

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

One VM to Rule Them All

Christian Wimmer

VM Research Group, Oracle Labs

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement
The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in connection with any Oracle product or service
remains at the sole discretion of Oracle. Any views expressed in this presentation are my
own and do not necessarily reflect the views of Oracle.

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

One Language to Rule Them All?
Let’s ask a search engine…

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

One Language to Rule Them All?
Let’s ask Stack Overflow…

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

“Write Your Own Language”

6

Prototype a new language

Parser and language work to build syntax tree (AST),
AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter, spend a lot of time
implementing runtime system, GC, …

People start using it

Define a bytecode format and write bytecode interpreter

People complain about performance

Write a JIT compiler, improve the garbage collector

Performance is still bad

Prototype a new language in Java

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

People start using it

And it is already fast
And it integrates with other languages
And it has tool support, e.g., a debugger

Current situation How it should be

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle System Structure

Low-footprint VM, also
suitable for embedding

Common API separates
language implementation,
optimization system,
and tools (debugger)

Language agnostic
dynamic compiler

AST Interpreter for
every language

Integrate with Java
applications

Substrate VM

Graal

JavaScript Ruby LLVM R

Graal VM

…

Truffle

7

Your language
should be here!

Tools

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Speculate and Optimize …

8

U

U U

U

U I

I I

G

G I

I I

G

G

Node Specialization
for Profiling Feedback

AST Interpreter
Specialized Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

I

I I

G

G I

I I

G

G

Transfer back
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Specialization to
Update Profiling Feedback

Recompilation using
Partial Evaluation

… and Transfer to Interpreter and Reoptimize!

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Open Source Code on GitHub

https://github.com/graalvm

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 11

Binary Snapshots on OTN

Search for "OTN Graal"

http://www.oracle.com/technetwork/oracle-
labs/program-languages/downloads/

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Language Projects

• JavaScript: JKU Linz, Oracle Labs
– http://www.oracle.com/technetwork/oracle-labs/program-languages/

• Ruby: Oracle Labs, experimental part of JRuby
– Open source: https://github.com/jruby/jruby

• R: JKU Linz, Purdue University, Oracle Labs
– Open source: https://github.com/graalvm/fastr

• Sulong (LLVM Bitcode): JKU Linz, Oracle Labs
– Open source: https://github.com/graalvm/sulong

• Python: UC Irvine
– Open source: https://bitbucket.org/ssllab/zippy/

• SOM (Newspeak, Smalltalk): Stefan Marr
– Open source: https://github.com/smarr/

12

Some languages that we are aware of

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Performance Disclaimers
• All Truffle numbers reflect a development snapshot

– Subject to change at any time (hopefully improve)
– You have to know a benchmark to understand why it is slow or fast

• We are not claiming to have complete language implementations
– JavaScript: passes 100% of ECMAscript standard tests

• Working on full compatibility with V8 for Node.JS
– Ruby: passing 100% of RubySpec language tests

• Passing around 90% of the core library tests
– R: prototype, but already complete enough and fast for a few selected workloads

• Benchmarks that are not shown
– may not run at all, or
– may not run fast

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Performance: GraalVM Summary

14

1.02 1.2

4.1
4.5

0.85 0.9

0

1

2

3

4

5

Java Scala Ruby R Native JavaScript

Speedup, Higher is Better

Performance relative to:
HotSpot/Server, HotSpot/Server running JRuby, GNU R, LLVM AOT compiled, V8

Graal
Best Specialized Competition

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Performance: JavaScript

15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

box2d Deltablue Crypto EarleyBoyer Gameboy NavierStokes Richards Raytrace Splay Geomean

Speedup, Higher is Better

Performance relative to V8

JavaScript performance: similar to V8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Performance: Ruby Compute-Intensive Kernels

16

0

50

100

150

200

250

300

350

Speedup, Higher is Better

Performance relative to JRuby running with Java HotSpot server compiler

Huge speedup because Truffle can optimize
through Ruby metaprogramming

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Acknowledgements

17

Oracle Labs
Danilo Ansaloni
Stefan Anzinger
Cosmin Basca
Daniele Bonetta
Matthias Brantner
Petr Chalupa
Jürgen Christ
Laurent Daynès
Gilles Duboscq
Bastian Hossbach
Christian Humer
Mick Jordan
Vojin Jovanovic
Peter Kessler
David Leopoldseder
Kevin Menard
Jakub Podlešák
Aleksandar Prokopec
Tom Rodriguez

Oracle Labs (continued)
Roland Schatz
Chris Seaton
Doug Simon
Štěpán Šindelář
Zbyněk Šlajchrt
Lukas Stadler
Codrut Stancu
Jan Štola
Jaroslav Tulach
Michael Van De Vanter
Adam Welc
Christian Wimmer
Christian Wirth
Paul Wögerer
Mario Wolczko
Andreas Wöß
Thomas Würthinger

