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Abstract—This paper presents a novel tandem human-machine 

cognition approach for human-in-the-loop control of complex 

business-critical and mission-critical systems and processes that are 

monitored by Internet-of-Things (IoT) sensor networks and where it 

is of utmost importance to mitigate and avoid cognitive overload 

situations for the human operators.  We present an advanced pattern 

recognition system, called the Multivariate State Estimation 

Technique-2, which possesses functional requirements designed to 

minimize the possibility of cognitive overload for human operators.  

These functional requirements include:  (1) ultralow false alarm 

probabilities for all monitored transducers, components, machines, 

subsystems, and processes;  (2) fastest mathematically possible 

decisions regarding the incipience or onset of anomalies in noisy 

process metrics; and (3) the ability to unambiguously differentiate 

between sensor degradation events and degradation in the 

systems/processes under surveillance. The prognostic machine 

learning innovation presented herein does not replace the role of the 

human in operation of complex engineering systems, but augments 

that role in a manner that minimizes cognitive overload by very 

rapidly processing, interpreting, and displaying final diagnostic and 

prognostic information to the human operator in a prioritized format 

that is readily perceived and comprehended. 

Keywords—Data Preprocessing; Machine Learning Algorithms; 

Anomaly Detection. 

I. INTRODUCTION 

In this paper we present a novel approach to human-machine 

cognition for human-in-the-loop supervisory control 

applications [1], to assist the operators of complex engineered 

systems by (1) helping them to deduce the state of the system 

from the (possibly faulty) sensor data, and (2) providing expert 

advice on possible actions, even in the face of incomplete 

knowledge. For human-in-the-loop supervisory control 

applications, it is the job of the operator to interpret the state of 

the subject system from the monitored parameters and take 

appropriate actions. This is hard enough to do with a complex 

system, and almost impossible under the pressure of an 

emergency when there may be multiple faults, numerous alarms, 

conflicting data and missing or incomplete information. Of 

utmost importance in such scenarios is avoiding the onset of 

cognitive overload for the human operators. 

The new AI-based system proposed in this paper implements 

an advanced pattern recognition framework, called the 

Multivariate State Estimation Technique (MSET) [2-5], to very 

rapidly process, interpret, and display final diagnostic and 

prognostic information to the human operator in a prioritized 

format that is readily perceived and comprehended. 

Model-based reasoning is reasoning about the behavior of a 

system using a model based on the empirical structure and 

function of the system.  Ideally, well-constructed models will 

also aid in providing explanations of the state and behavior of 

the system. Expert systems are sophisticated computer programs 

that manipulate knowledge to solve problems efficiently and 

effectively in a narrow problem area.  An expert system provides 

high-level expertise to aid in problem solving. The expertise 

(knowledge) is explicit and accessible. Two capabilities of 

expert systems that are particularly important in this work are 

predictive modeling and "root cause" explanation. A vital 

element of the root cause explanation is disambiguation between 

false alarms (also called Type-I errors in statistical process 

control), from real anomalous behavior in the monitored systems 

or processes. A predominant cause of false alarms in 

conventional machine-learning (ML) prognostics is the fact that 

conventional ML surveillance methodology works on threshold 

based actuation.  We discuss later that how threshold-based ML 

prognostics result in either lower sensitivity for annunciation of 

anomalies, or higher false alarm rates, or both.    

It is in these kinds of real-time problem-solving situations 

that many of the limitations of human subject matter experts 

(SMEs) are at their most apparent. Their tendency to overlook 

relevant information, to respond too slowly and to panic when 

the rate of information flow is too great, all contribute to lower 

than desired levels of performance.  It is the goal of the research 

presented in this paper to provide effective decision support in 

order to transform the environment from an inefficient, data-

intense, high-cognitive-demand situation to an efficient, 

information-rich, high-performance human-machine system. 

mailto:guang.wang@oracle.com
file:///D:/Dropbox/patent/conference_paper/AI_Decision_Support/kenny.gross@oracle.com


II. METHODOLOGY 

A. MSET2 Overview 

MSET2 for prognostic health monitoring of business-

critical systems comprises a comprehensive methodology for 

proactively detecting and isolating failures, recommending 

condition-based maintenance (CBM) [6], and estimating in real 

time the remaining useful life (RUL) [7] of critical components.   

