
Copyright © 2016 Oracle and/or its affiliates. All rights reserved. |

David Meibusch
Oracle Labs Australia

Frappé: a code comprehension tool for large C/C++ codebases

A Dependency Analysis Tool to Improve
Developer Productivity and Code Quality

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Disclaimer

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Bug Trace Motivation

• Java web vulnerabilities tend to have deep stack traces

– Hard to keep track of inter-procedural control flow

– Compounded by data flowing on paths different to control flow

• Parfait Server currently used
– Originally designed predominantly for intra-procedural analyses

– No attempt at showing dataflow as separate to control flow

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Bug Trace Ideas

• Streamline the source view

– Generally more succinct

– Better controls for interacting with snippets

– Iconography

• Augment source view with control and data flow information

– Stack-like visualisation (with data-flow edges)

– Map showing path of the defect

• Allow better source exploration
– Utilise Frappé

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Limitations

• Data comes from Parfait Machine Readable Reports (MRR)

– No control flow information between call frames

– Required extensions to parfait’s report format and bug passes

• Current solution
– Uses Frappe’s graph database to infer the control flow where possible

– Can’t resolve recursive or mutually recursive calls

– Use special storeloadflow nodes to determine data-flow edges

• Ideally
– Analysis provides all essential details in MRR

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Frappé Architecture

6

Build
integration

Graph
builder

Property
Graph

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Frappé Architecture

7

Web service

Code search
and navigation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Frappé Architecture

8

Map
generation

