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Abstract
Symbolic execution is an important program analysis technique that
provides auxiliary execution semantics to execute programs with
symbolic rather than concrete values. There has been much recent
interest in symbolic execution for automatic test case generation
and security vulnerability detection, resulting in various tools be-
ing deployed in academia and industry. Nevertheless, (subtype or
dynamic) polymorphism of object-oriented programAnalysiss has
been neglected: existing symbolic execution techniques can explore
different targets of conditional branches but not different targets
of method invocations. We address the problem of how this poly-
morphism can be expressed in a symbolic execution framework.
We propose the notion of symbolic types, which make object types
symbolic. With symbolic types, various targets of a method invo-
cation can be explored systematically by mutating the type of the
receiver object of the method during automatic test case genera-
tion. To the best of our knowledge, this is the first attempt to ad-
dress polymorphism in symbolic execution. Mutation of method
invocation targets is critical for effectively testing object-oriented
programs, especially libraries. Our experimental results show that
symbolic types are significantly more effective than existing sym-
bolic execution techniques in achieving test coverage and finding
bugs and security vulnerabilities in OpenJDK.

Categories and Subject Descriptors D [2]: 5Symbolic Execution

Keywords Concolic Testing, Object-Oriented Programs

1. Introduction
Symbolic execution [26] is a powerful technique for automatic test
case generation [11], especially when used for finding security vul-
nerabilities in complex software applications. Program inputs are
represented with symbolic values, and program instructions are in-
terpreted as operations that manipulate symbolic values. Dynamic
symbolic execution (DSE) can be seen as auxiliary execution se-
mantics of programs, in which a program is executed with concrete
and symbolic input values. The concrete values induce a program
execution, from which a path condition is generated using the sym-
bolic values of the variables in the program. The path condition

represents a set of constraints that must be satisfied by any con-
crete input that results in the same execution path.

The ability to automatically generate concrete test inputs from a
path condition makes symbolic execution attractive for automated
testing and bug detection. A new test case is generated from an
existing one by mutating the path condition of that existing exe-
cution and then solving the mutated path condition with an off-
the-shelf constraint solver. Recent research has demonstrated that
symbolic execution techniques and test case generation can auto-
matically generate test suites with high coverage [10, 54], and that
these techniques are effective in finding deep security vulnerabili-
ties in large and complex real-world software applications [10, 22].

This paper addresses (subtype or dynamic) polymorphism in
symbolic execution. When analyzing object-oriented programs
symbolically, it is critical to explore different targets of method in-
vocations, i.e., the targets that depend on the types of their receiver
objects. Mutating a constraint related to the type of an receiver ob-
ject should therefore generate a set of new constraints encompass-
ing all other possible types of the receiver object. However, such
mutation has been overlooked. Existing symbolic execution tech-
niques [16, 22, 54] for object-oriented programs do not generate
such polymorphism-related constraints. While being capable of ex-
ploring different targets of conditional branches, where constraints
on symbolic values are introduced for different branch conditions,
the state-of-the-art techniques [16, 22, 54] cannot explore different
targets of method invocations, which depend on the types rather
than values of receiver objects. This limitation has largely limited
their ability in generating test cases effectively for object-oriented
programs.

To address this problem, we propose object-oriented symbolic
execution (OO-SE), which leverages classic symbolic execution
and extends it with symbolic types. A symbolic type represents all
possible concrete types of a receiver object, thereby enabling its
mutation in test case generation. During symbolic execution, con-
straints on symbolic types are added to the path condition and type-
related operations such as casting, type testing (e.g., instanceof
in JavaTM) and virtual invocation are tracked symbolically. As a
result, we have enriched the expressiveness of path conditions, by
considering not only the constraints on symbolic values as before
but also the constraints on symbolic types as in this work.

Figure 1 depicts a test case generation framework, built by ex-
ploiting symbolic types, for object-oriented libraries. Our approach
applies also to applications when their individual parts are sepa-
rately tested. When testing an object-oriented library, the following
three steps are repeated until a certain goal has been met:

• First, a concrete test input for an API method M = c m(
−→
t x)

{. . .} in the library is generated and a harness program is syn-



Figure 1. Architecture of a dynamic symbolic execution tool for
object-oriented libraries by exploiting symbolic types.

thesized to invoke the API with the test input. When testing
method m, we can assume symbolic inputs for its formal pa-
rameters as well as the formal parameters of the constructor
called on its corresponding receiver object. Let x be such a for-
mal parameter. Two cases are considered. If x is of a primitive
type, then x has a symbolic (input) value as before [16, 22, 54].
If x is of a reference type, then x has a symbolic (input) type
T , or more precisely, the (input) object o referenced by x has
a symbolic type T . Note that o may be of any subtype of the
declared type d of x, denoted T E d. We write lT 7→ oc to
represent the fact that o, which is constructed with a concrete
type c, has a symbolic type T . Here, lT is a reference to o, such
that x = lT . Thus, the program is executed with object o be-
ing of the concrete type c and with constraints on its symbolic
type T being collected whenever the reference lT to o is used in
type-related operations, such as type casting, instanceof and
method invocations.
• Second, the program is executed symbolically by keeping track

of a path condition, which comprises constraints on not only
symbolic values but also symbolic types at run time.
• Third, the path condition is mutated and passed to a constraint

solver to generate a new concrete test input and a harness
program to test M = c m(

−→
t x) {. . .}, so that a different

program path can be explored. For every (symbolic) formal
parameter x, as discussed above, the new test case provides a
concrete value for x if x is of a primitive type and a concrete
type for the object referenced by x if x is of a reference type.

This paper focuses on neither test case synthesis nor constraint
solving. Existing symbolic execution techniques on unit testing [31,
54] can synthesize interactions among different methods in the
same class. They can achieve high coverage by exercising different
method invocation sequences on the same object to reach an object
state that exposes different behaviors of the class. Our work is
orthogonal. By enriching the expressiveness of path conditions, we
can accelerate test coverage and improve test effectiveness.