Over the last 18 years, Oracle has developed and patented a 

suite of advanced pattern recognition innovations that leverage 

MSET2 prognostics for components, subsystems, and for 

integrated hardware-software systems in enterprise data centers 

[8-10]. The key enabler for achieving MSET2-based Electronic 

Prognostics capabilities is a continuous system telemetry 

harness (CSTH), which collects and preprocesses any/all types 

of time series signals relating to the health of dynamically 

executing components and subsystems.  These time series 

provide quantitative metrics associated with physical variables 

(a typical data center now contains up to one million physical 

sensors inside the IT assets measuring distributed temperatures, 

voltages, currents, power metrics, fan speeds, vibration 

sensors), and performance variables (CPU & memory loads, 

throughputs, queue lengths, process metrics, etc.). The CSTH 

signals are continuously archived to an offline circular file (i.e. 

the "Black Box Flight Recorder"), and are also processed in real 

time using the advanced pattern recognition technique MSET2 

for proactive anomaly detection and for RUL estimation with 

associated quantitative confidence factors. 

 

The prognostic research initiative presented in this paper 

shows how MSET2 based prognostics developed for enterprise 

data center applications are now being spun off for human-in-

the-loop control applications involving dense-sensor IoT 

business critical applications in the fields of Oil&Gas, smart-

manufacturing, utilities, and transportation (including 

aviation). CSTH (real-time) plus BBR (offline) telemetry 

coupled with MSET2 pattern recognition help to increase asset 

reliability margins and system availability goals while reducing 

(through improved root cause analysis) costly sources of "no 

trouble found" events from spurious false alarms that can cause 

costly down time in customer's critical assets.  

 

Oracle's suite of MSET2-related innovations bring 

significant advantages over conventional and competitive 

machine monitoring and ML approaches for real time 

surveillance of business-critical assets, the most significant of 

which are: 

 

1) The ability to proactively catch very subtle incipient 

disturbances, even when the disturbance    signature is a 

tiny fraction of the inherent variance in the monitored 

metrics 

2) Ultra-low False-alarm and Missed-alarm probabilities 

(FAPs and MAPs) 

3) Separately Specifiable FAPs and MAPs [note: 

conventional equipment surveillance approaches have a 

“sea saw” relationship between false- and missed-

alarms.] 

4) Real Time signal validation and sensor operability 

validation [note: most FAPs and MAPs in prognostic 

health management of business-critical and even safety-

critical systems are due to sensor degradation events.] 

5) Low compute cost for large-scale prognostic monitoring 

applications, i.e. lots of sensors and/or high sampling 

rates. (In many past “bake off” comparisons between 

MSET and neural networks, MSET achieves an order of 

magnitude higher sensitivity for catching subtle 

disturbances in noisy process variables, with an order of 

magnitude lower compute cost) 

6) Remaining Useful Life estimation with quantitative 

confidence factors [note: RUL capability is a key enabler 

for “Condition Based Maintenance” of customer IoT 

assets.] 

7) Highly accurate “inferential variable” capability. (i.e. 

one doesn't have to shut down a million dollar asset 

because a $2 internal sensor failed. MSET can swap in a 

highly-accurate inferential variable, so the sensor 

fix/replacement can be postponed to a scheduled 

maintenance window). 

 

By extending the prognostic surveillance envelope to 

include an IoT customer's production assets, programmable 

logic controllers, power supplies, motor-operated valves, and 

interconnecting networks, all of the benefits in the bullets above 

helps IoT PHM applications achieve higher availability with 

lower Operation and Maintenance costs. 

B. The Sequential Probability Ratio Test (SPRT): Avoidance 

of False Alarms 

MSET2 provides a superior surveillance tool because it is 

sensitive not only to disturbances in signal mean, but also to 

very subtle changes in the statistical moments of the monitored 

signals and the patterns of correlation between/among multiple 

types of signals. MSET employs a statistical pattern recognition 

technique called the Sequential Probability Ratio Test (SPRT) 

[11-13], which provides the basis for detecting very subtle 

statistical anomalies in noisy process signals at the earliest 

mathematically possible time, thereby providing actionable 

warning-alert information on the type and the exact time of 

onset of the disturbance.  Instead of simple threshold limits that 

trigger faults when a signal increases beyond some threshold 

value, the SPRT technique is based on user-specified FAPs and 

MAPs, allowing the end user to control the likelihood of missed 

detection or false alarm.  For sudden, gross failures of sensors 

or system components the SPRT annunciates the disturbance as 

fast as a conventional threshold limit check.  However, for slow 

degradation that evolves over a long time period (e.g., gradual 

decalibration bias in a sensor; very subtle voltage drift from the 

variety of aging mechanisms that cause resistances to change 

very slowly with age; bearing degradation, lubrication dryout, 

or buildup of a radial rub in all types of rotating machinery; the 

gradual appearance of new vibration spectral components in the 

presence of noisy background signals), the SPRT raises a 

warning of the incipience or onset of the disturbance long 

before it would be apparent to any conventional threshold based 

rules.  



