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ABSTRACT
JSPChecker is a static analysis tool that detects context-
sensitive cross-site scripting vulnerabilities in legacy web
applications. While cross-site scripting flaws can be mit-
igated through sanitisation, a process that removes dan-
gerous characters from input values, proper sanitisation re-
quires knowledge about the output context of input values.
Indeed, web pages are built using a mix of different lan-
guages (e.g. HTML, CSS, JavaScript and others) that call
for different sanitisation routines. Context-sensitive cross-
site scripting vulnerabilities occur when there is a mismatch
between sanitisation routines and output contexts.

JSPChecker uses data-flow analysis to track the sanitisa-
tion routines that are applied to an input value, a combina-
tion of string analysis and fault-tolerant parsing to approx-
imate the output context of sanitised values, and uses this
information to detect context-sensitive cross-site scripting
vulnerabilities. We demonstrate the effectiveness of our ap-
proach by analysing five open-source applications and show-
ing how JSPChecker can identify several context-sensitive
XSS flaws in real world applications with a precision rang-
ing from 96% to 100%.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: Protection Mechanisms

Keywords
Cross-site scripting, security, string analysis, data-flow, web
application

1. INTRODUCTION
Cross-site scripting (XSS) flaws continue to plague web

applications despite all the efforts academia and industry
have invested to eradicate them. According to the OWASP
Top 10 [5], XSS flaws are the third-most common type of
flaws in web applications. The consequences of a XSS attack
might vary from website defacing to identity theft.
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Web applications can prevent XSS attacks through a pro-
cess known as input sanitisation, where potentially malicious
code in user input is removed or escaped in such a way as to
prevent its execution. Unfortunately, sanitiser placement in
web application code is still a highly manual and error-prone
process [22, 20], making it difficult for developers to fully
protect their code from XSS attacks. Indeed, one missing
sanitiser is often sufficient to make an application vulnerable
to XSS attacks.

Initial research on XSS prevention therefore focused on de-
tecting missing sanitisers by using static and dynamic anal-
ysis strategies [16, 17, 24, 35, 14]. While they differ in their
design and implementation, a common denominator to all
these approaches is taint analysis, which identifies execu-
tion paths in a program where malicious inputs can reach
sensitive instructions without being sanitised.

Taint analysis is, however, insufficient to fully protect an
application against XSS attacks. Ensuring that user inputs
are sanitised before reaching security-sensitive instructions
is necessary but not sufficient to prevent XSS flaws. Indeed,
one also has to ensure that sanitisers match the output con-
text of the values being sanitised.

In web applications, the output context of a value refers to
the programming language and syntactic construct in which
a value is rendered. A web page is usually composed of sev-
eral snippets of code, written in different programming lan-
guages (e.g. HTML, JavaScript and CSS) that the browser
will parse, interpret and render to produce the final page
that is presented to the user.

XSS prevention is complicated by the fact that different
output contexts require different sanitisation routines. For
example, while the snippet: javascript:alert("Hacked")

would trigger a pop-up if it was rendered in a URI, it would
be printed as-is if it was rendered in HTML text. Proper
XSS prevention thus requires context-sensitive sanitisers.

Manual placement of context-sensitive sanitisers is, how-
ever, highly challenging and error prone because developers
must ensure that all user inputs are sanitised, and deter-
mine the output context in which the input value will be
rendered.

The problem of context-sensitive sanitisation is not new.
In the past, several static and dynamic solutions have been
proposed [29, 31, 36, 32, 7] to detect context-sensitive cross-
site scripting vulnerabilities. We discuss existing approaches
extensively in Section 8.

The motivation for our work stems from the fact that no
existing approaches address the major challenges we face
when analysing large legacy web applications. Legacy code-
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bases are typically characterised by their huge maintenance
costs, slow evolution and lack of extensive tests and docu-
mentation [12, 8, 11, 33]. For such legacy codebases, purely
static approaches are thus usually preferred to dynamic ap-
proaches that rely on existing test suites. Static approaches
that do not require code modifications are also preferred to
approaches that require re-factoring of existing code to work.

In this paper, we present JSPChecker, a static analysis
tool to detect context-sensitive sanitisation flaws in legacy
JEE applications. As its name suggests, JSPChecker analy-
ses Java Server Pages (JSPs), a commonly used technology
to generate HTML pages in legacy JEE applications.

1.1 Contributions
This paper makes the following contributions:

Detection of context-sensitive XSS flaws: We intro-
duce our tool, the JSPChecker, that detects context-sensitive
sanitisation flaws in legacy web applications without requir-
ing any change to the application or the runtime environ-
ment. We show how JSPChecker implements a novel algo-
rithm based on data-flow analysis, static string analysis, and
fault-tolerant parsing to detect inconsistent uses of sanitis-
ers that can lead to context-sensitive XSS flaws. We further
extend JSPChecker with different HTML page generation
strategies that allow users to adjust the trade-off between
scalability and precision.
Fault-tolerant browser model: We show how our ap-
proach supports all major languages used in modern browsers
and emulates encodings and decodings of code as they hap-
pen in real-world browsers. JSPChecker can recover from
HTML syntactic errors that are common in legacy web ap-
plications, and produce useful results in practice.
Empirical evaluation: In Section 6, we experimentally
evaluate JSPChecker on five real-world open-source appli-
cations with 2,500 to 230,855 lines of code, and 10 to 760
JSP files. We show how JSPChecker was able to detect
between 1 and 168 context-sensitive XSS flaws in the inves-
tigated applications, achieving a precision ranging from 96%
to 100%.

2. MOTIVATING EXAMPLE
In this section, we walk the reader through a simple ex-

ample of context-sensitive XSS flaw and introduce some of
the concepts that will be used later in the paper. Following
examples show snippets of Java codes that were generated
from a Java Server Page (JSP). The output of a JSP page
is a string that is embedded in the body of the HTTP re-
sponse that is sent back to the user. All calls to out.print

effectively append strings to the body of an HTTP response.