The contributions of this work are summarized as follows:

• We propose OO-SE (Object-Oriented Symbolic Execution),
by addressing polymorphism effectively in terms of symbolic
types and providing a formalization of OO-SE. To the best of
our knowledge, OO-SE is the first that executes method invo-
cations symbolically, by mutating their targets based on the
constraints on the symbolic types of their receiver objects.
• We have developed a test case generation framework for object-

oriented libraries based on OO-SE. To test an API method in

a library, this framework generates automatically different test
cases and their associated harness programs for the API.
• We have implemented our test case generation framework in

Java. Our experimental results on OpenJDK show that symbolic
types are not only effective in improving test coverage but also
essential in finding bugs and security vulnerabilities.

The rest of the paper is organized as follows. Section 2 moti-
vates our approach by example. Section 3 formalizes our extension
of classic symbolic execution with symbolic types to support poly-
morphism. Section 4 discusses our implementation details. Sec-
tion 5 evaluates our approach using the OpenJDK library. Section 6
reviews related work. Finally, Section 7 concludes the paper.

2. Motivating Example
Figure 2 shows a code snippet extracted from class java.net.
InterfaceAddress of OpenJDK 1.6.0 03-b05. This example
shows that existing symbolic execution techniques [16], which do
not mutate method invocation targets, are insufficient to produce
expressive path conditions for test case generation and may thus
miss bugs that can be found systematically with symbolic types.

For class InterfaceAddress, its instance field address can
never be null but its instance field broadcast may be null. In line
7, due to the badly written checks, broadcast.equals() may
throw a null pointer exception, as highlighted. This error is reported
as bug 6628576 in http://bugs.java.com. The bug can be
exposed only if both obj instanceof InterfaceAddress at
line 1 and address.equals(cmp.address) at line 4 hold.

Suppose we would like to test the API InterfaceAddress.
equals(). To trigger the error, it is essential to change the type
of the object referenced by the field address of its receiver object
and the type of the object referenced by its formal parameter obj.

Figure 3 shows the symbolic execution tree with different exe-
cution paths for InterfaceAddress.equals(). At line 1, if obj
instanceof InterfaceAddress fails, the execution returns at
line 2. Otherwise, the execution continues by taking a different path
from line 3. When invoking address.equals(cmp.address) at
line 4, we may execute one of the three target methods, InetAdd-
ress.equals(), Inet4Address.equals() and Inet6Address.
equals(), denoted m1, m2, and m3, respectively. Note that m1,
i.e., InetAddress.equals() always returns false (line 10).
Thus, line 7, where the null pointer error occurs, can be reached
only if either m2 or m3 is invoked, requiring the object referenced
by field address to be of type Inet4Address or Inet6Address.

Traditional symbolic execution techniques [16, 22, 54] may
miss this error since they always execute a method invocation con-
cretely. To overcome this limitation, we propose to handle polymor-
phism systematically with symbolic types. Figure 4 depicts how
our object-oriented symbolic execution approach is applied to gen-
erate test cases automatically to trigger the null pointer error. As
InterfaceAddress.equals() is the API being tested, there are
three input objects: (1) its receiver object (O0), (2) the object ref-
erenced by its input parameter obj (O1), and (3) the object ref-
erenced by the formal parameter addr of InterfaceAddress’s
constructor (O2). As the field address of O0 points to O2, it
suffices to focus on O1 and O2 for the purposes of understand-
ing how the null pointer error is exposed. Let the symbolic types
of O1 and O2 be T 1 and T 2, respectively. Thus, O1 and O2 may
be constructed with different concrete types, c1 and c2, during the
test case generation. In our notation, these facts are represented as
lT1 7→ Oc1

1 and lT2 7→ Oc2
2 .

As shown in Figure 4(a), initially the two objects O1 and O2 are
constructed with their concrete types being their declared types: O1

is constructed with type Object and O2 is constructed with type
InetAddress. The API method being tested is then executed sym-



public class InterfaceAddress{
private InetAddress address;
private InetAddress broadcast;
...

InterfaceAddress(InetAddress addr){
address = addr;

}

public boolean equals(Object obj){
1 if(!(obj instanceof InterfaceAddress))
2 return false;
3 InterfaceAddress cmp=

(InterfaceAddress) obj;
4 if(!address.equals(cmp.address))
5 return false;
6 if((broadcast!=null &&

cmp.broadcast==null)||

7 (!broadcast.equals(cmp.broadcast)) )

8 return false;
...

}
}

public class InetAddress {
9 public boolean equals(Object obj){
10 return false;

}
}

public class Inet4Address
extends InetAddress{

11 public boolean equals(Object obj){
12 ...
13 return true;

}
}

public class Inet6Address
extends InetAddress{

14 public boolean equals(Object obj){
15 ...
16 return true;

}
}

Figure 2. Code taken from java.net.InterfaceAddress from
OpenJDK 6 with some simplifications.

bolically by following the execution path from line 1 to line 2, re-
sulting in the path condition being ¬(T 1 E InterfaceAddress).

Next, we negate the path condition and solve the thus mutated
path condition T 1 E InterfaceAddress to generate a new test
case. Figure 4(b) shows a solution: O1 is constructed now with a
different type, InterfaceAddress. As a result, the test in line 1
fails this time, generating a constraint T 1 E InterfaceAddress.
After that, we execute symbolically address.equals() at line
4, thereby obtaining another constraint, T 2 equals

= InetAddress,
which asserts that the target called is InetAddress.equals().

In general, mutating a constraint related to the type of the
receiver object at a method invocation will generate a set of
mutations, each representing a new target method yet to be in-
voked. This allows us to try all its feasible targets systemat-
ically. In our example, there are three target methods invok-
able at address.equals() (line 4). Thus, mutating T 2 equals

=

InetAddress yields two new constraints, T 2 equals
= Inet4Address

and T 2 equals
= Inet6Address, with their solutions given in Fig-

Figure 3. Symbolic execution tree for the example in Figure 2.

ures 4(c) and 4(d), respectively. In either case, the null pointer error
at line 7 can be exposed.

Note once again that existing symbolic execution techniques [16,
22, 54] do not mutate method invocation targets. In [16], type vari-
ables are introduced to support subtyping. While collecting type-
related constraints for instanceof operations, this earlier work
still executes a method invocation concretely. In our motivating
example, it can expose the null pointer error at line 7 only if all
possible types for O1 and O2 are enumerated exhaustively. This is
impractical for large object-oriented libraries such as OpenJDK, as
will be discussed in Section 5.