 

Many industrial processes have embedded diagnostic 

systems and online statistical process control techniques that 

perform real-time analysis of process variables.  Most of these 

systems employ simple tests (e.g., threshold, mean value + 

three-sigma, SPC control-chart thresholds) that are sensitive 

only to gross changes in the process mean, or to high step 

changes or spikes that exceed some threshold-limit test to  

determine  whether  or  not  a  failure has occurred or a process 

is drifting out of control.  These conventional methods suffer 

from either large false-alarm rates (if thresholds are set too 

close) or high missed (or delayed) alarm rates (if the thresholds 

are set too wide). For new dense-sensor IoT monitoring 

applications in industrial manufacturing facilities, utilities, and 

transportation assets, false alarms are very costly in terms of 

plant or physical-asset down time.  Missed alarms can be even 

more costly when incipient problems are not identified and 

expensive assets fail catastrophically. 

 

The overall MSET2 framework consists of a training phase 

and a monitoring phase (Fig. 1).  The training procedure is used 

to characterize the monitored equipment using historical, error-

free operating data covering the envelope of possible operating 

regimes for the system variables under surveillance. This 

training procedure evaluates the available training data and 

automatically selects a subset of the data observations using a 

similarity operator that are determined to best characterize the 

monitored asset's normal operation.  It creates a stored model 

of the equipment that is used in the monitoring procedure to 

estimate the expected values of the signals under surveillance.  

In the monitoring step, new observations for all the asset signals 

are first acquired. These observations are then used in 

conjunction with the previously trained MSET2 model to 

estimate the expected values of the signals. MSET2 estimates 

are extremely accurate, with error rates that are usually only 1 

to 2 percent of the standard deviation of the input signal.  

(BTW, the MSET2 estimate for a signal originating from any 

physical transducer is more accurate than the transducer itself). 

 

 
Figure 1: MSET2 surveillance-phase block diagram 

 

The difference between a signal's real-time MSET estimate 

and its directly sensed value is termed a residual.  The residuals 

for each monitored signal are used as an anomaly indicator for 

sensor and equipment faults.  Instead of using simple thresholds 

to detect fault indications, SPRT is able to determine whether 

the residual error value is uncharacteristic of the learned 

process model and thereby indicative of a sensor or equipment 

fault.  The SPRT algorithm is a significant improvement over 

conventional threshold detection processes in that it provides 

more definitive information about signal validity with a 

quantitative confidence factor with statistical hypothesis 

testing. This approach allows the user to specify FAPs and 

MAPs, allowing SME control over the likelihood of false 

alarms or missed detection.   

 

With MSET2 plus SPRT, the ML surveillance framework 

achieves: 

 

a) Ultra-low MAPs, which boosts the overall availability for 

critical production assets by avoiding serious outages. 

  

b) For IoT industries where prognostic alerts lead to 

automatic shutdowns of revenue-generating assets, we 

additionally benefit from ultra-low FAPs. 

 

Moreover, just the fact that MSET2 prognostic solutions 

allow FAPs and MAPs to be separately controlled is a very 

large win for IOT use cases (because their conventional 

prognostics are most likely threshold based, meaning they have 

to pick FAP or MAP to minimize, which for threshold-based 

prognostics causes the other one to go up). Oracle's solutions 

avoid the tyranny of the “Quality-Control sea-saw effect” 

between anomaly-detection sensitivity and false alarm 

probabilities. 

 

C. Intelligent Data Pre-processing (IDP) Innovations 

Oracle’s IDP innovations serve as front-end data 

preprocessing in reference to the back-end MSET and SPRT 

algorithms. Herein we highlight some features of key IDP 

algorithms for maximizing the value-add for customers of 

Prognostic ML and Data Mining techniques. 

 

a) Analytical Resampling Process (ARP) 

Because the various data streams may originate with 

differing sampling rates, this step uses interpolation-based 

upsampling and downsampling methods to generate uniform 

sampling intervals for all telemetry time series.  Moreover, it is 

very common that the various internal asset clocks, control 

network clocks, and environmental variable-monitoring clocks 

are out of synchronization. Clock mismatch issues will cause 

almost all ML prognostic algorithms to fail.  Oracle's ARP 

prevents this issue with real-time empirical phase 

synchronization. Refer to [14, 15] for details. 

 

 
Figure 2: The schematic of ARP technique. 

 

b) Unquantization of Quantized Sensor Signals 



Another big challenge with using telemetry signatures in 

computational machine learning algorithms is quantization, 

which can severely affect the resolution of the telemetry signals 

(and hence accuracy of the computed results) [16-

17]. Quantization occurs from low-bit A/D chips typically used 

in industrial and high-tech equipment transducers. Oracle's 

prognostic solution UnQuantize has built-in techniques to "un-

quantize" signals in real time, in effect producing high-accuracy 

output signatures from low-resolution input signals. Figure 3 

presents a typical use case where the unquantization technique 

is applied to a quantized data. 