1 public void _jspService(
2 HttpServletRequest req ,
3 HttpServletResponse resp) {
4 String val = req.getParameter("id");
5 ...
6 out.print("<td >\n");
7 out.print(" <a href =\" javascript:

appendText( ’");
8 out.print(Encoder.jsEncode(val));
9 out.print("’ )\">\n");

10 out.print("</td >\n");
11 }

Listing 1: The value variable is printed in a JavaScript
URI, but is only sanitised for the JavaScript context
through a call to the jsEncode function.

In Listing 1, the val variable is retrieved from the request
at line 3, and must be considered as potentially malicious.
Indeed, observe that the val variable is sanitised with the
jsEncode sanitiser before it is actually printed at line 8.
While it seems that proper precautions were taken to pre-
vent XSS attacks, this deceptively simple example actually
hides a context-sensitive XSS vulnerability.

On the one hand, at runtime, the browser performs URI
decoding on every URI string, be it a regular URI or a
JavaScript URI. On the other hand, the jsEncode sani-
tiser does not escape the % sign that is used in URI en-
coding. As a consequence, if the attacker injects a URI-
encoded payload in the id parameter, the payload will be
left untouched by the sanitiser and be decoded in the vic-
tim’s browser before being executed by the JavaScript in-
terpreter. For example, injecting the URI-encoded pay-
load %27)%3Balert(%27Hacked! would effectively result in
’);alert(’Hacked! after URI-decoding by the browser.

1 public void _jspService(
2 HttpServletRequest req ,
3 HttpServletResponse resp) {
4 String val = req.getParameter("id");
5 ...
6 out.print("<td >\n");
7 out.print(" <a href =\" javascript:

appendText( ’");
8 out.print(URLEncoder.encodeForURL(
9 Encoder.jsEncode(val)));

10 out.print("’ )\">\n");
11 out.print("</td >\n");
12 }

Listing 2: Wrapping the jsEncode sanitiser in the
encodeForURL sanitiser eliminates the XSS flaw.

The snippet in Listing 2 shows the secure version of the
same example. Observe how the jsEncode sanitiser is now
wrapped in the encodeForURL sanitiser.

Generally, successful sanitisation against XSS requires the
sequence of sanitisers to match the sequence of output con-
texts of an output value. In the example above, the value
is printed in a JavaScript context that is itself nested in a
URI context. This nesting needs to be reflected in the sani-
tiser sequence. Using insufficient sanitisers leads to context-
sensitive XSS flaws.

3. OVERVIEW
In this section, we present an overview of JSPChecker, and

highlight how it addresses limitations of previous approaches
to enable analysis of legacy web applications.

Conceptually, our approach to detect context-sensitive XSS
flaws can be formulated as an extension of static taint anal-
ysis for web applications [35, 6].

Following taint analysis terminology, statements that as-
sign tainted data to a variable are called sources, security-
sensitive statements are called sinks, and statements that
remove taintedness are called sanitisers. Taint analysis re-
ports tainted flaws in the form of data-flow paths that start
in a source, and end in a sink without going through a sani-
tiser. In the context of XSS flaws detection, sinks are typi-
cally statements that print data to an HTML page.

Taint analysis thus aims at reporting XSS flaws that arise
from data-flow paths that miss a sanitiser. To detect such
paths, taint analysis will typically track data from sources
to sinks, and stop when it encounters a sanitiser. On the



other hand, context-sensitive XSS flaws occur on data-flow
paths that go through at least one insufficient sanitiser.
JSPChecker thus tracks data flows from sanitisers and only
stops when it reaches a sink. Only analysing paths that
contain at least one sanitiser saves computation time.

JSPChecker uses the SOOT static analysis framework [19]
to track data flows in JEE applications. SOOT translates
analysed applications into the Jimple intermediate repre-
sentation, implements various analyses (e.g. call graph con-
struction and points-to analysis), and provides an API to
build static analyses. JSPChecker tracks data from sani-
tisers to sinks through a forward sparse data-flow analysis
implemented in the SOOT framework. Starting from each
sanitiser in a program, JSPChecker uses a forward data-flow
analysis to propagate sanitised values to output statements,
recording sanitisers that are encountered on each path from
a sanitiser to an output statement.

JSPChecker then uses the Java String Analyser (JSA) [9]
to generate HTML document approximations. Given a string
expression, JSA computes a finite-state automaton that pro-
vides an over-approximation of the string values that may be
generated at runtime. Detailed implementation of JSA is de-
scribed in [9]. Given that JSPs generate HTML documents
by printing strings into an HTTP response, JSPChecker
uses JSA to over-approximate the strings produced by print
statements in JSPs, and to generate HTML document ap-
proximations.

Finally, JSPChecker uses a suite of parsers to evaluate
generated HTML documents and to approximate the output
context of sanitised values. The suite of parsers emulates
the way documents are processed in web browsers. As a
result, the analysis determines the output statements that
print sanitised values, and the sequences of sanitisers that
are applied to each output value. The next step consists of
inferring the output context of sanitised values.

For example, JSPChecker decodes the code, as would a
browser, when control is passed from one parser to another.
Through this parsing and decoding process, JSPChecker em-
ulates the behaviour of the browser and keeps track of the
browser output context. Figure 1 illustrates the four parsers
that JSPChecker uses together with the triggers that induce
switches between different parsers and the type of decod-
ing that occurs when control is handed from one parser to
another.

Finally, whenever a parser encounters a sanitised value,
it determines whether the current output context matches
the sequence of sanitisers associated with the value. If it
detects a mismatch, JSPChecker reports a potential context-
sensitive cross-site scripting flaw.

4. JSPCHECKER APPROACH
This section details the JSPChecker approach to detect

context-sensitive XSS flaws.

