
fence, the HLB is also emptied.

When a CPU issues an htest(ptr) call, it broadcasts a bus
transaction. In some architectures, this transaction would be similar
to the one broadcasted for a load instruction. All HLBs snoop the
bus, and if any of them has an entry (ptr ), it replies.

3 The HLB must offer latencies of the store buffer while having the ability
to snoop the memory bus. We believe this is possible based on the fact that
modern architectures feature L1 caches that are globally coherent, but still
provide low latencies. Furthermore, HLB is expected to be very small. As
we discuss in Section[7] HLB with just a few entries is expected to eliminate
most hazard-induced memory barriers.



If a thread is swapped out, a memory fence will force stores in
the store buffer to be written to the L1 (and dirty cache lines will be
written back to memory), causing the HLB to be emptied as well.

Most data structures that use hazard pointers store them in
a circular buffer, overwriting older pointers with new ones. For
instance, a linked list implementation requires just two hazard
pointers per thread, regardless of the size of the list [29]. If the
HLB is at least as large as the circular buffer, then a thread can
traverse a data structure without a single hazard-induced memory
barrier. Otherwise, if the HLB is smaller and has a size of k entries,
then the number of memory barriers is reduced by a factor of k.

6.2 Variations

If the HLB and store buffer have the same size, then they could be
merged into a single unit combining the functionality of both. This
architecture eliminates the need for a specialized hstore instruction,
replacing it with a regular store.

The HLB could be designed to snoop on traffic from the store
buffer to the L1 cache, and could discard an entry whose address is
observed to be removed from the store buffer. This design reduces
the likelihood of HLB overflow.

An alternative design combines reading the pointer from memory
and placing that pointer in the HLB in a single hload(ptrLoc,tab)
instruction. This design eliminates the loop in Figure[T] It requires
more complicated logic because one must ensure that loading the
pointer and writing it to the HLB happen atomically.

7. Experimental Evaluation
7.1 Data Structure Microbenchmarks

To evaluate and compare our proposals, we ran a series of simple
benchmarks comparing the various memory management schemes.
We used an Intel Haswell processor (Core 17-4770) as described in
Section 2] Threads were not pinned to cores.

We focused on two linked data structures whose operations
require traversals: lists and skiplists. We started with the lazy list and
skiplist implementations [22]], since they are known to be efficient.
A lazy implementation deletes a node from the data structure in two
stages: first, the node is marked as deleted (logically deleted), and
second it is unlinked from the data structure (physically deleted). To
add or delete a node, a thread traverses the data structure, without
acquiring locks, until it finds its target node. The thread then locks
both the target node and its predecessor (or predecessors, in case of
skiplists), and validates that the locked node is the correct one. If
s0, the thread proceeds to modify the data structure, and if not, the
thread unlocks the nodes and restarts the operation.

Because the original lazy list and skiplist implementations rely
on garbage collection for storage management, they support wait-
free membership queries: a querying thread traverses the data
structure without acquiring locks. That thread might encounter
logically or physically deleted nodes, but the garbage collector
ensures that any such traversal is safe: no deleted node will be
reclaimed while a traversal is in progress.

Unfortunately, we do not know any way for the lazy list or
skiplist implementations to support wait-free queries when memory
is managed using hazard pointers. The problem is that a physically
deleted node may still be reachable from earlier physically deleted
nodes, so it is not safe to reclaim that node even if it does not appear
in the hazard table. To fix this problem, we adopt the approach
used in Michael’s original hazard pointer paper [29]: when a query
traversal encounters a node marked as deleted, it simply restarts the
query.

