ORACLE




Who reordered my code?!

Petr Chalupa
Principal Member of Technical Staff

Oracle Labs
September 08, 2016

JRuby+Truffle
Concurrent Ruby

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |




Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: ‘ CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |



Outline

E» When you can see reordering?

E» What does it do?
I Embrace or reject?
) How to deal with reordering?

I Does it have a practical use?

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |



Ruby’s new goals

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |



Performance

* CRuby 3x3 (Heroku, Appfolio)

* Ruby OMR preview — OMR, J9 (IBM)

* JRuby — invokedynamic, new IR (Red Hat)
* JRuby+Truffle — Truffle, Graal (Oracle)

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |




Parallelism

* Almost every computer has more than one core

* Parallel computation has to be supported to utilize all cores
* JRuby and JRuby+Truffle support parallel execution

* Maybe GIL will be removed in Ruby 3?

Ruby Threads C extensions
GIL Ruby Threads I:I I:I:I:I I:I
Ruby interpreter C code * Ruby Interpreted | Ruby compiled | C extensions
OS Threads I:I:I:I_r OS Threads I:I I:I:I:I I:I
Kernel Kernel

OR CI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |




Concurrent library

* |deas considered for Ruby 3: actors, isolation, channels, streams, ...
— Easy to use high-level concurrency abstraction

* Unanswered questions:
— How to write fast concurrent data-structures?
— How to write more concurrent abstractions?

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |



Reordering

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |




When we can see it?

* Fast Ruby implementation

e Parallel execution

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

10



Fast Ruby implementation

For Ruby language to be fast an implementation with speculatively
optimizing dynamic compilation and parallel execution is needed.

* Speculative: can speculate on following propositions
— Method body is invariable
— Constant's value is invariable

— Type speculation def foo(a, b)
COUNT * (a + b)
end

foo(1, 2)

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

11



Fast Ruby implementation

For Ruby language to be fast an implementation with speculatively
optimizing dynamic compilation and parallel execution is needed.

* Optimizing: does all the clever optimizations as e.g. gcc
— In-lining
— Splitting
— Constant folding
— Value numbering
— Hoisting

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

12



Fast Ruby implementation

For Ruby language to be fast an implementation with speculatively
optimizing dynamic compilation and parallel execution is needed.
* Dynamic:

— Just-in-time compilation of hot methods

— Also deoptimize when speculatively taken assumptions fail

* Parallel:
— Ruby code runs in parallel

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

13



Fast Ruby implementation

* JRuby+Truffle is such an implementation
— Truffle: self optimizing AST interpreter
— Graal: compiler written in Java

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

14



Sources of reordering

O e ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

15



Compiler reorders code

* Optimizes by transforming the code
* |s allowed to do for us any optimization if the transformation cannot be
observed on the same thread

— The code has the same result
— Assumes only one thread

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

16



Seemingly sequential Ruby code

def foo(a, b, c, d)

X =a+ b fOO(a, b, c, d)

y =c+d

X +y —

end These two operations can
happen in either order
Why? Because they are
independent operations — there
are no dependencies between
end the two.

Expanded to a parallel graph in the compiler

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 17




Seemingly sequential Ruby code

(Pseudo dssempyy)

add a b %rl add c d %rl

add c d %r2 add a b %r2

mul %rl %r2 %r3 mul %rl %r2 %r3
ret %r3 ret %r3

Generated machine code can use either order of operations

Why? Because they are
independent operations — there
are no dependencies between
the two.

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 18




Seemingly sequential Ruby code

add a b %ril add c d %r2 These two operations can

happen in your processor
in either order

mul %rl %r2 %r3

Why? Because they are
independent instructions — there
are no dependencies between

ret %r3 the two.

Even if our compiler didn’t reorder, the processor could do it anyway!

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 19




Thread 2

Example

class Future def value .
def initialize; gvalue = nil; end Thread.pass until @value
def fulfill(v); end avalue
def value; end end

end

Thread 1 Order Transformed into

def fulfill(result) def value

end 2: Thread.pass until value # il <= Thread.pass until value

1: @value = result # :result avalue
end

avalue = result \ 2: value = aqvalue # nil G A LUE = QValue

If value is called before Tu'l f1 11 it will block indefinitely.