4.1 Requirements and assumptions
Requirements: JSPChecker requires the user to only sup-
ply a mapping from sanitisers to browser output contexts.
This mapping is usually specified once by a security expert
and can be reused across different applications that share
the same sanitisers.
Assumptions: JSPChecker makes a few assumptions in
order to be scalable and precise. First, JSPChecker mod-
els user inputs, public fields, and external values as empty

HTML contexts

CSS contexts JavaScript contexts

URI contexts

<style> </style>▰▰
style=∎∎

<script> </script>▰▰
on[event]=∎∎

href=∎∎
src=∎∎

...

url(●●)
@import(●●)

...

javascript:▴▴
data:text/javascript,▴▴

...

data:text/html,▴▴
data:text/css,▴▴

HTML
document

 ▰▰ Passed without transducing
 ∎∎ HTML entity decoded          
 ▴▴ URI decoded                      

●● CSS value decoded            

Figure 1: Transitions and decoding between supported
parsers. Black arrows connect two parsers if the later can
be invoked by the former. Labels on arrows indicate the
syntactic constructs that trigger the transfer of control be-
tween two parsers. Decoding operations on transitions are
represented with coloured shapes.

strings. This assumption is in line with previous work [13]
and enables JSPChecker to generate practical HTML doc-
ument approximations. Second, JSPChecker generally as-
sumes that sanitisers always receive tainted data or the out-
put of another sanitiser as input. This assumption speeds up
and simplifies JSPChecker analysis significantly by allowing
JSPChecker to analyse only execution paths that contain at
least on sanitiser.

4.2 Extracting and tracking sanitiser sequences
The starting point of JSPChecker analysis is with the sani-

tisers. JSPChecker starts by following inter-procedural def-
use chains and aliases, available in SOOT/JSA, from each
sanitiser s to output statements o, keeping track of other
sanitisers encountered along the way. This process results in
a set of sanitiser sequences starting in a sanitiser, ending in
an output statement, and containing an arbitrary number of
sanitisers in between: SS = {(s1, . . . , o1), . . . , (sm, . . . , on)}.

Each sanitiser sequence ss ∈ SS ends in an output state-
ment o that prints sanitised values. Hence, each ss ∈ SS
is a potential context-sensitive XSS flaw that must be anal-
ysed to check that the output context matches the sanitiser
sequence that is applied to o.

In order to match sanitiser sequences to the output con-
text, however, JSPChecker must be able to track the exact
place in the HTML page where the sanitised output value
was printed. JSPChecker achieves this tracking by map-
ping sanitiser sequences to unique placeholders that can be
retrieved from the HTML page. Consider the following ex-
ample:

1 String link = "location.replace (\"" +
Encoder.jsEncode(request.
getParameter("name")) + "\");";

2 out.println(link);

In this case, JSPChecker would first identify that the
jsEncode sanitiser at line 1 and the output statement at
line 2 are in def-use relation, yielding the following sanitiser
sequence: (jsEncode, print). Then, JSPChecker would map



this sequence to a unique placeholder, yielding:
(jsEncode, print)→ ph1.

JSPChecker supports nested sanitisers in a similar man-
ner. Consider the following example:

1 String link = "location.replace (\"" +
Encoder.jsEncode(request.
getParameter("name")) + "\");";

2 link = "<a href=’javascript:" +
URLEncoder.urlEncode(link) + "’>Go
to file </a>";

3 out.println(link);

In this case, JSPChecker would start by replacing the out-
put of the jsEncode sanitiser at line 1 with ph1. Then,
following def-use chains in SOOT/JSA, JSPChecker would
detect that ph1 is further sanitised with the urlEncode sani-
tiser at line 2, before being printed at line 3, yielding:
(jsEncode, urlEncode, print)→ ph1

In the following section, we detail the way JSPChecker
uses string automata to approximate the HTML output of
JSP pages and how it uses placeholders to keep track of
sanitised values in the generated HTML pages.

4.3 Building web page approximations
Given a sanitiser sequence ss ∈ SS, its output statement

o and its associated placeholder PH, JSPChecker uses JSA
to generate string automata that will later be used to gen-
erate HTML pages and, ultimately, check that the sanitiser
sequence matches the output context. To enable this check,
however, JSPChecker must ensure that o appears and can be
easily identified in the generated HTML pages. JSPChecker
achieves this goal using placeholders.

In general, a JSP page can theoretically produce an infin-
ity of HTML pages, not all of which contain o. Algorithm
1 shows how JSPChecker uses placeholders to build string
automata that are guaranteed to generate an output value
of interest.

Algorithm 1 High-level HTML page generation algorithm

Input: (CFG = (V, E), A : v → DFAv, SS : (s1, . . . , sn, o),
PH)
Output: HTML page approximations for a JSP

function GenerateHtmlForJsp
A(s1) = PH
Start = Vstart, End = Vend

PStart = SimpleSemiPaths(Start, o, (V, E))
PEnd = SimpleSemiPaths(o, End, (V, E))
Pages = ∅
for each pstart ∈ PStart and pend ∈ PEnd do

Path = pstart ∪ pend

Pages = Pages ∪ PathCoverage(Path, A, o)
end for
return Pages

end function

Algorithm 1 receives as parameters the control-flow graph
CFG = (V, E) of a JSP, as produced by SOOT, a mapping
from vertex v ∈ V to Deterministic Finite Automata (DFA),
as produced by JSA [9], a sanitiser sequence SS : (s1, . . . , sn, o),
and its associated placeholder PH.

The algorithm starts by replacing the automaton associ-
ated with s1 with an automaton that recognises only the
placeholder PH. In the next step, JSPChecker identifies

the entry and exit points of the JSP page in the control-
flow graph. Then, JSPChecker attempts to build the min-
imal set of simple paths (paths without cycles) from the
entry node to the exit node that go through o and that in-
clude every node reachable from o in the control-flow graph.
JSPChecker achieves this goal by first building all simple
semi-paths from the entry node to o and all simple semi-
paths from o to the exit node. The call to SimpleSemi-
Paths performs this operation using a modified depth-first
search algorithm that is not illustrated here.