JKU Linz
Prof. Hanspeter Mössenböck
Benoit Daloze
Josef Eisl
Thomas Feichtinger
Matthias Grimmer
Christian Häubl
Josef Haider
Christian Huber
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of Edinburgh
Christophe Dubach
Juan José Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University of California, Irvine
Prof. Michael Franz
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj Lei Zhao

T. U. Dortmund
Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland
Prof. Walter Binder
Sun Haiyang
Yudi Zheng

Oracle Labs Interns
Brian Belleville
Miguel Garcia
Shams Imam
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
David Piorkowski
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Labs Alumni
Erik Eckstein
Michael Haupt
Christos Kotselidis
Hyunjin Lee
David Leibs
Till Westmann

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Partial Evaluation and
Transfer to Interpreter

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Partial Evaluation

19

class Example {
 @CompilationFinal boolean flag;

 int foo() {
 if (this.flag) {
 return 42;
 } else {
 return -1;
 }
}

 // parameter this in rsi
 cmpb [rsi + 16], 0
 jz L1
 mov eax, 42
 ret
L1: mov eax, -1
 ret

normal compilation
of method foo()

 mov rax, 42
 ret

partial evaluation
of method foo()
with known parameter this

Example
flag: true

Object value of this

@CompilationFinal field is treated like a final
field during partial evaluation

Memory access is eliminated and condition is
constant folded during partial evaluation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Transfer to Interpreter

20

class Example {
 int foo(boolean flag) {
 if (flag) {
 return 42;
 } else {
 throw new IllegalArgumentException(
 "flag: " + flag);
 }
}

 // parameter flag in edi
 cmp edi, 0
 jz L1
 mov eax, 42
 ret
L1: ...
 // lots of code here

transferToInterpreter() is a call into the VM
runtime that does not return to its caller,
because execution continues in the interpreter

class Example {
 int foo(boolean flag) {
 if (flag) {
 return 42;
 } else {
 transferToInterpreter();
 throw new IllegalArgumentException(
 "flag: " + flag);
 }
}

 // parameter flag in edi
 cmp edi, 0
 jz L1
 mov eax, 42
 ret
L1: mov [rsp + 24], edi
 call transferToInterpreter
 // no more code, this point is unreachable

compilation of method foo()

compilation of method foo()

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Partial Evaluation and Transfer to Interpreter

21

class Example {
 @CompilationFinal boolean objectSeen;

 long increment(Object value) {
 if (value instanceof Long) {
 return ((long) value) + 1;
 } else {
 if (!objectSeen) {
 transferToInterpreterAndInvalidate();
 objectSeen = true;
 }
 ...
 }
 }
}

 // parameter value in rdi
 mov edx, java.lang.Long.class
 cmp edx, [rdi + 8]
 jnz L1
 mov rax, 1
 add rax, [rdi + 16]
 ret
L1: mov [rsp + 24], rdi
 call transferToInterpreter
 // no more code, this point is unreachable

Transfer to interpreter if compiled code is
invoked with non-Long value

Example
objectSeen: true

Example
objectSeen: false

partial evaluation
of method foo()
with known parameter this

 // parameter value in rdi
 mov edx, java.lang.Long.class
 cmp edx, [rdi + 8]
 jnz L1
 mov rax, 1
 add rax, [rdi + 16]
 ret
L1: ...
 // lots of code here second

partial evaluation

Expected behavior: method foo() only called
with Long value

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

A Simple Language

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SL: A Simple Language
• Language to demonstrate and showcase features of Truffle

– Simple and clean implementation
– Not the language for your next implementation project

• Language highlights
– Dynamically typed
– Strongly typed

• No automatic type conversions
– Arbitrary precision integer numbers
– First class functions
– Dynamic function redefinition
– Objects are key-value stores

• Key and value can have any type, but typically the key is a String

23

About 2.5k lines of code

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Types
SL Type Values Java Type in Implementation

Number Arbitrary precision integer numbers long for values that fit within 64 bits
java.lang.BigInteger on overflow

Boolean true, false boolean

String Unicode characters java.lang.String

Function Reference to a function SLFunction

Object key-value store DynamicObject

Null null SLNull.SINGLETON

Best Practice: Do not use the Java null value for the guest language null value

Best Practice: Use Java primitive types as much as possible to increase performance

Null is its own type; could also be called "Undefined"

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Syntax
• C-like syntax for control flow

– if, while, break, continue, return

• Operators
– +, -, *, /, ==, !=, <, <=, >, >=, &&, ||, ()
– + is defined on String, performs String concatenation
– && and || have short-circuit semantics
– . or [] for property access

• Literals
– Number, String, Function

• Builtin functions
– println, readln: Standard I/O
– nanoTime: to allow time measurements
– defineFunction: dynamic function redefinition
– stacktrace, helloEqualsWorld: stack walking and stack frame manipulation
– new: Allocate a new object without properties

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Parsing
• Scanner and parser generated from grammar