3. Object-Oriented Symbolic Execution with
Symbolic Types

This section presents our approach on object-oriented symbolic
execution and test case generation for object-oriented libraries. As
mentioned earlier, our approach is applicable to applications as
well when its parts are separately tested. The semantics of the
dynamic symbolic execution is described formally using a small
object-oriented language abstracted from Java.

3.1 Program Representation
The syntax of our core language is given in Figure 5, where the top
half provides the abstract syntax for the source language and the
bottom half provides the additional syntax used by the dynamic
symbolic execution. The core language closely models conven-
tional object-oriented languages, including dynamically allocated
mutable objects, class inheritance and dynamic dispatch. Static
fields and static methods are omitted since they are simpler cases
of instance fields and methods. For simplicity, we do not model
exception handling and concurrency features in order to focus on
symbolic types and values while avoiding semantic complications.
We also assume that any program in the core language is type-safe.

In the source language, a class C is defined by extending an-
other class. A special class Object is predefined to serve as the root
of the class hierarchy, for simplicity, with no field or method. The



lT
1

1 7→ OObject
1

lT
2

2 7→ OInetAddress
2

obj = lT
1

1

address = lT
2

2

(a)

lT
1

1 7→ OInterfaceAddress
1

lT
2

2 7→ OInetAddress
2

(b)

lT
1

1 7→ OInterfaceAddress
1

lT
2

2 7→ OInet4Address
2

lT
1

1 7→ OInterfaceAddress
1

lT
2

2 7→ OInet6ddress
2

(c) (d)

Figure 4. Dynamic object-oriented symbolic execution for the example in Figure 2.

Programs P ::= C e
Classes C ::= class c / c {t f ; D}
Methods D ::= t m(t x) {e}
Expressions e ::= x | v | new c T | e.f | e.f = e | e.m(e)

| let x = e in e | if e e e | e op e | e instanceof c | halt
Types t ::= c | bool | int | string
Values v ::= r X

Literals r ::= null | b | n | s
Booleans b ::= true | false
Integers n ::= −1 | 0 | 1 | 2 | ...
Strings s ::= “a” | “bc” | “abc” | ...
Operators op ::= + | − | == | != | ...
Identifiers c, f,m, x,X, T

Heaps H ::= l 7→ oc

Objects o ::= f 7→ v

Values v ::= ... | r ς | l T

Symbolic representations ς ::= X | r | T E c | ς op ς

Constraint lists Σ ::= ∅ | Σ, ς | Σ,¬ς | Σ, T
m
= c

Evaluation contexts E ::= J·K | E.f | E.f = e | v.f = E | E.m(e) | v.m(E) | v,E, e
| let x = E in e | if E e e | E op e | v op E | E instanceof c

Locations l

Figure 5. Abstract syntax for source language (top) and symbolic execution (bottom).

symbolic values and types, identified by X and T , respectively, are
marked in gray to indicate that they are optional—introduced only
in the synthesized harness program for invoking a public API of the
library under test. All input values to the API are symbolic: object
construction is labeled with a symbolic type and a non-object value
v is a literal labeled with a symbolic value. In addition, a variable
of a reference type in the harness program refers to symbolic ob-
jects or null. Thus, we can execute the API symbolically with these
symbolic inputs introduced in the harness program.

In the additional syntax used in the symbolic execution, the heap
H maps memory locations to objects with a given type. An object
in memory maps fields to values, where the syntax of value v has
been extended to include also a runtime memory location possibly
labeled with a symbolic type to represent symbolically the type of
the object at the location. During dynamic symbolic execution, both

concrete and symbolic executions are performed together. Thus, we
must keep track of both the concrete and symbolic information for
a value v. Specifically, for a non-object value rς , r is its concrete
value and ς is its symbolic value. For an object at location lT , c is
its concrete type, where H(l) = oc, and T is its symbolic type. A
symbolic representation ς can be either a symbolic identifier (X),
a literal (r), a subtype expression (T E c), or a binary operation
of two symbolic expressions (ς op ς). The symbolic execution
accumulates all constraints collected during execution and places
them in a list Σ, which may contain a symbolic representation ς or
its negation ¬ς , or a method identity constraint T m

= c, which will
be explained below.



[CONTEXT]
H1 Σ1 e1 −→ H2 Σ2 e2

H1 Σ1 EJe1K −→ H2 Σ2 EJe2K

[NEW]
fields(c) = f l /∈ dom(H)

H Σ new c T −→ H, l 7→ (f 7→ default)c Σ l T

[UPDATE]

H Σ l T .f = v −→ H[l 7→ H(l)[f 7→ v]] Σ v

[LOOKUP]

H Σ l T .f −→ H Σ H(l)(f)

[LET]
H Σ let x = v in e −→ H Σ e[v/x]

[OP]
r1 op r2 = r

H Σ r
ς1

1 op r
ς2

2 −→ H Σ r
ς1 op ς2

[INSTANCEOF-TRUE]
H(l) = oc1 c1 E c

H Σ l T instanceof c −→ H Σ true
TEc

[INSTANCEOF-FALSE]
H(l) = oc1 c1 5 c

H Σ l T instanceof c −→ H Σ false
TEc

[INSTANCEOF-NULL]

H Σ null
ς

instanceof c −→ H Σ false false

[TRUE]

H Σ if true
ς

e1 e2 −→ H Σ ,ς e1

[FALSE]

H Σ if false
ς

e1 e2 −→ H Σ ,¬ς e2

[CALL]
H(l) = oc1 method(c1, c.m) = t m(t x) {e}

H Σ l T .m(v) −→ H Σ ,T m
= c e[v/x]

Figure 6. Operational semantics of dynamic symbolic execution with symbolic types.