JSPChecker then loops over all semi-paths and pairs them
deterministically until all semi-paths have been paired at
least once. JSPChecker then generates HTML pages for
each simple path by calling a PathCoverage algorithm,
and finally returns the set of HTML pages.

In the next section, we introduce the three path coverage
algorithms we developed and tested in this study.

4.4 Path coverage strategies
Given an execution path P = (entry, . . . , o, . . . , exit), from

the entry to the exit of a JSP page that goes through a given
output statement o, the task of path coverage algorithms
is to generate HTML pages for that execution path. For
this study, we designed and implemented three strategies to
achieve this goal: Exhaustive Path Coverage, Minimal Path
Coverage and Shortest Path Coverage.

Algorithm 2 Exhaustive path coverage algorithm

Input: (P = (entry, . . . , o, . . . , exit), A : v → DFAv, PH)
Output: HTML page approximations for a path

function ExhaustivePathCoverage
Pages = ∅
DFA = ∅
for each v in P do

if v is a print statement then
DFA = DFA ◦ A(v)

end if
end for
DFA = DFA ∩ (.* ◦ PH ◦ .*)
for each simplePath in SimplePaths(DFA) do

Pages = Pages ∪ GetString(simplePath)
end for
return Pages

end function

Exhaustive Path Coverage: This coverage is the most
complete strategy and is presented in Algorithm 2. The
Exhaustive Path Coverage algorithm expects as parameters
an execution path P = (entry, . . . , o, . . . , exit), a mapping
from vertex v ∈ V to DFA, and a placeholder PH.

The algorithm starts by identifying every print statement
on the path P and concatenating corresponding automata
into DFA. Then, it intersects DFA with the .*PH.* au-
tomaton so that paths in DFA that do not print PH are
removed. Finally, the algorithm loops over all the simple
paths from the start state to the stop state of DFA that are
returned by the call to SimplePaths and calls GetString
to generate an HTML page for each path.

Depending on the complexity of the original JSP page,
the exhaustive path coverage strategy can be very costly in
practice. To address this problem, we designed the Minimal
Path Coverage algorithm.



Minimal path coverage: This coverage was designed to
circumvent the practical limitations of the Exhaustive Path
Coverage strategy while maintaining good context-sensitive
XSS flaws detection power. Algorithm 3 details the Minimal
Path Coverage strategy.

Algorithm 3 Minimal path coverage algorithm

Input: (P = (entry, . . . , o, . . . , exit), A : v → DFAv, PH)
Output: HTML page approximations for a path

function MinimalPathCoverage
Pages = ∅
DFA = ∅
for each v in P do

if v is a print statement then
DFA = DFA ◦MergeEdges(A(v))

end if
end for
DFA = DFA ∩ (.* ◦ PH ◦ .*)
for each path in CoverAllEdges(DFA) do

Pages = Pages ∪ GetString(path)
end for
return Pages

end function

Context scope Special character classes
HTML < > & ” ’ = ! - \ / [:white:]

CSS ” ’ ( ) [ ] : ; < > = \ ! [:white:]
JavaScript ” ’ \

URI : ; , /

Table 1: Special characters that have the potential to induce
a change of output context in different languages

20 syntax-equivalency character classes
’<’ ’\” ’-’ ’[’ ’:’
’>’ ’\\’ ’/’ ’]’ ’;’
’&’ ’=’ ’{’ ’(’ All white characters
’”’ ’ !’ ’}’ ’)’ All other characters

Table 2: Character equivalence classes

The main intuition behind the Minimal Path Coverage
strategy is that only certain characters have the potential
to induce a change of output context. Table 1 shows those
special characters that have the potential to induce a change
of output context in HTML, CSS, JavaScript, and URI. The
first step of the Minimal Path Coverage algorithm is thus to
reduce the number of edges in A(v) by performing a projec-
tion of its alphabet Σ to a reduced alphabet Σ′ where all
non-special characters are merged in one equivalence class.
Table 2 shows the equivalence classes that are included in
Σ′. The call to MergeEdges in Algorithm 3 performs the
projection, and adjusts the edges of A(v) accordingly.

Apart from reducing the size of the alphabet, Algorithm
3 also applies another heuristic. Instead of generating one
HTML page per simple path in DFA, the call to Cov-
erAllEdges guarantees only that each edge in DFA is
traversed at least once. The intuition behind this heuris-
tic comes from our observations of open-source and indus-
trial applications. From our experience, and as evidenced

by our empirical results, it appears that this strategy does
not alter the context-sensitive XSS flaw-detection power of
JSPChecker compared to the exhaustive strategy. Following
these observations, we designed another, even simpler path
coverage algorithm called Shortest Path Coverage.

Algorithm 4 Shortest path coverage algorithm

Input: (P = (entry, . . . , o, . . . , exit), A : v → DFAv, PH)
Output: HTML page approximations for a path

function MinimumPathCoverage
Pages = ∅
DFA = ∅
for each v in P do

if v == o then
DFA = DFA ◦MergeEdges(A(v))

else if v is a print statement then
DFA = DFA ◦ ShortestMatch(A(v))

end if
end for
DFA = DFA ∩ (.* ◦ PH ◦ .*)
for each path in CoverAllEdges(DFA) do

Pages = Pages ∪ GetString(path)
end for
return Pages

end function

Shortest Path Coverage: The Shortest Path Coverage
algorithm is detailed in Algorithm 4. It builds on the in-
tuitions behind the Minimal Path Coverage algorithm and
implements even more aggressive heuristics. This algorithm
simply generates and concatenates the shortest match of ev-
ery automaton A(v). An exception is made for A(o), the
automaton of the initial output statement, for which this
algorithm uses the same strategy as the Minimal Path Cov-
erage algorithm. As shown in Section 6, this strategy works
surprisingly well in practice.