The list implementations were compared using a simple synthetic
benchmark based on the following parameters. List values range
from zero to 1000, and the list is initialized to hold approximately
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half of those values. The number of threads varies from 1 to 8, and
collectively they call 1M operations. Each time a thread calls an
operation, it chooses contains() with a probability that varies from
0 to 1, and otherwise calls one of the mutators (add() or remove())
with equal probability. We ran experiments with 0%, 25%, 50%,
and 100% mutator operations. For each workload configuration, we
performed five runs and report the median result. We note that the
standard deviation of the reported results is negligible, in the order
of a few percents or less from the mean for most of the results.
We tested the following memory management schemes.

e The /eaky scheme does not use hazard pointers. It allocates
but never recycles memory. This scheme provides an idealized
baseline for the others.

e The hp scheme uses hazard pointers as described above, applying
a memory barrier each time a node is traversed.

e The hp-mprotect scheme uses hazard pointers with memory
protection replacing barriers.

e The hp-split-cas scheme uses hazard pointers with split-CAS
replacing barriers.

The latter three schemes that use hazard pointers were configured
to trigger the reclamation procedure when a new node needs to be
allocated and the local list of retired nodes has reached the size of
64. This is done to amortize the cost of hazard table scans [29].

Figures [5H8] show the list benchmark running times for the
various memory management schemes, numbers of threads, and
mutator percentages. The memory management schemes fall into
three rough categories: the sip scheme yields the worst performance
by far, while (the unrealistic) leaky scheme yields the best. The
hp-mprotect and hp-split-cas perform noticeably better than Ap and
close to (but slightly worse than) the leaky version (that does not
use hazard pointers at all), especially for workloads that include
mutation operations.

We note that all variants (except for leaky) have similar spatial
performance in terms of the amount of retired nodes that could be
deallocated, but that remain unreleased. The hazard pointer tech-
nique defers releasing only memory blocks that are still referenced
by hazard pointers, and even then only for brief periods of time.
Given that our proposals rely on hazard pointers, the spatial perfor-
mance of all compared techniques (except for leaky) is the same
for lists, as well as all other benchmarks. This is supported by the
fact that the number of allocated and recycled nodes that we have
measured, as well as the number of hazard table scans was similar
for hp, hp-mprotect and hp-split-cas variants.

Figures[OHT2] show the results of the skiplist benchmarks. Here,
too, the memory management schemes fall roughly into the same
three categories. Along with that, note that in Figure[T2] both /p-
split-cas and hp-mprotect outperform the leaky scheme starting
at 4 threads. We believe this is because in this benchmark with a
relatively high number of allocations and deallocations (due to the
high rate of mutations), the small overhead of reclamation in hp-
split-cas and hp-mprotect is easily compensated by reduced memory
footprint of the skiplist, which results in improved memory locality.
The observation that efficient memory management schemes can
outperform leaky schemes was also reported in [6].

We used the PIN tool [3] to instrument the memory references
produced by the list and skiplist benchmarks using the standard
hazard pointer memory management scheme. The tool produced
traces of memory reads and writes, distinguishing regular memory
writes from writes to the hazard pointer table.

We wrote a simple simulator in Python to replay the traces and
to simulate the effects of different-sized HLBs. For simplicity of the
analysis, we assume each thread has its own core. Each core has a
32-line store buffer, where each cache line holds 64 bytes. Each core
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also has a hazard lookaside buffer of sizes O (no HLB), and each
power of 2 from 1 to 32. Each address is divided by 64 to detect
when addresses map to the same cache line. The simulator begins
tracing each thread’s memory references only after its first hazard
pointer reference. Each regular write is placed in the store buffer,
and each hazard table write is placed in both the store buffer and the
HLB. Whenever either buffer reaches capacity, a memory fence is
triggered, and both buffers are emptied.

This simulation is, of course, crude, but it provides a “back of the
envelope” estimate of the kinds of gains that might be provided by
various-sized HLBs. It does not take into account memory barriers
forced by atomic operations, interrupts, and so on. We emphasize
that in practice, we do not require that the store buffer actually
waits until it is full before draining its contents. Instead, the interval
between two successive memory barriers in the model represents a
period of time during which every write that had entered the store
buffer at the start must have left it by the end, perhaps one at a time.
Moreover, because every write in the HLB is also in the store buffer,
every write that had entered the HLB at the start of the period must
also have left it by the end.