[FIELDS-DECLARED]
class c / c1 {t1 f1, ..., tn fn; ...}
fields(c) = f1, .., fn,fields(c1)

[FIELDS-OBJECT]
fields(Object) = ∅

[METHOD-DECLARED]
class c ... {... t m(t x) {e} ...}

method(c, c.m) = t m(t x) {e}

[METHOD-INHERITED]

class c / c1 {...; D} t m(t x) {e} /∈ D
method(c, c2.m) = method(c1, c2.m)

[METHOD-IDENTITY]
method(c1, c2.m) = t m(t x) {e}

c1
m
= c2

[SUBTYPE-REFLEXIVE]
c E c

[SUBTYPE-OBJECT]
c E Object

[SUBTYPE-EXTEND]
class c1 / c2 {...}

c1 E c2

[SUBTYPE-TRANSITIVE]
c1 E c c E c2

c1 E c2

Figure 7. Auxiliary definitions.

3.2 Operational Semantics
Figure 6 presents small-step operational semantics for dynamic
symbolic execution with symbolic types. These rules apply to both
the object-oriented library being tested and any harness program
synthesized. Note that the grayed parts are optional and used only
when there are symbolic representations involved. We write e[v/x]
to stand for a substitution of x with v in e. In addition, we write
H(l) to look up a mapping and o[f 7→ v] to update a mapping.

For completeness, we give the standard auxiliary definitions in
Figure 7. The [FIELDS-*] and [METHOD-*] rules are introduced for
field and method lookups. Methods are qualified with their defining
classes; for example, c.m denotes method m defined in class c.
[METHOD-IDENTITY] is used in constraint solving to discover an
identical method definition. The subtyping constraint is reflexive
and transitive, defined by the [SUBTYPE-*] rules.

Each expression in Figure 6 is evaluated in the form of:

H1 Σ1 e1 −→ H2 Σ2 e2

where heap H may be updated by new object construction ([NEW])
and field update ([UPDATE]) and Σ (representing the path condition
of the program) is an ordered list of constraints generated by evalu-
ating conditionals ([TRUE] and [FALSE]) and virtual calls ([CALL]).
Rule [NEW] creates a new object and initializes all its fields to de-
fault values. Rule [UPDATE] updates the value of an object field.
For simplicity, we regard memory locations as constants and do not
model heap updates ([UPDATE]) and heap lookups ([LOOKUP]) sym-
bolically. We use the conventional form of evaluation contexts E to
reduce the number of evaluation rules. Therefore, rule [CONTEXT]
provides a context for each small-step reduction.

The initial state for evaluating a (harness) program is ∅ ∅ e,
where e is the body of the main method of the program, and both
the heap and the constraint list are initially empty. The evaluation of
the program (in multiple steps) yields a complete list of constraints,
Σ, that can be mutated to generate new test inputs:

∅ ∅ e −→∗ H Σ v



3.2.1 Symbolic Expressions
New symbolic expressions of values are introduced in [OP] and
the three [INSTANCEOF-*] rules. The [OP] rule manipulates existing
symbolic representations, where r1 op r2 represents an evaluation
of an arithmetic or relational operation on literals. Given 1+2 = 3,
for example, we will have H Σ 1ς1 + 2ς2 −→ H Σ 3ς1+ς2 . Note
that the unary negation operation !e can be encoded as e == false.

The three [INSTANCEOF-*] rules handle an is-instance-of
test of the form v instanceof c. If v is a heap object repre-
sented by lT , the test results in the subtype expression T E c
([INSTANCEOF-TRUE] and [INSTANCEOF-FALSE]). If v is null, then
the test is always false ([INSTANCEOF-NULL]). In Java, every class
is a subtype of Object. Hence, T E Object always holds. In our
motivating example given Figure 2, we discussed earlier on testing
the public API method InterfaceAddress.equals(). The ob-
ject referenced by its formal parameter obj is represented as obj =
lT with a symbolic type T . Initially, the object is constructed
with the declared type Object, giving rise to lT 7→ OObject.
At line 1, the test obj instanceof InterfaceAddress is then
translated to: H Σ lT instanceofInterfaceAddress −→ H
Σ falseTEInterfaceAddress.

We also consider casting to be also handled by the [INSTANCEOF-*]
rules, together with [LET]. For example, a Java statement {x =

(c) y,...}, where y = lT , is modeled as {let x = if lt == null
null if lT instanceof c lT halt, · · · }. As a result, the subtype ex-
pression T E c generated by casting always needs to be satisfied.
Otherwise, the program halts. Our definition is relatively abstract
and generally simple through the introduction of an subtype expres-
sion. A more elaborate alternative for Java is described in the entry
for instanceof in Chapter 6 of the Java Virtual Machine (JVM)
Specification [36]. Specific casting rules for Java also depend on
the JVM specification, in the entry for checkcast in [36].

3.2.2 Path Constraints
When a program path is followed, constraints are collected in eval-
uating conditionals ([TRUE] and [FALSE]) and virtual
calls ([CALL]). A constraint represents a condition that needs to
be satisfied for the same path to be taken during program execu-
tion. Thus, [TRUE] ([FALSE]) introduces a constraint for a condi-
tional when its true (false) branch is taken. Solutions that satisfy
the same conditional constraint will always cause the same branch
to be executed.

Similarly, we introduce constraints on the types of receiver
objects at method invocations ([CALL]). For a virtual call lT .m(v),
where H(l) = oc1 , the method identity constraint T m

= c asserts
that the invoked target must be method c.m, if c = c1, where
c1 declares m (method(c1 , c1 .m)) or c1 inherits (transitively) m
from c (method(c1 , c.m)). Solutions that satisfy the same method
identity constraint will always cause the same target to be invoked,
although the type c1 of the receiver object oc1 may differ each time.

3.3 Test Generation and Constraint Solving
A program path is represented as a path condition Σ, which is an
ordered list of constraints ς0, ς1, . . . , ςn. Each constraint represents
a condition for a particular branch to be taken along the path.
During the test case generation, Σ is mutated and then solved by
a constraint solver to generate new test cases to execute new paths.

As in prior work [22], we mutate one constraint in Σ at a time.
Thus, a mutated Σ consists of one mutated constraint, together with
the remaining constraints carried over unchanged from Σ. For ex-
ample, if we mutate the constraints in Σ = ς0, ς1, . . . , ςn succes-
sively, we will obtain new path conditions: Σ̃0 = ς̃0, Σ̃1 = ς0, ς̃1,
. . . , Σ̃n = ς0, ς1, . . . , ς̃n. Each mutation represents a new path,
which diverges from the original path Σ at the mutated branch.