4.5 Parsing HTML outputs
Each HTML approximation that is produced by a path

coverage algorithm is then parsed by a suite of fault-tolerant
parsers to determine the output context of sanitised val-
ues, represented as placeholders. These parsers simulate a
web browser, and support transductions between HTML,
JavaScript, CSS and URI snippets. In the context of our
approach, two specific situations require special handling by
the parsers: transfer of control to a sub-parser and context-
switching derivations.

Transfer of control to a sub-parser occurs when the current
parser encounters a snippet of code in a different language.
For example, the value following an href attribute in HTML
must be parsed by a URI parser. In web browsers, transfer
of control between parsers is usually preceded by a trans-
ducing step, where the original code is transformed before
the control is transferred. For example, the value follow-
ing an href attribute will be HTML-entity-decoded before
it is parsed by the URI parser. JSPChecker reproduces the
transduction steps that happen in the browser. See Figure 1
for an overview of parser interactions and their associated
decoding routines in JSPChecker.

Context-switching derivations occur when the parser de-
rives a production rule that introduces a new security-sensitive
context. To keep track of the current context, parsers in
JSPChecker perform a simple syntax-directed translation



where a new context is pushed on the beginning of a context-
switching derivation and popped when the derivation is com-
plete.

4.6 Detecting context-sensitive XSS flaws
Whenever a parser encounters a placeholder, it checks that

the current output context sequence matches the sequence of
sanitisers represented by the placeholder. If the set of safely
sanitised output contexts includes the current output con-
text, sanitisation is correct. Otherwise, a flaw is reported.

One situation, however, requires deeper investigation.
When the set of safely sanitised output contexts includes
only a suffix of the current output context, further analysis
is needed. Consider the example in Listing 3.

1 foo() {
2 String link = "location.replace (\""

+ request.getParameter("link") +
"\");";

3 printLink(link);
4 }
5
6 printLink(String link) {
7 link = "<a href=’javascript:" +

URLEncoder.urlEncode(link) + "’>
Go to file </a>";

8 out.println(link);
9 }

Listing 3: The urlEncode sanitises only a suffix of the
(JavaScript, URI) context.

Since JSPChecker tracks values from sanitisers to output
statements, it would track only the output of urlEncode

at line 7 to the println statement at line 8, yielding the
sanitiser sequence: (urlEncode). The (urlEncode) sani-
tiser sequence can safely sanitise the (URI) output con-
text only, which is a suffix of the actual output context
(JavaScript, URI).

In this case, further analysis is needed to check whether
a path exists from a source to urlEncode that does not go
through a JavaScript sanitiser. JSPChecker uses a state-
of-the-art, on-demand, backward taint analysis, to perform
such checks.

5. EXPERIMENTAL SETUP
Our current experimental setup is based on the Java String

Analyser [9] and the SOOT static analysis framework [19].
While we focused our analysis on JSP files, the techniques
that are presented are not tied to this specific technology.

Our experimental setup currently uses the Tomcat com-
piler [1] to translate JSP files into Java files. In order to
speedup computations, we also use Java dependency anal-
ysis (JDeps) [3] to identify dependencies of JSPs. Com-
piled JSPs and their dependencies are then analysed by
SOOT/JSA.

JSPs are elementary units of our analysis. If multiple JSPs
are to be analysed, JSPChecker analyses them in separate
processes using the master-slave paradigm. Multi-process
parallelisation is needed because SOOT is not thread-safe.

5.1 JSA configuration
By default, JSA generates string automata that overap-

proximate the set of strings that can be produced at a given
point in a program. Hence, arguments and return values of
external methods as well as arguments to public methods

and public fields are converted to .* automata. In practice,
the imprecision introduced by the use of .* automata of-
ten quickly spread through the whole document, making the
analysis useless. To circumvent this problem, JSPChecker
replaces public and external values with automata represent-
ing with the empty string.

Empty automata are also a major source of imprecision in
JSPChecker because concatenation of the empty automaton
with any other automaton always results in the empty au-
tomaton. Empty automata can be produced in cases where
the string value is null. JSPChecker replaces empty au-
tomata with automata that recognise the empty string.

5.2 Parser configuration
Our current experimental setup uses an extended version

of the Jsoup HTML parser [4]. The parser was extended to
keep track of HTML contexts, and delegate analysis of em-
bedded languages (CSS, URI and JavaScript) to appropriate
sub-parsers, as detailed in Figure 1.

For CSS parsing, JSPChecker uses an extended version of
the CSS Parser [2] that keeps track of CSS contexts, and
delegates URI parsing to the URI lexer.

JSPChecker currently uses a simple lexer to process URIs.
For the purpose of identifying context-sensitive XSS flaws, it
is indeed sufficient to detect whether the URI starts with the
javascript: or data: keyword. To our knowledge, other
common protocols (e.g. ftp, mailto, etc.) cannot induce a
transition from the URI context to either the CSS, HTML or
JavaScript context (see Figure 1) and are therefore irrelevant
to our analysis.

JSPChecker currently has minimal support for JavaScript.
It uses a lexer that supports three contexts: double-quoted
string, single-quoted string, and JavaScript code. Analysing
the JavaScript code itself is beyond the scope of this paper
and left as future work.

The inputs to our parsers and lexers are static approxima-
tions of JSPs, and they might contain syntactic errors. The
errors can be caused by the approximation process itself or
by programming errors in the original document. While it is
possible to refine our HTML approximation process to elim-
inate some errors, it is much more difficult to correct hard-
coded errors in legacy applications. Unfortunately, syntax
errors are quite common in legacy web applications because
server-side technologies that are typically used to generate
HTML pages (e.g. ASP, PHP, JSP, and others) do not en-
force syntactic correctness of the produced HTML output.

Historically, browser vendors have circumvented this lim-
itation by developing fault-tolerant parsers that correct or
ignore faulty segments of an HTML document. As a conse-
quence, HTML pages produced by legacy web applications
are often syntactically invalid. Any approach that deals with
legacy web application must be fault tolerant. JSPChecker
handles syntactic errors by using fault-tolerant parsers that
can recover from common syntactic errors.