For a baseline, we count the number of barriers that occur when
no HLB is in use: every store to the hazard table provokes a fence.
We count the number of barriers that occur for each HLB size, and
take the ratio of the two quantities. We also measure gaps, defined
to be a sequence of successive regular memory stores to different
cache lines that occur between successive stores to the hazard pointer
table. If the typical gap size multiplied by the HLB size is larger than
the store buffer size, then most barriers will occur when the store
buffer reaches capacity, so the cost associated with hazard pointer
management is minimal. If, however, the typical gap size multiplied
by the HLB size is less than the store buffer size, then most barriers
will occur when the HLB reaches capacity, and the cost associated
with hazard pointer management will dominate.

We analyzed traces from the list and skiplist benchmarks. Since
these benchmarks spend all their time traversing their data structures,
they both make intensive use of hazard pointers. The benchmarks
were compiled with the -03 option to encourage the compiler to
minimize the number of memory references. For each benchmark,
the number of threads ranged from 1 to 8, and the percentage of
mutator operations from 0 to 50. These parameters had little effect
on memory behavior.
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The results appear in Figure@ For the list benchmark, an HLB
of size 1 provides no benefit, while an HLB of size 2 provides
dramatic reduction in the number of barriers. The explanation is
simple: Over 99% of the gaps were observed to be much smaller
than the store buffer size, so an HLB of size 1 forces a fence at
almost every write to the hazard table. The list implementation
requires two hazard pointers per thread, since it keeps track of the
current and previous nodes. Once the HLB can hold both of those
entries, it suppresses any further hazard-related memory barriers.

For the skiplist benchmark, which tracks a variable number
of hazard pointers, the improvement is more gradual, but equally
dramatic. As with the list benchmark, an HLB size of 1 provides no
benefit. As the HLB size increases to 2 and 4, the number of memory
barriers shrinks by an order of magnitude, and when it reaches 8, it
shrinks by another order of magnitude.

These benchmarks are synchronization-intensive, so one might
expect more realistic benchmarks to have longer minimum gaps.
In such a case, even an HLB of size 1 can significantly reduce the
number of hazard-related memory barriers.

7.2 Experimenting with libcuckoo

The libcukoo library provides an implementation of a high-
throughput, memory-efficient concurrent hash-table [25]. It uses
fine-grained locks to support concurrent access of multiple readers
and writers. As a result, it does not require hazard pointer to manage
data stored in hash-tables. However, it uses hazard pointers to man-
age the hash-table itself, or more precisely, different instances of
the table that may be created due to table expansiorﬂ Thus, before
every operation on the table, a thread places a hazard pointer on the
current instance of the table. This ensures that this instance would
not be deallocated if another concurrently running thread decides to
expand the table and create another table instance.

The original implementation lacked a memory fence after setting
a hazard pointer. We fixed this issue, and also implemented hp-split-
cas and hp-mprotect variants. The latter was implemented by simply
overloading the standard memory allocator for the std::list class
used by the original application to implement the hazard table. In

4Recently, the authors of libcukoo redesigned their implementation and
removed the use of hazard pointers. We are using a version before the
redesign, which was used in [25]. We note, however, that the git commit
comment on the redesign change indicates that hazard pointers removal was
done as a simplification step, not because of performance.
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Figure 14: Experimental results with libcuckoo.

addition, both variants required one line of code being inserted in
the function traversing hazard table: calling a function invoking
a split CAS for hp-split-cas, and causing the allocator to write-
protect and unprotect the page it uses for allocation (i.e., the page
holding all hazard pointers) for hp-mprotect. Hence, this benchmark
exemplifies the compatibility of our ideas with the existing code that
uses hazard pointers. In particular, no code changes outside of the
module managing hazard pointers are required.

The results of the libcukoo benchmark are shown in Figure[T4]
The read-only workload is shown in Figure[T4|a), while the work-
load in which 25% operations are updates (that insert or remove
a key) is shown in Figure [T4b). We used the default key range
(32M) and the initial load of the table of 50%. Like with the mi-
crobenchmarks discussed in Section the memory management
schemes fall into the three categories. Although the differences in
performance between all the four schemes are relatively modest,
recall that in this benchmark a hazard pointer is updated once per
operation rather than per traversed node. Thus, having the leaky vari-
ant outperform Ap by up to 14% is remarkable. The hp-split-cas and
hp-mprotect variants are able to uncover most of the performance
degradation caused by the use of hazard pointers in read-only work-
load and roughly half of it in the workload that includes updates.

