
Accurate Compilation Replay via Remote JIT
Compilation

Andrej Pečimúth

Charles University

Prague, Czech Republic

pecimuth@d3s.mff.cuni.cz
Oracle Labs

Prague, Czech Republic

andrej.pecimuth@oracle.com

David Leopoldseder

Oracle Labs

Vienna, Austria

david.leopoldseder@oracle.com

Petr Tůma

Charles University

Prague, Czech Republic

petr.tuma@d3s.mff.cuni.cz

Abstract
When a JIT compiler crashes in a production deployment,

compiler developers wish to reproduce the problem locally.

However, existing approaches to replay compilation lack the

necessary accuracy for this use case, or they introduce too

much of a maintenance burden. We propose to achieve ac-

curate compilation replay by running a remote compilation,

recording the input to the remote compiler, and replaying

the compilation using the recorded data. The benefit is sig-

nificantly reduced iteration times for compiler developers

when such an issue occurs.

Keywords: replay compilation, remote compilation, JIT com-

pilation, virtual machines

Introduction
Applications in production deployments typically connect

to external services and run on a platform with particular

CPU features. When the JIT compiler crashes in this setup,

a compiler developer may wish to rerun it with diagnostic

options [3] or attach a debugger to the compiler. However,

many practical barriers exist to rerunning the application

on the compiler developer’s hardware. When such a crash

occurs, the developers’ options to diagnose it are usually re-

stricted to information such as logs provided by the team that

services the application, which is a lengthy and inefficient

process.

The existing approaches to replay compilation [7, 3, 2, 8]

do not fit this use case well. The majority of them are based

on recording and reusing the profiles, the methods selected

for optimization, and similar data. Although this leads to

more stability in JIT compilation, it is not guaranteed that

the compiler repeats the same sequence of steps leading to

a crash — the replay is not accurate, and these approaches

require executing the application. An alternative approach

is instrumenting the compiler’s source code [6] to intercept

the accesses to the VM’s data. However, this reduces the

readability of the code and poses an impractical maintenance

overhead.

We propose a solution to replay compilations accurately

by leveraging the infrastructure for remote JIT compilation

[4, 1, 5], which is already supported by several runtimes.

These runtimes disaggregate the compiler from the virtual

machine (VM), allowing it to target a different platform and

VM than the one it is hosted on. Moreover, remote compi-

lation clearly separates the input to the compiler, which is

usually transmitted over the network and is thus serializable.

Therefore, in our approach, we perform a remote compilation

(which may be hosted on the same machine) and record the

inputs to the remote compiler. To replay a compilation, we

invoke the remote compiler on the recorded inputs, except

perhaps with extra diagnostic options. The desired result is

the process of the compilation rather than the compiled code

itself.

When a JIT compilation crashes in a production deploy-

ment, the running VM could immediately attempt to recom-

pile the samemethod and record this compilation for a future

replay — the VM would save all the inputs needed for replay

in a file also holding the description of the target platform

and the VM’s configuration. The attempted recompilation is

likely to exhibit the same issue that led to the original crash.

Another option is to record all compilations for replay, but

the overhead of recording may be high. Compiler developers

can then replay the offending compilation using the recorded

file while utilizing many of the debugging tools they are ac-

customed to. The proposed workflow would significantly

shorten the time it takes to resolve these issues.

References
[1] Azul. 2024. Cloud Native Compiler. https://docs.azul.com/optimizer-

hub/about/cloud-native-compiler. Accessed 2024-07-31.

[2] Andy Georges, Lieven Eeckhout, and Dries Buytaert. 2008. Java per-

formance evaluation through rigorous replay compilation. SIGPLAN
Not., 43, 10, (Oct. 2008), 367–384. doi: 10.1145/1449955.1449794.

[3] Tobias Hartmann. 2020. Debugging the Java HotSpot VM. https://c
r .openjdk.org/~thartmann/talks/2020-Debugging_HotSpot.pdf.
Accessed 2024-07-31.

[4] Alexey Khrabrov, Marius Pirvu, Vijay Sundaresan, and Eyal de Lara.

2022. JITServer: Disaggregated Caching JIT Compiler for the JVM

in the Cloud. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). USENIX Association, Carlsbad, CA, (July 2022), 869–884.

https://www.usenix.org/conference/atc22/presentation/khrabrov.
[5] Han B. Lee, Amer Diwan, and J. Eliot B. Moss. 2007. Design, implemen-

tation, and evaluation of a compilation server. ACM Trans. Program.
Lang. Syst., 29, 4, (Aug. 2007), 18–es. doi: 10.1145/1255450.1255451.

1

https://orcid.org/0009-0002-8357-7157
https://orcid.org/0000-0002-9361-6431
https://orcid.org/0000-0002-7035-2322
https://docs.azul.com/optimizer-hub/about/cloud-native-compiler
https://docs.azul.com/optimizer-hub/about/cloud-native-compiler
https://doi.org/10.1145/1449955.1449794
https://cr.openjdk.org/~thartmann/talks/2020-Debugging_HotSpot.pdf
https://cr.openjdk.org/~thartmann/talks/2020-Debugging_HotSpot.pdf
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://doi.org/10.1145/1255450.1255451


Andrej Pečimúth, David Leopoldseder, and Petr Tůma

[6] Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, Hideaki Ko-

matsu, and Toshio Nakatani. 2006. Replay compilation: improving

debuggability of a just-in-time compiler. 41, 10, (Oct. 2006), 241–252.

doi: 10.1145/1167515.1167493.
[7] Oracle. 2023. Profile Replay Support in GraalVM. https://github.com

/oracle/graal/blob/graal-24.0.2/compiler/src/jdk.graal.compiler/sr

c/jdk/graal/compiler/hotspot/ProfileReplaySupport.java. Accessed
2024-07-31.

[8] Narendran Sachindran and J. Eliot B. Moss. 2003. Mark-copy: fast

copying GC with less space overhead. SIGPLAN Not., 38, 11, (Oct.
2003), 326–343. doi: 10.1145/949343.949335.

2

https://doi.org/10.1145/1167515.1167493
https://github.com/oracle/graal/blob/graal-24.0.2/compiler/src/jdk.graal.compiler/src/jdk/graal/compiler/hotspot/ProfileReplaySupport.java
https://github.com/oracle/graal/blob/graal-24.0.2/compiler/src/jdk.graal.compiler/src/jdk/graal/compiler/hotspot/ProfileReplaySupport.java
https://github.com/oracle/graal/blob/graal-24.0.2/compiler/src/jdk.graal.compiler/src/jdk/graal/compiler/hotspot/ProfileReplaySupport.java
https://doi.org/10.1145/949343.949335

	Abstract