6. EVALUATION
We evaluated our approach on five open source JEE projects

that use the JSP technology. Table 3 shows characteristics
of analysed applications. In order to highlight the prevalence
of context-sensitive XSS flaws, we also ran a state-of-the-art,
static taint analysis tool, built on top of the Parfait frame-
work [10], that can detect XSS flaws due to missing saniti-
sation. Table 4 shows results from Parfait and JSPChecker.



Clinportal Hipergate iTrust NENU Free
CS427 Contest WIS

service portal
Number of JSP files 97 760 207 40 8
Number of JSP files with sanitisers 7 75 181 26 1
Lines of JSP code 25 136 93 246 27 700 4 592 1 004
Lines of Java code 73 137 137 609 54 170 7 296 1 548

Table 3: Characteristics of analysed applications

Clinportal Hipergate iTrust NENU Free
CS427 Contest WIS

service portal
True positives 19 334 230 6 0
False positives 3 75 0 0 3
Execution time (mm:ss) 1:39 1:14 5:15 0:59 0:07

Table 4: Parfait taint analysis results
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Figure 2: Analysis time breakdown for shortest path cover-
age analysis on benchmark applications.

True and false positives were determined through manually
inspection. We contacted the developers of each investigated
applications to share our findings.

As shown in Table 4 and Table 5, context-sensitive XSS
flaws are about as common as missing sanitisation XSS flaws,
highlighting the relevance of JSPChecker analysis.

Results also show, however, that the runtime of JSPChecker
is typically much higher than of a traditional static taint
analysis.

As Figure 2 shows, apart from WIS portal, building of the
string automata by JSA always consumes the most time. In
the figure, all the code we implemented in JSPChecker falls
into the “Other” category. Depending on the application,
10% to 40% of the time is spent in JSPChecker code.

Results in Table 5 highlight how, in the context of the
investigated applications, the Shortest Path Coverage strat-
egy surprisingly outperforms the Minimal Path Coverage
and Exhaustive Path Coverage strategies both in terms of
runtime and precision. Indeed, the Shortest Path Coverage
strategy detects all the context-sensitive sanitisation flaws
that are detected by the other two approaches while pro-
ducing fewer false positives.

False positives were either due to unknown strings (e.g.
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Correct sanitizations

Insufficient sanitizations

Over−sanitizations

Figure 3: Proportions of correct, insufficient and over-
sanitisations that were detected by JSPChecker in bench-
mark applications.

a string retrieved from a database) or syntactically invalid
HTML constructs that caused our parsers to report wrong
output contexts. Fixing the values of unknown strings and
enhancing the error-recovery mechanisms in our parsers would
thus help reduce the number of false positives reported by
JSPChecker.

Table 5 also reports over-sanitisations that were detected
by JSPChecker. Over-sanitisations occur when sanitisers
safely but incorrectly encode characters for a given output
context. For example, encoding the < character to %3C in
a URL is safe and correct. In an HTML context however,
such encoding would be considered safe, but incorrect, be-
cause the browser would not decode it back to < at rendering
time. Over-sanitisation typically leads to loss of function-
ality and does not induce security vulnerabilities. Figure
3 shows the proportions of correct, insufficient and over-
sanitisations that were reported by JSPChecker on different
systems.

6.1 Example context-sensitive XSS flaws
In this section, we show concrete examples of context-

sensitive XSS flaws that were reported by JSPChecker.



Clinportal Hipergate iTrust NENU Free
CS427 Contest WIS

service portal

S
P

C

True positives 30 51 168 25 1
False positives 0 2 0 0 0
Over-sanitisation 0 3 27 0 1
Execution time (mm:ss) 21:35 70:54 133:23 13:03 1:04

M
P

C

True positives 30 51 168 25 1
False positives 0 7 0 0 0
Over-sanitisation 0 3 27 0 1
Execution time (mm:ss) 22:04 74:47 137:23 14:54 1:24

E
P

C

True positives 29 44 167 24 1
False positives 0 8 0 0 0
Over-sanitisation 0 3 27 0 1
Execution time (mm:ss) TIMEOUT TIMEOUT TIMEOUT TIMEOUT 1:42

Table 5: JSPChecker context-sensitive analysis. Results are grouped in three sections: SPC (Shortest Path Coverage), MPC
(Minimal Path Coverage) and EPC (Exhaustive Path Coverage). TIMEOUT indicates that the timeout of three hours was
reached.

1 String participantId=escapeHtml(request
.getAttribute("participantId"));

2 ... // 53 lines of code
3 out.write("\t<script >\t\r\n");
4 ... // 150 lines of code
5 out.print(participantId);
6 ... // 428 lines of code
7 out.write("\t</script >\r\n");

Listing 4: Example from Clinportal where HTML-
escaped value is printed inside JavaScript code.

Listing 4 shows an example from Clinportal where an in-
put value is HTML-escaped and printed in JavaScript code.

At line 1, an input value is HTML-escaped using the es-

capeHtml sanitiser. At line 3, the JSP switches context from
HTML to JavaScript with the introduction of the <script>

tag. At line 5, the HTML-escaped input is printed and the
JavaScript block is closed at line 7.

An attacker can therefore inject a JavaScript payload like:

1 document.location = String.fromCharCode
(65 ,66 ,67)

to redirect the victim to a malicious website. This attack
is possible because the HTML sanitiser at line 1 is does not
escape the (, ), and . characters and is therefore insufficient
to sanitise values for the JavaScript context.

Listing 4 also illustrates how manual placement of context-
sensitive sanitisers can be difficult and error-prone due to the
amount of code that needs to be reviewed. Indeed, observe
that 631 lines were omitted in Listing 4 to make the example
readable.

1 out.write("<script >\n");
2 out.write("function setURL () {\n");
3 out.write("document.location = \"

company_listing.jsp?selected=");
4 ...
5 out.write("&find=");
6 out.print(URLEncode(request.

getParameter("find")));
7 ...
8 out.write("</script >\n");

Listing 5: Example from Hipergate where URL-
encoded value is printed inside JavaScript code.