8. Conclusions

This paper observes that one of the performance shortcomings of
the popular hazard pointer technique for memory management of
concurrent data structures is the need for memory fences on the
principal execution path that traverses nodes of the given data
structure. We present three ideas for reducing this overhead by
displacing the cost of memory fences to the much more infrequently
executed reclamation phase. The first idea requires operating system
support, available in most modern operating systems. The second
idea does not require any support from an operating system, but
is x86 specific. Lastly, the third idea proposes a simple hardware-
assisted mechanism that allows a reclaiming thread to query whether
there are hazardous pointers that have not been written to memory
yet. We evaluate these ideas directly and by using the PIN tool [3]
on a number of benchmarks, and find that they always improve
over the hazard pointer technique, in some cases by very large
margins. Critically, all the ideas discussed in this paper are backward-
compatible with existing code that uses hazard pointers. As we
demonstrate with the libcuckoo benchmark [25], they require only
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minor changes to the code managing hazard pointers and do not
require any changes to the application itself.

We believe the ideas discussed in this paper are interesting and
applicable in a more general context of memory barrier avoidance.
Beyond memory management, this context includes the problems of
efficient work stealing [30] and biased locking [12}|31]]. Exploring
the generalization of our ideas and their application to these and
other problems is a part of our future work.

Acknowledgments

We would like thank our anonymous reviewers and our shepherd
Christoph Kirsch for valuable suggestions to improve presentation.

References

[1] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and N. Shavit.
Stacktrack: An automated transactional approach to concurrent
memory reclamation. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys), 2014.

[2] D. Alistarh, W. M. Leiserson, A. Matveev, and N. Shavit.
Threadscan: Automatic and scalable memory reclamation. In
Proceedings of the 27th ACM on Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 123-132, 2015.

[3] M. M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor,
K. Hazelwood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and
A. Tal. Analyzing parallel programs with pin. Computer,
43(3):34-41, Mar. 2010.

[4] R. Bayer and M. Schkolnick. Concurrency of operations on
b-trees. Acta Informatica, 9:1-21, 1977.

[5] A. Braginsky, A. Kogan, and E. Petrank. Drop the anchor:
Lightweight memory management for non-blocking data struc-
tures. In Proceedings of the Twenty-fifth Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA),
pages 33—-42, 2013.

[6] T. A. Brown. Reclaiming memory for lock-free data structures:
There has to be a better way. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing (PODC),
pages 261-270, 2015.

[7]1 N. Cohen and E. Petrank. Efficient memory management for
lock-free data structures with optimistic access. In Proceedings



of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 254-263, 2015.

[8] J. Corbet. sys_membarrier(). https://lwn.net/Articles/
369567, Jan. 2010. Date Accessed: February 10, 2016.

[9] D. Dice. Qpi quiescence. http://blogs.oracle.com/
dave/entry/qpi_quiescence, Feb. 2010. Date Accessed:
November 11, 2015.

[10] D. Dice, H. Huang, and M. Yang. Asymmetric Dekker
synchronization. Technical report, Sun Microsystems, 2001.

[11] D. Dice, H. Huang, and M. Yang. Techniques for accessing
a shared resource using an improved synchronization mecha-
nism, 2004. US Patent 7644409 B2.

[12] D. Dice, M. S. Moir, and W. N. Scherer, III. Quickly reac-
quirable locks, 2002. US Patent 7814488 B1.

[13] A. Dragojevic, M. Herlihy, Y. Lev, and M. Moir. On the power
of hardware transactional memory to simplify memory manage-
ment. In Proceedings of the 30th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 99-108,
2011.

[14] M. Fomitchev and E. Ruppert. Lock-free linked lists and
skip lists. In Proceedings of the Twenty-third Annual ACM
Symposium on Principles of Distributed Computing, PODC
’04, pages 50-59, New York, NY, USA, 2004. ACM.