 

 
Figure 3: Blue signals show the raw signals are reported from 8-bit A/D chips 

frequently used in industrial machinery (and in most enterprise computing 
servers as well).  Upper plot is a typical voltage; lower plot is a typical 

temperature. The red signal shows the high-accuracy value of the variable being 

monitored after ARP with Oracle's “unquantization” innovation to attain high-

accuracy prognostics from low resolution sensors. 

 

c) Missing Value Imputation (MVI) 

The last primary challenge for dense-sensor IoT application 

is the missing values in sensor time-series signals. 

Conventional approach for “filling in” the missing values is 

doing interpolation. When the ultimate end-goal for the 

customer is prognostic anomaly discovery (or certifying the 

absence of anomalies), the reality is that no matter how cleverly 

one fills in a “blind spot” in a sequence of measured 

observations through interpolation, it is still a “blind spot” in 

terms of whether some anomalous event occurred in the asset 

under surveillance at the times coinciding with missing values 

in individual sensor measurements. 

 

MVI is a special case of inferential sensing, where 

individual observations that are missing during surveillance are 

computed using MSET in the inferential mode, exactly as is 

done when sensors fail. Note that whatever mechanisms cause 

there to be missing observations in the surveillance data will 

likely also be present when signals are being collected for 

training. This is a challenge for all ML prognostics, not only for 

applications involving MSET. 

 

Specifically, during the signal preprocessing phase, the 

training dataset, which may contain missing observations, is 

divided into two halves, A and B. The missing observations in 

A are first replaced with conventional interpolation. A is then 

used to train MSET, and MSET is applied to B to “fill in” the 

missing values in B with MVI. B is then used to train MSET, 

which is now used on A to replace the prior interpolated values 

with MVI values. 

 

Figure 4 illustrates an example where the blue signals are 

high-accuracy measured values used for the Training dataset, 

and the red signals are high-accuracy measured values used for 

the Estimation dataset in Phase I of the MVI procedure. The 

black observations are the randomly selected values to be 

removed from the data streams to create missing values. The 

actual values are “held back” as “ground truth” values for 

assessing the accuracy of the new MVI procedure. 

 

 
Figure 4: Training and estimation set of ground truth data for the first round 

MVI analysis with artificial missing values indicated. 

 

Figure 5 “reverses” the Training and Estimation data sets, 

where now the temporary interpolates that were used for the 

training operation in Phase-I are now replaced with optimal 

MVI values in Phase-II. 

 

 
Figure 5: Training and estimation set of ground truth data for the second round 

of MVI analysis with artificial missing values indicated. 

 

Figure 6 plots the original Ground Truth values in black, the 

Interpolation values in red, and the MSET optimal MVI values 

from the new 2-phase MVI data-flow framework in green. 

 

For this case study, we noticed the average uncertainty of 

the new MVI approach  is 0.41 while the average uncertainty of 

conventional interpolation is 0.73, showing that for this set of 

signals, the reduction in uncertainty by the new MVI approach 

is 44%. We have also tested this technique against very many 

datasets with varying degrees of cross correlation and varying 



signal-to-noise ratios and from all experiments we obtained a 

reduction in uncertainty of from 39% to 51%. 

 

 
Figure 6: Validation of MVI using simple averaging interpolation and MSET 
against ground truth signal 

 

 

The value for MVI is not just that the imputed missing 

values are significantly more accurate than conventional 

interpolation can achieve, but lies in the fact that if any 

degradation events occur at the precise narrow time window 

during which a missing value occurs, the MVI estimate will 

reflect the degradation condition, whereas the conventional 

interpolated values cannot. 

III. CONCLUSIONS 

In summary, the MSET system comprises a synergistic 

integration of the SPRT technique with a data-driven modeling 

method to produce a system with unique surveillance 

capabilities which is expected to outperform the conventional 

approaches, including neural networks, autoassociative kernel 

regression, and regularized kernel regression, in sensitivity, 

reliability, robustness to unreliable and possibly degrading 

sensors, simplicity of training, adaptability when sensor 

configurations change, and computational efficiency. In 

addition, Oracle’s intelligent data preprocessing (IDP) 

innovations assure optimal ML performance for prognostics, 

streaming analytics, prognostic cyber security, and real time 

signal validation and sensor-operability validation across a 

variety of industries for which human-in-the-loop supervisory 

control of complex engineering assets is standard practice.  

MSET2 and SPRT, together with the suite of IDP algorithms 

that mitigate and avoid common sensor and signal anomalies 

that cause excessive false-alarm and missed-alarm rates in 

conventional Machine Learning prognostics play a vital role as 

an integrated and autonomous operator decision aide because 

as shown in this paper, the integrated system substantially 

reduces the probabilities of false and missed alarms that 

increase “cognitive overload” events for expert human 

operators. 
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