Listing 5 shows an example from Hipergate where an in-
put value is URL-encoded before being printed in JavaScript
code.

At line 1, the JSP switches from the HTML context to
the JavaScript context. At line 2, the setURL function is
defined. At line 3, the document.location attribute is as-
signed a URL that is dynamically built in the JSP. Assigning
a URL to document.location in JavaScript effectively redi-
rects the browser to the assigned URL. At line 6, the find

parameter is URL-encoded and inserted in the dynamically
built URL. The expected outcome is thus that a call to se-

tURL will redirect the user to a URL that was built during
the rendering of the JSP.

In this application, the URLEncode routine does not encode
the \ character. As a consequence, an attacker can inject an
hex-encoded payload through the find parameter at line 6 to
bypass the URL encoder and override any of the remaining
URL parameters.

The snippet in Listing 5 illustrates another reason why
manual placement of context-sensitive sanitisers is difficult.
Looking at line 6, where the find parameter is printed, it is
easy to be misled by the fact that the parameter is printed
in a URL string. The difficulty stems from the fact that the
developer has to reason about the sequence of contexts in
which the URL string will be evaluated and sanitise it ac-
cordingly. In this case, the find parameter should have been
sanitised with URLEncode first and then with a JavaScript
sanitiser.

1 out.write("<a href =\" javascript:
removeRep(’");

2 out.print(escapeHtml(p.getMID ()));
3 out.write("’)\">Remove </a>\n");

Listing 6: Example from iTrust where HTML-escaped
value is printed inside a JavaScript URL.

Listing 6 shows an example from iTrust where an input
value is HTML-escaped before being printed in a JavaScript
URL.

At line 1, an HTML anchor is created where the href

parameter is set to a JavaScript URL. At line 2, a value
is HTML-escaped and printed in the JavaScript URL. The
anchor is closed at line 3.



In this application, the escapeHtml does not encode the %

character. As a consequence, an attacker can pass a URL-
encoded payload to exploit the fact that the browser will
URL decode the value of the href attribute before inter-
preting it as JavaScript code.

For example, injecting the %27)%3Balert(%27Hacked pay-
load in the JSP would result in the following HTML snippet:

1 <a href="javascript:removeRep (’%27)%3
Balert (%27 Hacked ’)">Remove </a>

After URL decoding, the browser would generate the follow-
ing snippet:

1 <a href="javascript:removeRep(’’);alert
(’Hacked ’)">Remove </a>

Because the javascript: scheme is used, the resulting URI
would then be interpreted as JavaScript code, resulting in a
successful attack.

7. SOUNDNESS TRADE-OFFS
In [23], the authors present a manifesto in defense of soundy

static analysis. Quoting the authors: “A soundy analysis
aims to be as sound as possible without excessively compro-
mising precision and/or scalability. In their manifesto, the
authors also issue a call to the community to clearly identify
unsoundness in static analyses so that others can understand
and reproduce the results.

In this section, we discuss the soundness trade-offs we
made in JSPChecker. Designed for the analysis of large
legacy web applications, JSPChecker has been successfully
used internally to analyse very large (millions of LOC) legacy
JEE applications.

In Algorithm 1, we showed how, given an output state-
ment of interest o, JSPChecker builds execution paths from
the entry point of a JSP to the exit point by assembling
semi-paths from the entry point to o and from o to the exit
point.

A sound strategy would have been to build and analyse
one over-approximate automaton per JSP. While theoret-
ically sound, this approach is highly impractical on real-
world applications. Indeed, our experiments revealed that
JSA seems to hit a performance bottleneck when the string
automata it builds reaches a certain level of complexity, and
analysis timed out on most JSPs. In [9], the authors men-
tion that translation from a multi-level automaton, inter-
nally used in JSA, to a DFA is worst-case doubly exponen-
tial.

We also detailed, in Algorithms 2, 3, and 4, path cov-
erage strategies with decreasing level of soundness. While
our primary intuition was that decreasing levels of soundness
would speed up analysis, increase precision, and lower recall,
results proved our intuitions wrong. In Table 5, results show
that shortest path coverage, the most unsound of the three
coverage strategies, not only runs faster, it also achieves the
same precision and recall as the two other strategies.

While we cannot formally explain this behaviour, it seems
that most JSPs are developed in such a way that the syntac-
tic structure of HTML documents it produces is always more
or less equivalent. In other words, it appears that JSPs usu-
ally produce fixed canvases with variable content. Because
JSPChecker only reasons about the syntactic structure of
HTML documents, generating more HTML approximations
does not increase the number of reported flaws.

Finally, the parsers that are used internally by JSPChecker
might not be faithful to that of the browser. Furthermore,
it is well known that different browsers or different versions
of the same browser behave differently on the same inputs.
As a consequence, the reported true positives, false positives
and over-sanitisation rates may vary in practice. Hooking
JSPChecker into the parsers of various browsers would elim-
inate this limitation at the expense of a significant engineer-
ing effort.

8. RELATED WORK

8.1 Context-sensitive XSS sanitisation
This section presents previous approaches to detect and

prevent context-sensitive cross-site scripting flaws.
In [32], the authors present a technology called SCRIPT-

GARD that focuses on automatic context-sensitive sanitisa-
tion for large-scale legacy web applications. SCRIPTGARD
is a dynamic analysis approach that works in two phases:
training and runtime monitoring. In the training phase,
SCRIPTGARD builds a sanitisation cache that is a map
from execution paths to correct sanitiser sequences. During
the runtime monitoring phase, if SCRIPTGARD encounters
a path that is already in its sanitisation cache, it applies the
correct sanitiser sequence. Otherwise, the choice is left to
the user to either block the request or log the path for later
analysis. In that regard, the performance of SCRIPTGARD
depends on the number of execution paths it can cover dur-
ing its training phase.