[15] K. Fraser. Practical lock-freedom. Technical Report UCAM-
CL-TR-579, University of Cambridge, Computer Laboratory,
Feb. 2004.

[16] E. Gidron, I. Keidar, D. Perelman, and Y. Perez. SALSA:
Scalable and Low Synchronization NUMA-aware Algorithm
for Producer-consumer Pools. In Proceedings of the Twenty-
fourth Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 151-160, 2012.

[17] T. Harris. A pragmatic implementation of non-blocking linked-
lists. In Proceedings of 15th International Symposium on
Distributed Computing (DISC 2001), Lisbon, Portugal, volume
2180 of Lecture Notes in Computer Science, pages 300—314.
Springer Verlag, Oct. 2001.

[18] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Per-
formance of memory reclamation for lockless synchronization.
J. Parallel Distrib. Comput., 67(12):1270-1285, Dec. 2007.

[19] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. III,
and N. Shavit. A lazy concurrent list-based set algorithm.
In J. H. Anderson, G. Prencipe, and R. Wattenhofer, editors,
Proceedings of the 9th International Conference on Principles
of Distributed Systems (OPODIS 2005), Revised Selected
Papers, volume 3974 of Lecture Notes in Computer Science,
pages 3—16. Springer, 2006.

45

[20] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A simple
optimistic skiplist algorithm. In SIROCCO, pages 124138,
2007.

[21] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender
problem: A mechanism for supporting dynamic-sized, lock-
free data structures. In Proceedings of the 16th International
Conference on Distributed Computing (DISC), pages 339-353,
2002.

[22] M. Herlihy and N. Shavit. The Art of Multiprocessor Program-
ming. Morgan Kaufmann, Mar. 2008.

[23] G. C. Hunt, M. M. Michael, S. Parthasarathy, and M. L. Scott.
An efficient algorithm for concurrent priority queue heaps. Inf.
Process. Lett., 60(3):151-157, 1996.

[24] K. Kawachiya, A. Koseki, and T. Onodera. Lock reservation:
Java locks can mostly do without atomic operations. SIGPLAN
Not., 37(11):130-141, 2002.

[25] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman.
Algorithmic improvements for fast concurrent cuckoo hashing.
In Proceedings of the European Conference on Computer
Systems (EuroSys), pages 1-14, 2014.

[26] R. Maddox, G. Singh, and R. Safranek. Weaving High Perfor-
mance Multiprocessor Fabric. Intel Press, 2009.

[27] P. McKenney and J. Slingwine. Read-Copy Update: Using
execution history to solve concurrency problems. Parallel and
Distributed Computing and Systems, pages 509-518, 1998.

[28] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the fourteenth an-
nual ACM symposium on Parallel algorithms and architectures,
pages 73-82. ACM Press, 2002.

[29] M. M. Michael. Hazard pointers: Safe memory reclamation for
lock-free objects. IEEE Trans. Parallel Distrib. Syst., 15:491—
504, June 2004.

[30] A. Morrison and Y. Afek. Fence-free work stealing on bounded
tso processors. In Proceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 413-426, 2014.

[31] A. Morrison and Y. Afek. Temporally bounding TSO for fence-
free asymmetric synchronization. In Proceedings of the Twen-
tieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 45-58, 2015.

[32] O. Shalev and N. Shavit. Split-ordered lists: Lock-free exten-
sible hash tables. In The 22nd Annual ACM Symposium on
Principles of Distributed Computing, pages 102-111. ACM
Press, 2003.


https://lwn.net/Articles/369567
https://lwn.net/Articles/369567
http://blogs.oracle.com/dave/entry/qpi_quiescence
http://blogs.oracle.com/dave/entry/qpi_quiescence

	Introduction
	Background
	Related Work
	Exploiting Memory Protection
	Exploiting Hardware Features
	Architectural Extensions
	Hazard Lookaside Buffers
	Variations

	Experimental Evaluation
	Data Structure Microbenchmarks
	Experimenting with libcuckoo

	Conclusions