– Using Coco/R
– Available from http://ssw.jku.at/coco/

• Refer to Coco/R documentation for details
– This is not a tutorial about parsing

• Building a Truffle AST from a parse tree is usually simple

Best Practice: Use your favorite parser generator, or an existing parser for your language

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SL Examples

function main() {
 println("Hello World!");
}

Hello World:
function main() {
 i = 0;
 sum = 0;
 while (i <= 10000) {
 sum = sum + i;
 i = i + 1;
 }
 return sum;
}

Simple loop:

function foo() { println(f(40, 2)); }

function main() {
 defineFunction("function f(a, b) { return a + b; }");
 foo();

 defineFunction("function f(a, b) { return a - b; }");
 foo();
}

Function definition and redefinition:

function add(a, b) { return a + b; }
function sub(a, b) { return a - b; }

function foo(f) {
 println(f(40, 2));
}

function main() {
 foo(add);
 foo(sub);
}

First class functions:

function f(a, b) {
 return a + " < " + b + ": " + (a < b);
}

function main() {
 println(f(2, 4));
 println(f(2, "4"));
}

Strings:

27

function main() {
 obj = new();
 obj.prop = "Hello World!";
 println(obj["pr" + "op"]);
}

Objects:

Hello World!

2 < 4: true
Type error

50005000
42
38

42
38

Hello World!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Getting Started
• Clone repository

– git clone https://github.com/graalvm/simplelanguage

• Download Graal VM Development Kit
– http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads
– Unpack the downloaded graalvm_*.tar.gz into simplelanguage/graalvm
– Verify that the file simplelanguage/graalvm/bin/java exists and is executable

• Build
– mvn package

• Run example program
– ./sl tests/HelloWorld.sl

• IDE Support
– Import the Maven project into your favorite IDE
– Instructions for Eclipse, NetBeans, IntelliJ are in README.md

28

Version used in this tutorial: tag PLDI_2016

Version used in this tutorial: Graal VM 0.12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Simple Tree Nodes

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Nodes and Trees
• Class Node: base class of all Truffle tree nodes

– Management of parent and children
– Replacement of this node with a (new) node
– Copy a node
– No execute() methods: define your own in subclasses

• Class NodeUtil provides useful utility methods

public abstract class Node implements Cloneable {

 public final Node getParent() { ... }
 public final Iterable<Node> getChildren() { ... }

 public final <T extends Node> T replace(T newNode) { ... }
 public Node copy() { ... }

 public SourceSection getSourceSection();
}

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Rule: A field for a child node must be annotated with @Child and must not be final

If Statement
public final class SLIfNode extends SLStatementNode {
 @Child private SLExpressionNode conditionNode;
 @Child private SLStatementNode thenPartNode;
 @Child private SLStatementNode elsePartNode;

 public SLIfNode(SLExpressionNode conditionNode, SLStatementNode thenPartNode, SLStatementNode elsePartNode) {
 this.conditionNode = conditionNode;
 this.thenPartNode = thenPartNode;
 this.elsePartNode = elsePartNode;
 }

 public void executeVoid(VirtualFrame frame) {
 if (conditionNode.executeBoolean(frame)) {
 thenPartNode.executeVoid(frame);
 } else {
 elsePartNode.executeVoid(frame);
 }
 }
}

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Blocks
public final class SLBlockNode extends SLStatementNode {
 @Children private final SLStatementNode[] bodyNodes;

 public SLBlockNode(SLStatementNode[] bodyNodes) {
 this.bodyNodes = bodyNodes;
 }

 @ExplodeLoop
 public void executeVoid(VirtualFrame frame) {
 for (SLStatementNode statement : bodyNodes) {
 statement.executeVoid(frame);
 }
 }
}

Rule: The iteration of the children must be annotated with @ExplodeLoop

Rule: A field for multiple child nodes must be annotated with @Children and a final array

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Return Statement: Inter-Node Control Flow

Best practice: Use Java exceptions for inter-node control flow

Rule: Exceptions used to model control flow extend ControlFlowException

public final class SLFunctionBodyNode extends SLExpressionNode {
 @Child private SLStatementNode bodyNode;
 ...
 public Object executeGeneric(VirtualFrame frame) {
 try {
 bodyNode.executeVoid(frame);
 } catch (SLReturnException ex) {
 return ex.getResult();
 }
 return SLNull.SINGLETON;
 }
}

public final class SLReturnException
 extends ControlFlowException {

 private final Object result;
 ...
}

public final class SLReturnNode extends SLStatementNode {
 @Child private SLExpressionNode valueNode;
 ...
 public void executeVoid(VirtualFrame frame) {
 throw new SLReturnException(valueNode.executeGeneric(frame));
 }
}

33

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle DSL: Specialization and Node
Rewriting