A constraint ς0 introduced by [TRUE] or [FALSE] represents a
conditional branch. Its mutation is simply the negation, i.e., ς̃0 =
¬ς0, which represents the other branch of the same conditional. A
method identity constraint T m

= c0 represents one target method
for a virtual call. There may be multiple mutations, each represent-
ing a new target to be explored. Let {c0.m, c1.m, . . . , cn.m} be

the set of all such targets. The mutation T̃
m
= c0 is the set of con-

straints T
m
= c1, . . . , T

m
= cn. Hence, we have generated a set of

new path conditions, allowing us to explore all possible targets for
this particular virtual call. The set of all possible targets at a virtual
call is estimated conservatively by static analysis. While an over-
approximation affects neither the soundness nor the completeness
of our approach, a precise estimation can help filter out some infea-
sible targets, accelerating constraint solving and test generation.

A mutated path condition is solved by a constraint solver to
generate a new test input. All the constraints on symbolic values
are handled in the standard manner [22]. There are two kinds of
constraints on symbolic types. A subtyping constraint, T E c or
¬(T E c), is solved by applying the [SUBTYPE-*] rules. A method
identity constraint T m

= c is solved by [METHOD-IDENTITY].
By solving the method identity constraint T m

= c at a virtual
call and its mutations, we have effectively generated test cases
to explore all its feasible invocation targets. Each test case will
exercise a different target, with all the infeasible targets being
filtered out by the constraint solver. In our current implementation,
we use the classic class hierarchy analysis (CHA) [15] to find
conservatively the potential targets for a virtual call. There is no
noticeable performance difference if a more precise analysis, say,
Andersen-style points-to analysis [3, 29, 30, 39, 50, 53], is used,
because infeasible invocation targets are usually rejected quickly
by the constraint solver at little cost.

3.4 Soundness and Completeness
The soundness and completeness of a symbolic executor are usu-
ally defined with respect to a bug finder [16, 21]. For soundness, if a
bug is found by the symbolic executor, there must be a correspond-
ing concrete execution path leading to this bug. For completeness, if
there is a bug in the concrete execution, then it can be found by the
symbolic executor given sufficient time. In other words, soundness
implies that no infeasible paths are executed while completeness
implies that all possible feasible paths can be explored.

Therefore, the proof for establishing the soundness of our ap-
proach in the core language is immediate. By performing a dynamic
symbolic execution, all program paths executed are feasible.

The proof of completeness proceeds by induction on −→∗ to
show that each concrete execution path has a corresponding path
condition solved by the constraint solver used. The completeness
assumes that its underlying decision procedure of pruning infea-
sible paths does not exclude any feasible path. Our approach is
parameterized on the underlying decision procedure used, as it is
orthogonal to reasoning about virtual invocations with symbolic
types. More importantly, our use of symbolic types to explore tar-
gets of virtual invocations does not introduce unnecessary incom-
pleteness, as our approach rests on the assumption that any poten-
tial call target in a virtual call is (conservatively) resolved by static
analysis, e.g., the class hierarchy analysis (CHA) [15].

4. Implementation
We have implemented our object-oriented symbolic execution ap-
proach in a DSE tool, as depicted in Figure 1. The objective for
developing this tool is to find effectively security vulnerabilities
in the OpenJDK library. We enable symbolic execution by instru-
mentation: OpenJDK is compiled using the SOOT [58] compilation
framework and every SOOT instruction is instrumented with a cor-



responding function call, to collect constraints and update symbolic
states accordingly. During the instrumented execution of an API
method, invoked by a synthesized harness program, the constraints
are generated and added to the path condition for the path being
explored.

Our tool enumerates all the public API methods in OpenJDK,
and for each API method, synthesizes automatically Java bytecode
programs that execute different paths of the API method. The
bytecode synthesizer is built on top of the ASM library [5].

As shown in Figure 1, each API method is tested iteratively,
with a new input at each iteration in order to exercise a new path
in the API method. To obtain an input for the next iteration, the
path condition for the current input is mutated and solved for a
solution by using a constraint solver. This solution is the next
input, representing a new path to be explored. For each input, its
synthesized bytecode program contains a main method, i.e., a
harness that, when executed, will instantiates objects to be used as
the arguments for the API method being tested. These objects are
created by invoking the public constructors in the classes specified
by the input.

For an argument of a reference type, the synthesizer can choose
to use a new object of an appropriate type (as specified by the
test input), null, or an existing object of an equivalent type. This
simple approach accounts for all possible aliases among the input
objects in [16, 60] but often suffer from the scalability problem. In
our experiments on OpenJDK, no improvement on test coverage is
observed. Therefore, aliases are not considered, by default.

Our constraint solver is implemented in SWIProlog [52]. It sup-
ports both type and linear arithmetic constraints as well as equality
constraints on strings. For linear arithmetic, the solver resorts to
the CLP(R) library of SWI Prolog, which is implemented based on
the simplex algorithm, coupled with our own implementation of a
backtracking algorithm for finding integral solutions.

In our implementation, we have also generalized symbolic types
to handle reflection. In Java, reflection is realized by representing
classes, methods and fields as objects of appropriate types, known
as metaobjects: java.lang.Class for classes, java.lang.
reflect.Method for methods and java.lang.reflect.Field
for fields. Java also provides a reflection API for creating metaob-
jects by their (string) names and for making field accesses and
method invocations reflectively. Table 1 gives a few API examples.

Table 1. Representative Methods in the Java Reflection API
API Semantics

c = Class.forName(s)
returns a Class metaobject for
the class named by the string s

m = c.getMethod(s)
returns a Method metaobject m for
the method named by s in class c

m.invoke(o,...)
invokes method m reflectively on the
receiver object o with the arguments “. . . ”

Leveraging the notion of symbolic types, we represent Method
and Field metaobjects symbolically with symbolic methods and
symbolic fields, respectively. Given a reflective call m.invoke(),
a symbolic method represents all possible target methods that are
referenced by the Method metaobject m. Proceeding similarly as in
the case of a regular virtual call ([CALL]), we introduce an identity
constraint between a symbolic method and a reflective target. By
mutating this identify constraint, we can explore different reflec-
tive targets at the reflective call m.invoke(). How do we find its
possible targets statically and feed them to our symbolic executor?
Presently, how to analyze Java programs in the presence of reflec-
tion soundly, precisely and scalably is a big challenge in its own
right [33–35, 37]. As we focus on finding security vulnerabilities in
OpenJDK, the set of targets at a reflective call is selected manually
to include those that, if called, may pose potential security threats.