Another approach to context-sensitive sanitisation, called
CSAS (Context-sensitive auto-sanitisation engine), is pre-
sented in [31]. CSAS uses a templating language to produce
HTML outputs. Given a template script, CSAS first tries
to determine the context of output values using type infer-
ence. If successful, CSAS applies the correct sequence of
sanitisers immediately. Otherwise, CSAS inserts checks in
the application code that detect the runtime context and
sanitise outputs accordingly. While this approach is very
promising for applications that are developed from scratch
using a templating language, the manual effort required to
adapt legacy JEE applications to use CSAS is prohibitively
high. Other framework-based approaches to prevent SQLi
and XSS have been presented in [29, 21, 25].

On a similar line of thought, in [20], the authors also
present an automated context-sensitive sanitisation approach.
Given a user-specified security policy for each source and
sink in an application, the presented approach provides opti-
mal placement of sanitisers in the code. While the approach
is highly promising from a sanitiser placement perspective,
it fails to address the main cause for context-sensitive XSS
flaws: manually determining the context of an output value
is difficult and error prone.

A study of XSS sanitisation is presented in [37]. Com-
mon causes for context-sensitive XSS bugs, such as context-
insensitive sanitisers, failure to handle nested contexts or
browser transductions are presented and described.

8.2 String analysis for vulnerability detection
JSPChecker uses string analysis to produce static approxi-

mations of dynamically generated web pages that are further
analysed to detect context-sensitive XSS flaws. This section
presents previous approaches that also make use of string
analysis to detect vulnerabilities in web applications.



Approach
Error Purely No code Context-sensitive

tolerant? static? modification? policy?
JSPChecker X X X X
SCRIPTGARD [32] X × X X
CSAS [31] × × × X
Wassermann et al. [36] × X X ×
Saner [7] × × X ×

Table 6: Comparing of JSPChecker features to existing approaches

An approach to detect SQLi flaws is presented in [13].
The Java String Analyzer (JSA) is first used to model SQL
queries as string automata. Then, context-free reachability
[26] is used to find the type environment of each path in the
query automaton and to perform type checking to detect
invalid queries.

In [36], the authors present an approach, based on the
string analyser in [27] to detect XSS flaws in PHP applica-
tions. Similarly to JSPChecker, their approach first builds a
string automaton for each output statement that can print
potentially tainted data. These output string automata are
then intersected with an automaton representing a security
policy, and a flaw is reported if the intersection is not empty.
Unfortunately, restricting the security policy to the realm
of regular languages prevents proper detection of context-
sensitive XSS flaws.

In [7], the authors present Saner, a tool to analyse cus-
tom sanitisation routines in PHP applications. The goal
of Saner is to identify erroneous custom sanitisation rou-
tines that can lead to XSS and SQLi flaws. Similarly to
[36], their approach also produces string automata for out-
put statements that print tainted data, and verify sanitiser
correctness by intersecting the resulting automata with a
regular expression representing a security policy. Whenever
Saner identifies a potentially vulnerable sanitisation routine,
it dynamically tests it using a set of predefined malicious in-
puts. Overall, Saner suffers from the same limitations as
[36] due to the fact that security policies must be defined
with regular expressions.

In [34], the authors present an approach to discover and
verify sanitisers. It first translates the program into monadic
second-order logic. Then, any method that takes a string as
an argument and returns a string is considered a potential
sanitiser. Finally, a method is considered a valid sanitiser if
it never returns strings belonging to a predefined blacklist
encoded as a regular expression.

While the three previous approaches try to verify sanitiser
correctness with respect to the outputs of a PHP script,
BEK [15] is a tool that verifies sanitisers themselves. More
precisely, BEK verifies the commutativity, idempotence and
mutual equivalency of sanitisers in a system. This work is
orthogonal and complementary to ours.

8.3 String analysis for syntax validation
String analysis was also used to validate the syntactic cor-

rectness of dynamically generated documents.
In [18], the authors present an approach to verify that

JSPs always produce well-formed XML documents. Using
JSA, their approach builds a grammar that approximates
the output of JSPs. It then verifies that resulting grammar
produces tag-balanced XML documents only. This approach
does not support CSS, HTML, JavaScript or URI grammars.

A subsequent study [28] extends this work to support the
syntactic validation of dynamically generated HTML docu-
ments against a DTD (Document Type Definition). How-
ever, their work supports only a subset of HTML and has
no support for JavaScript, CSS or URI syntactic validation.

8.4 Context-sensitive XSS in legacy applica-
tions

JSPChecker was designed with the goal to detect context-
sensitive XSS flaws in large legacy JEE applications. As
mentioned in Section 1, large legacy applications are often
characterised by huge maintenance costs and lack of exten-
sive tests and documentation. Purely static approaches (no
tests needed) that do not require code modifications (no
maintenance overhead) are thus preferred in this context.
Because legacy web codebases are also notorious for produc-
ing syntactically invalid HTML pages [30, 27, 28], analysis
must be able to recover from common syntactic errors. Fur-
thermore, context-sensitive XSS flaws stem from the fact
that the composition of languages that form a web page
results in a non-context-free language. Any approach that
aims at detecting context-sensitive cross-site scripting flaws
must track the context of output values. Table 6 summarises
the main differences between JSPChecker and existing ap-
proaches, with respect to these aspects.

9. CONCLUSION AND FUTURE WORK
We have presented JSPChecker, a purely static, error-

tolerant tool to detect context-sensitive XSS flaws in legacy
web applications. Our technique is based on data-flow anal-
ysis, string analysis and syntax-directed translation, and it
detects context-sensitive XSS flaws by matching sanitiser se-
quences to output contexts. We showed how our technique
was able to identify several context-sensitive XSS flaws in
five real world applications with a precision ranging from
96% to 100%.

As future work, we plan to extend JSPChecker to relieve
users of the burden of identifying sanitisers and mapping
them to safe output contexts. String analysis-based ap-
proaches to verify sanitisers have already been presented in
[34, 15] and could be reused to achieve this goal.
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