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Addition
@NodeChildren({@NodeChild("leftNode"), @NodeChild("rightNode")})
public abstract class SLBinaryNode extends SLExpressionNode { }

public abstract class SLAddNode extends SLBinaryNode {

 @Specialization(rewriteOn = ArithmeticException.class)
 protected final long add(long left, long right) {
 return ExactMath.addExact(left, right);
 }

 @Specialization
 protected final BigInteger add(BigInteger left, BigInteger right) {
 return left.add(right);
 }

 @Specialization(guards = "isString(left, right)")
 protected final String add(Object left, Object right) {
 return left.toString() + right.toString();
 }

 protected final boolean isString(Object a, Object b) {
 return a instanceof String || b instanceof String;
 }
}

For all other specializations, guards are
implicit based on method signature

35

The order of the @Specialization
methods is important: the first matching
specialization is selected

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Generated code with factory method:

Code Generated by Truffle DSL (1)

@GeneratedBy(SLAddNode.class)
public final class SLAddNodeGen extends SLAddNode {

 public static SLAddNode create(SLExpressionNode leftNode, SLExpressionNode rightNode) { ... }

 ...
} The parser uses the factory to create a node

that is initially in the uninitialized state

36

The generated code performs all the transitions
between specialization states

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Code Generated by Truffle DSL (2)
@GeneratedBy(methodName = "add(long, long)", value = SLAddNode.class)
private static final class Add0Node_ extends BaseNode_ {
 @Override
 public long executeLong(VirtualFrame frameValue) throws UnexpectedResultException {
 long leftNodeValue_;
 try {
 leftNodeValue_ = root.leftNode_.executeLong(frameValue);
 } catch (UnexpectedResultException ex) {
 Object rightNodeValue = executeRightNode_(frameValue);
 return SLTypesGen.expectLong(getNext().execute_(frameValue, ex.getResult(), rightNodeValue));
 }
 long rightNodeValue_;
 try {
 rightNodeValue_ = root.rightNode_.executeLong(frameValue);
 } catch (UnexpectedResultException ex) {
 return SLTypesGen.expectLong(getNext().execute_(frameValue, leftNodeValue_, ex.getResult()));
 }
 try {
 return root.add(leftNodeValue_, rightNodeValue_);
 } catch (ArithmeticException ex) {
 root.excludeAdd0_ = true;
 return SLTypesGen.expectLong(remove("threw rewrite exception", frameValue, leftNodeValue_, rightNodeValue_));
 }
 }

 @Override
 public Object execute(VirtualFrame frameValue) {
 try {
 return executeLong(frameValue);
 } catch (UnexpectedResultException ex) {
 return ex.getResult();
 }
}

37

The generated code can and will change
at any time

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Type System Definition in Truffle DSL

@TypeSystemReference(SLTypes.class)
public abstract class SLExpressionNode extends SLStatementNode {

 public abstract Object executeGeneric(VirtualFrame frame);

 public long executeLong(VirtualFrame frame) throws UnexpectedResultException {
 return SLTypesGen.SLTYPES.expectLong(executeGeneric(frame));
 }
 public boolean executeBoolean(VirtualFrame frame) ...
}

@TypeSystem({long.class, BigInteger.class, boolean.class,
 String.class, SLFunction.class, SLNull.class})

public abstract class SLTypes {
 @ImplicitCast
 public BigInteger castBigInteger(long value) {
 return BigInteger.valueOf(value);
 }
}

Rule: One execute() method per type you want to specialize on, in addition to the abstract executeGeneric() method

Not shown in slide: Use @TypeCheck and
@TypeCast to customize type conversions

SLTypesGen is a generated subclass
of SLTypes

38

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

UnexpectedResultException
• Type-specialized execute() methods have specialized return type

– Allows primitive return types, to avoid boxing
– Allows to use the result without type casts
– Speculation types are stable and the specialization fits

• But what to do when speculation was too optimistic?
– Need to return a value with a type more general than the return type
– Solution: return the value “boxed” in an UnexpectedResultException

• Exception handler performs node rewriting
– Exception is thrown only once, so no performance bottleneck

39

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 40

Truffle DSL Workflow

Java Annotation Processor
(DSL Implementation)

Java Code
with Node Specifications

Java Annotations
 (DSL Definition)

uses

Java compiler
(javac, Eclipse, …) Generated Java Code for

Specialized Nodes

Executable

generates

compiles

compiles

generates

calls

iterates
annotations

1

2 3
5

4

6
7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Frames and Local Variables

41

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Frame Layout
• In the interpreter, a frame is an object on the heap

– Allocated in the function prologue
– Passed around as parameter to execute() methods

• The compiler eliminates the allocation
– No object allocation and object access
– Guest language local variables have the same performance as Java local variables

• FrameDescriptor: describes the layout of a frame
– A mapping from identifiers (usually variable names) to typed slots
– Every slot has a unique index into the frame object
– Created and filled during parsing

• Frame
– Created for every invoked guest language function

42

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Frame Management
• Truffle API only exposes frame interfaces