O c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 20




Cache reordering effects

* Dekker's algorithm
* Compiler without reordering

* Old processor executing in program order
— No out-of-order execution

* Coherent cache with just a write buffer

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

21



Cache reordering effects

flagl = flag2 = false

Thread 1

flagl = true
flag2 ? contention :

ORACLE

critical _section

Thread 2

flag2 = true

flagl ? contention :

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

critical_section

22



Cache reordering effects

Thread 1 Thread 2

flagl = true flag2 = true

critical_section flagl ? contention critical_section

flag2 ? contention

asie}
asie}

Store buffer Store buffer

¢ ¢

Global memory

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |




Processor reordering effects

* Decker's algorithm
* Compiler without reordering
* Qut-of-order processor

* No cache

O e ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

24



Processor reordering effects

flagl = flag2 = false

Thread 1

flagl = true
flag2 ? contention :

ORACLE

critical_section

Thread 2

flag2 = true

flagl ? contention :

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

critical_section

25



Processor reordering effects

flagl = flag2 = false

Thread 1 Thread 2

ril = flag2 # read rl = flagl # read

flagl = true # write flag2 = true # write

rl ? contention : critical _section rl ? contention : critical _section

* Store reordered with load
» StorelLoad reordering is allowed on x86

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

26



Live example

* Decker’s algorithm on JRuby+Truffle

— Without compiler
— With Graal enabled

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

27



Who reordered my code?!

* It might have been:
— Compiler
— Cache
— Processor

* We do not care who it was though, only the actual execution matters

* The reordered code runs faster while the transformation cannot be
observed on a single thread

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

28



Do we want reordering?

* Yes
— Even the very basic code transformations would be forbidden without it
— It would require memory barriers around every read and write

* We want to let the compiler, cache, processor
— keep working for us,
— run our code faster then we wrote it,
— minimize waiting for memory

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

29



Relaxed memory order

class Variable

def initialize Updates Seen by

enEcﬂlmutex, Qupdates, @seen_up_to = Mutex.new, [], {} ) Thread 1
] 0
def write(value)
amutex.synchronize do 1 Thread 2, Thread 3
aupdates << value
dseen_up_to[Thread.current] = Qupdates.size - 1 42 Thread 4
end 54
value
end
def read
amutex.synchronize do
seen = @seen_up_to[Thread.current] || ©

new_seen = (seen...qupdates).to_a.sample # already seen or newer
@seen_up_to[Thread.current] = new_seen
return gupdates[new_seen]
end
end
end

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |




Relaxed memory order

* Each thread sees different values

* Variables are completely independent

* Only the order of the values is shared

* Not every value has to be seen by a given thread
* No way to tell if a thread got the latest value

* Corresponds to relaxed order of atomics variables in C++

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

31



Taming reordering

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

32



Sequential consistency

“The result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program.” — Leslie Lamport 1979

* Allows to reason about the program as if it is executed interleaved on one
thread even though it's executed in parallel on many threads

* Cannot be done for all variables

* Better to apply to just shared variables

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 33



Sequential consistency

Thread 1 Thread 2
line :a line 1
line :b line 2

Allowed orders

line :a line :a line :a line 1 line 1 line 1

line :b line 1 line 1 line 2 line :a line :a
line 1 line 2 line :b line :a line 2 line :b
line 2 line :b line 2 line :b line :b line 2

O e ®
R Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |



Sequential consistency
Can :a and :b be both printed?

a = b = false

Thread 1 Thread 2 Thread 3 Thread 4
a = true b = true if a §5 !'b if a §5 !b
puts :a puts :a
end end

Assuming a &§& !b the order has to be
* Impossible toinsertb && !atoa place

a = true .

a §& 'b # => true where it would be true

# ts : C :

b futiuea * The reasoning is just mirrored for puts : b
# puts :a

O e ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 35



Memory model

* It's difficult to define
— We'll focus only on implications

* Defines shared variables
* Allows optimizations while keeping sequential consistency
* Contract: the program is sequentially consistent if there are no data races

* Answers which values can a particular read return in a program

e ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

36



Shared variables

* Called volatile in Java and atomic in C++

* We have to tell the compiler which variables are shared
— It has to assume that they may be accessed at any time from other threads
— Reads and writes of shared variables cannot be reordered

* Reads and writes are atomic

* To conform with sequential consistency, intuitively:
— Release: When written, it has to be made visible immediately to all other threads
— Acquire: When read, it reads the latest value

* Provides safe publication
— Release and acquire has useful effect on non-shared variables

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

37



Shared variables

a =0

shared = false

Thread 1

a = 42 # cannot be moved down
shared = true # release

Possible orders

Thread 2

if rl1 =
r2 =

end

[r1, r2]1 # => [true, 42], [false, nil]

shared # acquire
a # cannot be moved up

rl = shared # false a = 42 a = 42

# no r2 = a rl = shared # false shared = true

a = 42 # no ‘r2 = a rl = shared # true
shared = true shared = true r2 = a

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 38



Example — fixed

class Future
shared :@value
def initialize; gqvalue =
def fulfill(v); end
def value; end
end