Due to the type rules enforced during symbolic execution, infeasi-
ble targets will never be executed. Just like a symbolic method, a
symbolic field represents all possible fields referenced by a Field
metaobject and is dealt with similarly. Our handling of reflection
enables the exploration of different reflective targets at a reflective
call systematically during test case generation.

We do not symbolically execute native methods and do not gen-
erate constraints for exceptions. As a result, values returned from
and objects created in native methods are concretized, with no as-
sociated symbolic representations. A native method may modify
the state of a Java object but this is not tracked. As a result, the
symbolic representation of an object can sometimes be inconsistent
with its runtime state, leading to the classic path-divergence prob-
lem [45], where the tested program runs an unpredicted path. For
dynamic symbolic execution, path divergence affects completeness
but not soundness. In other words, path divergence causes some
paths to be missed but never unreachable code to be executed.

As with many other dynamic symbolic execution tools [22, 55],
we can detect path divergence by comparing the predicted path
of a test case with its real execution path. The execution path
in the program can be traced precisely, even in the presence of
native code and exceptions. In our implementation, we maintain
a symbolic stack. When a native method is invoked, a pseudo stack
frame (marked as native) is pushed onto the stack, which is popped
out after the native method has completed its execution. When a
Java method is executed, the symbolic stack is examined to check
whether it is invoked from a native frame or from another Java
method. Similarly, when an exception is thrown, we examine the
symbolic stack to check from which method (native or Java) it is
thrown, and by which method (native or Java) it is caught. The
symbolic stack is then unwound accordingly.

5. Evaluation
The objective of our evaluation is to demonstrate that our approach
(denoted OO-SE) is superior over the state-of-the-art (denoted
CLASSIC-DSE) for testing object-oriented libraries. CLASSIC-
DSE stands for a classic dynamic symbolic execution technique [16,
22, 54] that executes all virtual method invocations concretely. By
exploring method invocation targets with symbolic types systemat-
ically, OO-SE can outperform CLASSIC-DSE in terms of both test
coverage achieved and bug-finding ability demonstrated.

Note that the work of [16] models subtyping constraints from
instanceof operations but stills executes virtual calls concretely.
To test a public API method, this earlier work instantiates an input
object for a formal parameter of a reference type with any subtype
that satisfies its type constraints collected. This is impractical for
large object-oriented libraries like OpenJDK 7, which has a total
of 23,309 subclasses of java.lang.Object. For all the packages
evaluated, except j.applet, this brute-force approach cannot run
to completion within 24 hours: it often gets stuck at trying input
objects of all possible subtypes for one particular formal parameter
of type java.lang.Object without making progress, resulting in
poor coverage. Thus, it will not be discussed any further.

Table 2. Tested Packages from OpenJDK 7 Update 6

Package #LOC #Classes #Public #Basic #Virtual
Methods Blocks Calls

j.applet 184 2 28 53 26
j.sql 2594 31 220 533 332
j.rmi 2452 60 195 762 390
j.beans 7425 139 376 3500 2254
j.text 9881 67 482 4512 2310



Table 3. Times on analyzing the classes and methods tested

Package #Tested / #Total #Test Cases Generated Run Time (m:s)
Classes Public Methods Classic-DSE OO-SE Classic-DSE OO-SE

j.applet 1 / 2 17 / 28 17 28 1m56s 2m47s
j.sql 13 / 16 65 / 69 92 110 5m12s 7m22s
j.rmi 18 / 35 49 / 62 64 102 21m18s 41m9s
j.beans 41 / 128 166 / 342 301 671 126m8s 665m9s
j.text 32 / 63 236 / 376 409 783 225m11s 726m10s

Therefore, we will compare CLASSIC-DSE and OO-SE by us-
ing the five packages from OpenJDK 7 Update 6, as shown in Ta-
ble 2, where the packages are listed in the ascending order of the
number of basic blocks possessed. The five packages are selected
because in testing the five packages, we did not observe any path
divergence and both CLASSIC-DSE and OO-SE are able to mu-
tate all path conditions until termination within 24 hours. The other
packages in OpenJDK either take too long to make any progress in
symbolic execution or encounter frequently path divergences due to
invocations to native methods. As a result, we do not report here the
results on these packages, because their coverage data vary across
different runs, and this non-determinism may lead to invalid con-
clusions.

For each package evaluated, as listed in Table 2, we give the
number of uncommented lines of code as reported by the SLOC-
Count tool [61]. Blank, comment or whitespace-only lines are not
considered. In addition, we also give the number of basic blocks
and the number of virtual calls in a package. In java.beans,
there is one reflective call to java.lang.reflect.Method.
invoke(), which is analyzed symbolically by OO-SE (as dis-
cussed in Section 4) but only concretely by CLASSIC-DSE.

We instrument the OpenJDK library to perform symbolic ex-
ecution functionalities. The instrumented OpenJDK library runs
together with each synthesized harness program to generate path
conditions during program execution. In our experiments, we have
instrumented all the java.∗ packages except java.util. Our
instrumentation of java.util tends to cause instability for the
runtime of each tool, as the runtime itself depends heavily on the
data structures implemented in java.util. It is sufficient to in-
strument the java.∗ only, since in OpenJDK, the packages that
we experimented with depend mainly on the java package it-
self. For the actual instrumentation, we also exclude the classes
java.lang.Object, java.io.File and java.lang.
invoke.FromGeneric.Adapter due to stability issues.

We have conducted our experiments on an 8-core Intel Xeon
3.00 GHz system with 64GB memory running Linux 3.13.0.