– Implementation class depends on the optimizing system

• VirtualFrame
– What you usually use: automatically optimized by the compiler
– Must never be assigned to a field, or escape out of an interpreted function

• MaterializedFrame
– A frame that can be stored without restrictions
– Example: frame of a closure that needs to be passed to other function

• Allocation of frames
– Factory methods in the class TruffleRuntime

43

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Frame Management
public interface Frame {
 FrameDescriptor getFrameDescriptor();
 Object[] getArguments();

 boolean isType(FrameSlot slot);
 Type getType(FrameSlot slot) throws FrameSlotTypeException;
 void setType(FrameSlot slot, Type value);

 Object getValue(FrameSlot slot);

 MaterializedFrame materialize();
}

Rule: Never allocate frames yourself, and never make your own frame implementations

SL types String, SLFunction, and SLNull are stored as Object in the frame

Frames support all Java primitive types, and Object

44

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Local Variables
@NodeChild("valueNode")
@NodeField(name = "slot", type = FrameSlot.class)
public abstract class SLWriteLocalVariableNode extends SLExpressionNode {

 protected abstract FrameSlot getSlot();

 @Specialization(guards = "isLongOrIllegal(frame)")
 protected long writeLong(VirtualFrame frame, long value) {
 getSlot().setKind(FrameSlotKind.Long);
 frame.setLong(getSlot(), value);
 return value;
 }
 protected boolean isLongOrIllegal(VirtualFrame frame) {
 return getSlot().getKind() == FrameSlotKind.Long || getSlot().getKind() == FrameSlotKind.Illegal;
 }
 ...

 @Specialization(contains = {"writeLong", "writeBoolean"})
 protected Object write(VirtualFrame frame, Object value) {
 getSlot().setKind(FrameSlotKind.Object);
 frame.setObject(getSlot(), value);
 return value;
 }
}

45

If we cannot specialize on a single primitive type,
we switch to Object for all reads and writes

setKind() is a no-op if kind is already Long

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Local Variables
@NodeField(name = "slot", type = FrameSlot.class)
public abstract class SLReadLocalVariableNode extends SLExpressionNode {

 protected abstract FrameSlot getSlot();

 @Specialization(guards = "isLong(frame)")
 protected long readLong(VirtualFrame frame) {
 return FrameUtil.getLongSafe(frame, getSlot());
 }
 protected boolean isLong(VirtualFrame frame) {
 return getSlot().getKind() == FrameSlotKind.Long;
 }
 ...

 @Specialization(contains = {"readLong", "readBoolean"})
 protected Object readObject(VirtualFrame frame) {
 if (!frame.isObject(getSlot())) {
 CompilerDirectives.transferToInterpreter();
 Object result = frame.getValue(getSlot());
 frame.setObject(getSlot(), result);
 return result;
 }

 return FrameUtil.getObjectSafe(frame, getSlot());
 }

Slow path: we can still have frames with
primitive values written before we switched the
local variable to the kind Object

46

The guard ensure the frame slot contains a
primitive long value

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation

47

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation
• Automatic partial evaluation of AST

– Automatically triggered by function execution count

• Compilation assumes that the AST is stable
– All @Child and @Children fields treated like final fields

• Later node rewriting invalidates the machine code
– Transfer back to the interpreter: “Deoptimization”
– Complex logic for node rewriting not part of compiled code
– Essential for excellent peak performance

• Compiler optimizations eliminate the interpreter overhead
– No more dispatch between nodes
– No more allocation of VirtualFrame objects
– No more exceptions for inter-node control flow

48

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

function loop(n) {
 i = 0;
 sum = 0;
 while (i <= 10000) {
 sum = sum + i;
 i = i + 1;
 }
 return sum;
}

Compilation
SL source code: Machine code for loop:

 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

Run this example:
./sl -dump -disassemble tests/SumPrint.sl

Disassembling is enabled

Graph dumping to IGV is enabled

49

Background compilation is disabled

Truffle compilation printing is enabled

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Visualization Tools: IGV

50

Download IGV from
https://lafo.ssw.uni-linz.ac.at/pub/idealgraphvisualizer

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Visualization Tools: IGV

51

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Calls

52

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polymorphic Inline Caches
• Function lookups are expensive

– At least in a real language, in SL lookups are only a few field loads
• Checking whether a function is the correct one is cheap

– Always a single comparison

• Inline Cache
– Cache the result of the previous lookup and check if it still correct

• Polymorphic Inline Cache
– Cache multiple previous lookups, up to a certain limit

• Inline cache miss needs to perform the slow lookup

• Implementation using tree specialization
– Build chain of multiple cached functions

53

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Simple Polymorphic Inline Cache

54

public abstract class ANode extends Node {

 public abstract Object execute(Object operand);

 @Specialization(limit = "3",
 guards = "operand == cachedOperand")
 protected Object doCached(AType operand,
 @Cached("operand") AType cachedOperand) {
 // implementation
 return cachedOperand;
 }