Thread 1

def value
Thread.pass until @value
avalue

end

nil; end

Transfoermed into Thread 2

def value def fulfill(value)
value = gvalue avalue = value
Thread.pass until @value end
avalue

end

aVva lue cannot be reordered, has to actually read the value each time.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 39



Building with memory model

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

40



Counter

* A counter:
—.new(value = 0)
—t#tadd(increment = 1)
—ftvalue

* Staring by using what is currently available Mutex

e ®
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

41



Counter

class MutexCounter
def initialize(value = 0)
agmutex = Mutex.new
amutex.synchronize { a@value =
end

def add(increment = 1)
amutex.synchronize do
avalue += increment
end
end

def value
amutex.synchronize { @value }
end
end

ORACLE

value }

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

42



Counter

class SharedCounter
def initialize(value = 0)
agmutex = Mutex.new
avalue = AtomicReference.new value
end

def add(increment = 1)
amutex.synchronize do
avalue.set avalue.get + increment
end
end

def value
avalue.get
end
end

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 43




Benchmark — value improvement

30

75 24,29

20

15

10

ORACLE

B Mutex

11,07 9,69 M Shared

MRI

1,01 0,17

JRuby JRuby+Truffle

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted a4



Compare-and-set operations

* Atomic operation on a shared variable

compare_and_set expected, new _value # => true || false

attr _atomic :value # shared variable
self.value =1

Thread 1 Thread 2
while true while true
current = value current = value
new_value = current + 1 new_value = current * 2
break if compare_and_set value( break if compare_and_set value(
current, new_value) current, new_value)
end end

e ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

45



Counter

class CasCounter
def initialize(value = 0)
avalue = AtomicReference.new value
end

def add(increment = 1)
while true
current = gvalue.get
new_value = current + 1ncrement
break if gvalue.compare_and_set(current, new_value)
end
end

def value
avalue.get
end
end

c ®
OR CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

46



Benchmark —add improvement

30

26,81

25

20,23

20

15 B Mutex

9.95 M CAS

10

1,75

MRI

JRuby+Truffle

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 47




Conclusions

* Fast Ruby implementation

* Parallel execution —» Reordering = Memory model
* Shared memory
* Shared variables

/- * Sequential consistency

Fast concurrent data structures and
concurrency abstractions built directly
in Ruby

It is not for every day coding. Look for abstractions in gems like concurrent-ruby first.

OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

48



Acknowledgements

Oracle

Danilo Ansaloni
Stefan Anzinger
Cosmin Basca
Daniele Bonetta
Matthias Brantner
Petr Chalupa
Jurgen Christ
Laurent Daynés
Gilles Duboscq
Martin Entlicher
Brandon Fish
Bastian Hossbach
Christian Humer
Mick Jordan

Vojin Jovanovic
Peter Kessler
David Leopoldseder
Kevin Menard
Jakub Podlesak
Aleksandar Prokopec
Tom Rodriguez

ORACLE

Oracle (continued)
Roland Schatz

Chris Seaton

Doug Simon

Stépan Sindelar
Zbyné&k Slajchrt
Lukas Stadler
Codrut Stancu

Jan Stola

Jaroslav Tulach
Michael Van De Vanter
Adam Welc
Christian Wimmer
Christian Wirth

Paul Wogerer
Mario Wolczko
Andreas Wo6R
Thomas Wirthinger

Oracle Interns JKU Linz
Brian Belleville Prof. Hanspeter Mossenbock

University of California, Irvine
Prof. Michael Franz

Miguel Garcia
Shams Imam
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash

David Piorkowski
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Alumni

Erik Eckstein
Michael Haupt
Christos Kotselidis
Hyunjin Lee

David Leibs

Chris Thalinger
Till Westmann

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted

Benoit Daloze
Josef Eisl

Thomas Feichtinger
Matthias Grimmer
Christian Haubl
Josef Haider
Christian Huber
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of Edinburgh
Christophe Dubach

Juan José Fumero Alfonso
Ranjeet Singh

Toomas Remmelg

LaBRI
Floréal Morandat

Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj

Lei Zhao

T. U. Dortmund

Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis

Prof. Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland

Prof. Walter Binder
Sun Haiyang
Yudi Zheng

49



Safe Harbor Statement

The preceding is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: ‘ CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 50



Integrated Cloud

Applications & Platform Services

ORACLE



ORACLE