In our evaluation, we address the following research questions:

1. RQ1: Is OO-SE still scalable relative to CLASSIC-DSE?

2. RQ2: Does OO-SE generate more mutated test cases than
CLASSIC-DSE, resulting in improved test coverage?

3. RQ3: Is OO-SE more effective than CLASSIC-DSE in finding
bugs and security vulnerabilities?

5.1 Efficiency
Table 3 gives the run times of CLASSIC-DSE and OO-SE elapsed
in testing all the five packages. The run time spent by each tool in
testing a package includes the times taken for synthesizing the har-
ness programs for all the test cases, generating these test cases by
the constraint solver, and executing these test cases symbolically.
Each package is analyzed until the end of automatic test generation
when no more new test cases can be generated.

Presently, our harness synthesizer can only instantiate objects
by using public constructors. In OpenJDK, some classes do not have
public constructors as they rely on factory methods exclusively for
object instantiations. As a result, our synthesizer cannot success-
fully generate Java bytecode programs to test those methods whose
receiver objects or input arguments cannot be instantiated. In Col-
umn 2 (Column 3), we give the number of classes (public API
methods) that is actually tested, together the total number of classes
(public API methods) available, in each package.

As OO-SE generates more test cases than CLASSIC-DSE
(Columns 4 and 5), OO-SE is expected to run more slowly than
CLASSIC-DSE, especially for the two largest packages, java.beans
and java.text, evaluated (Columns 6 and 7). In general, con-
straint solving accounts for the majority of the run time for each
package, with more than 90% for java.text and java.beans.
When testing java.text under OO-SE, seven time-consuming
path conditions are generated, costing the constraint solver over 5
minutes to solve each path condition for a solution.

Figure 8. Run time per basic block (secs).

Figure 8 compares CLASSIC-DSE and OO-SE in terms of their
efficiency per block of code. In this experiment, we limit the depth
of the symbolic reasoning to a fixed number of 20 basic blocks,
which provides a reasonable comparison between the two tools.
The run time per block varies little across the packages—1–3.5
seconds per block. There are no significant differences between
CLASSIC-DSE and OO-SE. The high run time per block of code
for java.applet can be attributed to its relatively small size,
such that a small overhead has a relatively high impact. Otherwise,
there appears to be a small tendency for the run time per block to
increase with the size of the package (i.e., number of blocks in the
package).

5.2 Coverage
Figure 9 compares CLASSIC-DSE and OO-SE in terms of block
coverage achieved. In computing the coverage for a package, we
exclude its methods that cannot be reached by the tested public API
methods in the package, since the excluded methods are not tested.



Figure 9. Block Coverage.

With symbolic types, OO-SE can automatically test OpenJDK
more effectively than CLASSIC-DSE. For the five packages tested,
the coverage improvements range from 12.8% at java.sql to
28.7% at java.rmi with an average of 24.3%. In particular, OO-
SE has significantly improved CLASSIC-DSE in testing java.rmi
by lifting its coverage from 54.2% to 69.8%. For all the five pack-
ages, except java.text, OO-SE is able to achieve a coverage
of more than 60%. Some blocks are not covered due to exception
handling and conditional branches that do not depend on symbolic
inputs. In our current implementation, OO-SE does not generate
constraints for exceptions. Hence, most exception handling blocks
are not covered. In addition, OO-SE neither reasons symbolically
about string operations nor represents symbolically values return-
ing from native methods. As a result, just like CLASSIC-DSE,
OO-SE cannot effectively explore different targets of a conditional
branch that depends on some values with no symbolic representa-
tions.

Figure 10. Number of mutated path conditions per basic block.

Figure 10 compares CLASSIC-DSE and OO-SE in terms of the
number of path conditions, i.e., test cases mutated from another
one per block of code. In this experiment, we also limit the depth
of the symbolic reasoning to a fixed number of 20 blocks. Note that
the first test input used for bootstrapping the symbolic execution
of each public API method is not counted. For java.sql and
java.text, OO-SE has produced a large number of mutated path
conditions, i.e., new test cases. For java.applet, CLASSIC-
DSE, without exploiting symbolic types, has failed to produce
any new test case. In the case of java.sql, java.rmi and
java.text, OO-SE has produced significantly more test cases
than CLASSIC-DSE. With java.applet ignored, OO-SE has
increased the number of mutated test cases per block produced
by CLASSIC-DSE by 84.14%. However, this increase does not
seem to have any correlation with the number of virtual invocations
available in these packages (Table 2).

Figure 10 shows that OO-SE is able to generate significantly
more tests than CLASSIC-DSE. In testing method java.beans.
Statement.execute(), OO-SE has generated a total number
of 47 tests, compared to only 2 tests generated by CLASSIC-DSE.
This has greatly improved the ability of traditional symbolic ex-
ecution techniques in finding bugs and security vulnerabilities, as
discussed below.

5.3 Bug Checking and Vulnerability Detection
We describe a case study to show how our approach can be applied
for bug checking and vulnerability detection. We examine the class
java.beans.Statement and show we can automatically gener-
ate test cases that expose its bugs and vulnerabilities.

public class Statement {
public Statement(Object target,

String methodName,
Object[] arguments) {

...
}
public void execute() throws Exception {

invokeInternal();
}
private Object invokeInternal()
throws Exception {
if (target == Class.class &&
methodName.equals("forName")) {
...

}
if (target instanceof Class) {
if (methodName.equals("new"))

...
}

}
...

}

Figure 11. Code snippet from OpenJDK 7.

The class java.beans.Statement represents a primitive
statement in which a single method is applied to a target and a
set of arguments. Figure 11 gives a code snippet of its imple-
mentation. The constructor of this class takes three arguments:
the receiver object (target), the method name (methodName),
and a list of arguments (arguments). The public API execute
can be invoked to execute the statement it represents. Thus, new
Statement(a,"foo",b).
execute(), for example, is equivalent to a.foo(b).

In OpenJDK, the directory jdk/test consists of a large set
of regression tests, most of which are introduced due to a par-
ticular bug report filed previously. There are five manually cre-
ated regression tests for this particular class, of which three tests,
Test6707226, Test4653179 and Test6224433, can be automat-
ically generated by our technique. The other two check the behav-
ior of this class for overloaded and overridden methods, which are
beyond the scope of present-day test case generation techniques.