 @Specialization(contains = "doCached")
 protected Object doGeneric(AType operand) {
 // implementation
 return operand;
 }
}

The cachedOperand is a compile time constant

Up to 3 compile time constants are cached

The operand is no longer a compile time constant

The @Cached annotation leads to a final field in the generated code

Compile time constants are usually the starting point for more constant folding

The generic case contains all cached cases, so the 4th
unique value removes the cache chain

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example of cache with length 2
Polymorphic Inline Cache for Function Dispatch

SLUninitializedDispatch

SLInvokeNode

function arguments

SLDirectDispatch

SLInvokeNode

SLUninitializedDispatch SLDirectDispatch

SLInvokeNode

SLUninitializedDispatch

SLDirectDispatch

SLInvokeNode

SLGenericDispatch

After Parsing 1 Function 2 Functions >2 Functions

55

The different dispatch nodes are for
illustration only, the generated code
uses different names

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Invoke Node
public final class SLInvokeNode extends SLExpressionNode {

 @Child private SLExpressionNode functionNode;
 @Children private final SLExpressionNode[] argumentNodes;
 @Child private SLDispatchNode dispatchNode;

 @ExplodeLoop
 public Object executeGeneric(VirtualFrame frame) {
 Object function = functionNode.executeGeneric(frame);

 Object[] argumentValues = new Object[argumentNodes.length];
 for (int i = 0; i < argumentNodes.length; i++) {
 argumentValues[i] = argumentNodes[i].executeGeneric(frame);
 }

 return dispatchNode.executeDispatch(frame, function, argumentValues);
 }
}

Separation of concerns: this node evaluates the function and arguments only

56

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Separation of concerns: this node builds the inline cache chain

Dispatch Node
public abstract class SLDispatchNode extends Node {

 public abstract Object executeDispatch(VirtualFrame frame, Object function, Object[] arguments);

 @Specialization(limit = "2",
 guards = "function == cachedFunction",
 assumptions = "cachedFunction.getCallTargetStable()")
 protected static Object doDirect(VirtualFrame frame, SLFunction function, Object[] arguments,
 @Cached("function") SLFunction cachedFunction,
 @Cached("create(cachedFunction.getCallTarget())") DirectCallNode callNode) {

 return callNode.call(frame, arguments);
 }

 @Specialization(contains = "doDirect")
 protected static Object doIndirect(VirtualFrame frame, SLFunction function, Object[] arguments,
 @Cached("create()") IndirectCallNode callNode,
 @Cached("create()") BranchProfile undefinedNameProfile) {

 return callNode.call(frame, function.getCallTarget(), arguments);
 }
}

57

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Partial evaluation can go across function boundary (function inlining) because callNode with its callTarget is final

Code Created from Guards and @Cached Parameters

if (number of doDirect inline cache entries < 2) {

if (function instanceof SLFunction) {

cachedFunction = (SLFunction) function;

if (function == cachedFunction) {

callNode = DirectCallNode.create(cachedFunction.getCallTarget());

assumption1 = cachedFunction.getCallTargetStable();

if (assumption1.isValid()) {

create and add new doDirect inline cache entry

58

Code creating the doDirect inline cache (runs infrequently):
assumption1.check();

if (function instanceof SLFunction) {

if (function == cachedFunction)) {

callNode.call(frame, arguments);

Code checking the inline cache (runs frequently):

Code that is compiled to a no-op is
marked strikethrough

The inline cache check is only one comparison with a compile time constant

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Language Nodes vs. Truffle Framework Nodes

Language specific

Truffle
Framework

Language specific

Truffle framework code triggers compilation, function inlining, …

Callee

Caller

SLDispatchNode

SLInvokeNode

DirectCallNode

CallTarget

SLRootNode

59

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Arguments
• Function arguments are not type-specialized

– Passed in Object[] array

• Function prologue writes them to local variables
– SLReadArgumentNode in the function prologue
– Local variable accesses are type-specialized, so only one unboxing

Example SL code:
function add(a, b) {
 return a + b;
}

function main() {
 add(2, 3);
}

Specialized AST for function add():

SLRootNode
 bodyNode = SLFunctionBodyNode
 bodyNode = SLBlockNode
 bodyNodes[0] = SLWriteLocalVariableNode<writeLong>(name = "a")
 valueNode = SLReadArgumentNode(index = 0)
 bodyNodes[1] = SLWriteLocalVariableNode<writeLong>(name = "b")
 valueNode = SLReadArgumentNode(index = 1)
 bodyNodes[2] = SLReturnNode
 valueNode = SLAddNode<addLong>
 leftNode = SLReadLocalVariableNode<readLong>(name = "a")
 rightNode = SLReadLocalVariableNode<readLong>(name = "b")

60

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Inlining vs. Function Splitting
• Function inlining is one of the most important optimizations

