
Optimizing Inference Performance of 
Transformers on CPUs 

Dave Dice Alex Kogan
Oracle Labs

Copyright © 2021, Oracle and/or its affiliates



Why Transformers?

Copyright © 2021, Oracle and/or its affiliates



Why Transformers?

Copyright © 2021, Oracle and/or its affiliates



Why Transformers?

Copyright © 2021, Oracle and/or its affiliates



Copyright © 2021, Oracle and/or its affiliates

Why Transformers?



Copyright © 2021, Oracle and/or its affiliates

Why Transformers?



Why Transformers?

Can be pre-trained on huge amounts of unlabeled data
• E.g., all of Wikipedia, book corpus, etc.

Fine-tuned later to a specific task
• E.g., question-answering, sentiment analysis, text-classification
• with just a small amount of labeled, domain-specific data

Feature millions/billions of parameters
è Lots of attention on optimizing the training process
• (relatively) less attention on optimizing inference

Copyright © 2021, Oracle and/or its affiliates



Why CPUs?

• Commodity hardware

• Cost-effective choice for real-time (aka batch=1) inference

• Preferred choice for inference deployment in industry

Copyright © 2021, Oracle and/or its affiliates



Copyright © 2021, Oracle and/or its affiliates

Transformer Architecture

From “Attention is all you need” by Vaswani et el., 2017



Copyright © 2021, Oracle and/or its affiliates

Transformer Architecture

From “Attention is all you need” by Vaswani et el., 2017



Our setup

OCI BM.Standard2.52 instance
• Intel Skylake-gen processor with 26 hyper-threaded cores
• AVX512 support

Pytorch (v1.6)
oneDNN math library
• enhanced integration of oneDNN with Pytorch

Transformers python package (v3.0.2) from HuggingFace
• state-of-the-art implementation of numerous Transformer-based NLP models

“BERT-base” model (from Transformers)

Copyright © 2021, Oracle and/or its affiliates



Runtime breakdown by modules

• Relatively poor scalability
• ~5x from 1 to 16 threads

• Matmuls scale better than 
other ops
• their share decreases with 

increase in #threads

• Between 66 and 92% of the 
time is spent in matmul ops

Copyright © 2021, Oracle and/or its affiliates



Key observation

The matmul operation is heavily impacted not only by the shape (dimensions) of the source matrices and 
available resources (#threads), but also by the form (transposed/normal) of those matrices
• the form dictates the memory layout (column-major vs. row-major)

Source: https://oneapi-src.github.io/oneDNN/v1.0/group__c__api__blas.html

Copyright © 2021, Oracle and/or its affiliates



Key observation

Why is the difference?
• different matmul variants generate different

code paths and memory access patterns
• perf. counters suggest faster variants enjoy

better L2 cache locality

Why does it matter?
• Pytorch keeps the weights matrix in the Linear 

module transposed
• Tensorlfow keeps the weights matrix normal

è Matmuls are always applied in one form or another

☞ But the best approach – adaptivity! A*B, where A and B are normal
A*B, where A is normal and B is transposedratio =

Copyright © 2021, Oracle and/or its affiliates



Adaptive Linear Module Optimization (ALMO)

Augment each Linear module* with transposeFlags array of Boolean flags

When creating a Linear module with the shape [in ,out]:
• For each i in [0, 9]:
• Generate random matrix with the shape [2^i, in]
• Measure time to perform matmul with the weight matrix transposed and normal
• Record the result (0/1) in transposeFlags[i]

During inference, with the input of shape [length, in]:
• Calculate s = int(log(length))
• Based on transposeFlags[s], perform matmul with weights either transposed or not

* transposeFlags can be shared among Linear modules of the same shape

Copyright © 2021, Oracle and/or its affiliates



Experimental results

Similar results for other models: RoBERTa, DistilBERT

BERT-base inference latency (ms)

Copyright © 2021, Oracle and/or its affiliates



Conclusions

• Faster matmul operations à faster inference

• Adaptive Linear Module Optimization
• lightweight
• transparent (no change to the model)
• does not impact accuracy
• is not limited to Transformers

• More details in the extended paper (https://arxiv.org/pdf/2102.06621):
• Two more optimizations for the matmul operations
• Sequential overhead reduction
• Modified matrix partitioning

• More experiments, results, etc.

Copyright © 2021, Oracle and/or its affiliates

https://arxiv.org/pdf/2102.06621