Test6224433 is of particular interest, as it is directly related
to a vulnerability in JDK (CVE-2013-0422), which allows users to
access restricted classes. In its simplified form, this test is:

new Statement(Class.class, "forName",
"sun.misc.BASE64Encoder")
.execute();

In OpenJDK, there are security checks to prevent user access to re-
stricted classes. As a result, the method call Class.forName("su-
n.misc.BASE64Encoder") will throw a security exception since
class sun.misc.BASE64Encoder is restricted. However, if method
Class.forName is invoked indirectly via the API java.beans.



Statement.execute(), such security checks may be bypassed.
With all the restricted classes being annotated, we can apply our
approach to generate test cases automatically to expose this vul-
nerability. We achieve this by testing the constructor Statement
(target, methodName, and arguments) with its three formal pa-
rameters receiving appropriate symbolic representations.

For the vulnerability CVE-2013-0422 in class java.beans.
Statement.execute(), OO-SE can find it in 29 minutes with
47 test cases being generated in total. In contrast, CLASSIC-DSE
cannot expose this bug as only two test cases are generated.

5.4 Limitations
At this stage, we have not incorporated into our tool with
performance-oriented optimizations to improve its efficiency. For
example, sophisticated path selection algorithms [9, 32] can be
used to achieve a desired level of test coverage more quickly. In
addition, adding method identity constraints to the path condition
([CALL]) enriches the runtime information with calling contexts,
bringing in new optimization opportunities. How to better make
use of such calling context information to guide path selection,
especially call target selection, is worth separate investigation.

Presently, our harness synthesizer instantiates an object of a
given class type by invoking the public constructors in the class.
We associate a symbolic representation with a field of a reference
type in an instantiated object if the field is set in the constructor
or can be set by a setter method. Sometimes, a field cannot be
set directly, requiring its owner object to be at a specific state. To
further improve test coverage, we may need to synthesize different
method invocation sequences to instantiate an object with different
states [54].

6. Related Work
Symbolic execution [26] is an important program analysis tech-
nique that executes programs with symbolic instead of concrete
values. There have been a number of recent advances [2, 8, 10,
12, 21, 22, 32, 49, 56]. Researchers have applied symbolic exe-
cution to verification [13, 23, 42], impact analysis [43], debug-
ging [4, 12, 47], program synthesis [6, 57], and automated test-
ing [1, 17, 18, 20–22, 40, 46, 48, 49, 55, 60]. For some applications,
symbolic execution tools can automatically generate test inputs that
achieve better code coverage than manually-crafted ones [10].

Symbolic execution can be performed either dynamically (at
runtime) or statically (as a form of abstract interpretation [14]).
Static symbolic execution tools include KLEE [10], CLOUD9 [8],
S2E [12], BitBlaze [51], and Symbolic Pathfinder [2, 25, 44, 46].
KLEE is a symbolic execution tool for C programs. It has been
extended to support languages such as CUDA [28], C++ [27],
and binary instructions [12]. Symbolic Pathfinder is based on Java
Pathfinder [24], a model checker for Java programs developed at
NASA. BitBlaze [51] is a symbolic execution tool for binaries.

Static tools can suffer from false positives due to their static ap-
proximation of program semantics. KLEE alleviates this problem
by translating LLVM [38] instructions into constraints with min-
imal approximations (to achieve bit-level accuracy). For a library
call whose semantics is statically unknown, user annotations are
required. CLOUD9 [8] extends KLEE by providing more support
for the POSIX library, which makes it applicable to more bench-
marks than KLEE. S2E [12] adopts a different approach to address-
ing the unknown semantics of libraries, by providing a symbolic
execution-enabled virtual machine for binary programs. Thus, there
is no external library call with unknown semantics.

Dynamic symbolic execution (DSE)—also known as concolic
(concrete-symbolic) execution [49]—performs symbolic execution
at runtime together with concrete execution. This enables DSE
tools to effectively check the correctness of symbolic semantics,

by avoiding false positives (due to infeasible paths executed). This
approach can simplify some hard-to-solve path conditions into
simpler forms. It is more suitable than a static approach for testing
JDK, given its complexity and its heavy usage on native libraries.

DART [21] is the foundation of DSE tools, pioneering the use
of concrete values to simplify path constraints. SMART (System-
atic Modular Automated Random Testing) [19] is an extension of
DART, which uses function summaries and composition to scale up
dynamic symbolic execution. CUTE and JCUTE [48, 49] are ver-
sions of DART for C and Java programs, respectively. The most
significant improvement made in CUTE over DART is its abil-
ity in handling pointers, although this is limited to simple cases.
CREST [9] is a re-engineering of CUTE that adds several path-
exploration heuristics on top of the original depth-first search strat-
egy. LATEST [41] is an extension of CUTE that uses abstractions
of function calls from a designated function under test to simplify
path conditions, allowing users to explore more relevant program
parts. PEX [55] models the .NET library and performs DSE on
.NET programs to check common errors. SAGE [22] is a DSE tool
for binary programs used internally at Microsoft and has already
found hundreds of security-related bugs in Microsoft products [7].

Constraints on types have been used in previous symbolic ex-
ecution techniques. In [16, 59], type constraints are introduced
to generate input heap shapes with pointer or reference inputs.
PEX [55] encodes symbolically type constraints as universally
quantified formulas. In this paper, we introduce symbolic types
for polymorphism and mutate it to explore different invocation
targets.

7. Conclusion
We have proposed object-oriented symbolic execution for software
testing. For the first time, we support polymorphism by introduc-
ing constraints for method invocation targets via symbolic types.
This enables a systematic exploration of method invocation targets,
which is critical for testing object-oriented libraries, such as JDK,
effectively. We have also generalized the notion of symbolic types
to symbolic methods and symbolic fields to handle Java reflection
symbolically. The basic idea can be applied to symbolic execution
of programs in dynamic languages such as JavaScript.

We have implemented a dynamic symbolic execution tool with
symbolic types for testing object-oriented libraries. Our results
show that our approach is both effective in achieving test coverage
and essential for finding security vulnerabilities in OpenJDK.

In future work, we will sharpen our tool with security checks
to automatically find security vulnerabilities such as access control
violations in OpenJDK. We also plan to extend our symbolic execu-
tion semantics to support the Java reflection 1.2 API effectively.
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