– Replace a call with a copy of the callee

• Function inlining in Truffle operates on the AST level
– Partial evaluation does not stop at DirectCallNode, but continues into next CallTarget
– All later optimizations see the big combined tree, without further work

• Function splitting creates a new, uninitialized copy of an AST

– Specialization in the context of a particular caller
– Useful to avoid polymorphic specializations and to keep polymorphic inline caches shorter
– Function inlining can inline a better specialized AST
– Result: context sensitive profiling information

• Function inlining and function splitting are language independent
– The Truffle framework is doing it automatically for you

61

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 62

Compilation with Inlined Function
Machine code for loop without call:

function add(a, b) {
 return a + b;
}

function loop(n) {
 i = 0;
 sum = 0;
 while (i <= 10000) {
 sum = add(sum, i);
 i = add(i, 1);
 }
 return sum;
}

SL source code with call: Machine code for loop with call:
function loop(n) {
 i = 0;
 sum = 0;
 while (i <= 10000) {
 sum = sum + i;
 i = i + 1;
 }
 return sum;
}

SL source code without call:
 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

Truffle gives you function inlining for free!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation API

63

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Compilation API
• Default behavior of compilation: Inline all reachable Java methods

• Truffle API provides class CompilerDirectives to influence compilation
– @CompilationFinal

• Treat a field as final during compilation
– transferToInterpreter()

• Never compile part of a Java method
– transferToInterpreterAndInvalidate()

• Invalidate machine code when reached
• Implicitly done by Node.replace()

– @TruffleBoundary
• Marks a method that is not important for performance, i.e., not part of partial evaluation

– inInterpreter()
• For profiling code that runs only in the interpreter

– Assumption
• Invalidate machine code from outside
• Avoid checking a condition over and over in compiled code

64

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Guards and Interpreter Profiling (1)
public class BranchProfile {
 @CompilationFinal private boolean visited;

 public void enter() {
 if (!visited) {
 CompilerDirectives.transferToInterpreterAndInvalidate();
 visited = true;
 }
 }
}

public final class SLIfNode extends SLStatementNode {
 private final BranchProfile thenTaken = BranchProfile.create();
 private final BranchProfile elseTaken = BranchProfile.create();

 public void executeVoid(VirtualFrame frame) {
 if (conditionNode.executeBoolean(frame)) {
 thenTaken.enter();
 thenPartNode.executeVoid(frame);
 } else {
 elseTaken.enter();
 elsePartNode.executeVoid(frame);
 }
 }
}

Best practice: Profiling in the interpreter allows the
compiler to generate better code

transferToInterpreter*() does nothing when
running in interpreter

65

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

public class ConditionProfile {
 @CompilationFinal private int trueCount;
 @CompilationFinal private int falseCount;

 public boolean profile(boolean value) {
 if (value) {
 if (trueCount == 0) {
 CompilerDirectives.transferToInterpreterAndInvalidate();
 }
 if (CompilerDirectives.inInterpreter()) {
 trueCount++;
 }
 } else {
 if (falseCount == 0) {
 CompilerDirectives.transferToInterpreterAndInvalidate();
 }
 if (CompilerDirectives.inInterpreter()) {
 falseCount++;
 }
 }
 return CompilerDirectives.injectBranchProbability(
 (double) trueCount / (double) (trueCount + falseCount), value);
 }
}

Guards and Interpreter Profiling (2)

public final class SLIfNode extends SLStatementNode {

 private final ConditionProfile condition =
 ConditionProfile.createCountingProfile();

 public void executeVoid(VirtualFrame frame) {
 if (condition.profile(
 conditionNode.executeBoolean(frame))) {
 thenPartNode.executeVoid(frame);
 } else {
 elsePartNode.executeVoid(frame);
 }
 }
}

66

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Slow Path Annotation
public abstract class SLPrintlnBuiltin extends SLBuiltinNode {

 @Specialization
 public final Object println(Object value) {
 doPrint(getContext().getOutput(), value);
 return value;
 }

 @TruffleBoundary
 private static void doPrint(PrintStream out, Object value) {
 out.println(value);
 }
}

Why @TruffleBoundary? Inlining something as big as
println() would lead to code explosion

When compiling, the output stream is a constant

67

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Redefinition (1)
• Problem

– In SL, functions can be redefined at any time
– This invalidates optimized call dispatch, and function inlining
– Checking for redefinition before each call would be a huge overhead

• Solution
– Every SLFunction has an Assumption
– Assumption is invalidated when the function is redefined

• This invalidates optimized machine code

• Result
– No overhead when calling a function

68

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Assumptions

Assumption assumption = Truffle.getRuntime().createAssumption();

void foo() {
 assumption.check();
 // Some code that is only valid if assumption is true.
}

assumption.invalidate();

void bar() {
 try {
 foo();
 } catch (InvalidAssumptionException ex) {
 // Perform node rewriting, or other slow-path code to respond to change.
 }
}

Create an assumption:

Check an assumption:

Respond to an invalidated assumption:

Invalidate an assumption:

69

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Redefinition (2)
public abstract class SLDefineFunctionBuiltin extends SLBuiltinNode {

 @TruffleBoundary
 @Specialization
 public String defineFunction(String code) {
 Source source = Source.fromText(code, "[defineFunction]");
 getContext().getFunctionRegistry().register(Parser.parseSL(source));
 return code;
 }
}

SL semantics: Functions can be defined and redefined at any time

Why @TruffleBoundary? Inlining something as big as the
parser would lead to code explosion

70

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Redefinition (3)
public final class SLFunction {

 private final String name;
 private RootCallTarget callTarget;
 private Assumption callTargetStable;

 protected SLFunction(String name) {
 this.name = name;
 this.callTarget = Truffle.getRuntime().createCallTarget(new SLUndefinedFunctionRootNode(name));
 this.callTargetStable = Truffle.getRuntime().createAssumption(name);
 }

 protected void setCallTarget(RootCallTarget callTarget) {
 this.callTarget = callTarget;
 this.callTargetStable.invalidate();
 this.callTargetStable = Truffle.getRuntime().createAssumption(name);
 }
} The utility class CyclicAssumption simplifies this code

71

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compiler Assertions
• You work hard to help the compiler
• How do you check that you succeeded?

• CompilerAsserts.partialEvaluationConstant()
– Checks that the passed in value is a compile-time constant early during partial evaluation

• CompilerAsserts.compilationConstant()
– Checks that the passed in value is a compile-time constant (not as strict as partialEvaluationConstant)
– Compiler fails with a compilation error if the value is not a constant
– When the assertion holds, no code is generated to produce the value

• CompilerAsserts.neverPartOfCompilation()
– Checks that this code is never reached in a compiled method
– Compiler fails with a compilation error if code is reachable
– Useful at the beginning of helper methods that are big or rewrite nodes
– All code dominated by the assertion is never compiled

72

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Mindset
• Do not optimize interpreter performance

– Only optimize compiled code performance

• Collect profiling information in interpreter
– Yes, it makes the interpreter slower
– But it makes your compiled code faster

• Do not specialize nodes in the parser, e.g., via static analysis
– Trust the specialization at run time

• Keep node implementations small and simple
– Split complex control flow into multiple nodes, use node rewriting

• Use final fields
– Compiler can aggressively optimize them
– Example: An if on a final field is optimized away by the compiler
– Use @CompilationFinal if the Java final is too restrictive

• Use microbenchmarks to assess and track performance of specializations
– Ensure and assert that you end up in the expected specialization

73

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Mindset: Frames
• Use VirtualFrame, and ensure it does not escape

– Graal must be able to inline all methods that get the VirtualFrame parameter
– Call must be statically bound during compilation
– Calls to static or private methods are always statically bound
– Virtual calls and interface calls work if either

• The receiver has a known exact type, e.g., comes from a final field
• The method is not overridden in a subclass

• Important rules on passing around a VirtualFrame
– Never assign it to a field
– Never pass it to a recursive method

• Graal cannot inline a call to a recursive method

• Use a MaterializedFrame if a VirtualFrame is too restrictive
– But keep in mind that access is slower

74

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Objects

75

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Objects
• Most dynamic languages have a flexible object model

– Objects are key-value stores
– Add new properties
– Change the type of properties
– But the detailed semantics vary greatly between languages

• Truffle API provides a high-performance, but still customizable object model
– Single-object storage for objects with few properties
– Extension arrays for objects with many properties
– Type specialization, unboxed storage of primitive types
– Shapes (hidden classes) describe the location of properties

76

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Object API Classes
• Layout: one singleton per language that defines basic properties
• ObjectType: one singleton of a language-specific subclass
• Shape: a list of properties

– Immutable: adding or deleting a property yields a new Shape
– Identical series of property additions and deletions yield the same Shape
– Shape can be invalidated, i.e., superseded by a new Shape with a better storage layout

• Property: mapping from a name to a storage location
• Location: immutable typed storage location

• DynamicObject: storage of the actual data
– Many DynamicObject instances share the same layout described by a Shape

77

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Object Allocation
public final class SLContext extends ExecutionContext {
 private static final Layout LAYOUT = Layout.createLayout();

 private final Shape emptyShape = LAYOUT.createShape(SLObjectType.SINGLETON);

 public DynamicObject createObject() {
 return emptyShape.newInstance();
 }

 public static boolean isSLObject(TruffleObject value) {
 return LAYOUT.getType().isInstance(value)
 && LAYOUT.getType().cast(value).getShape().getObjectType() == SLObjectType.SINGLETON;
 }
}

public final class SLObjectType extends ObjectType {
 public static final ObjectType SINGLETON = new SLObjectType();
}

78

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 79

Object Layout Transitions (1)

var x = {};
x.foo = 0;
x.bar = 0;
// + subtree A

empty

foo

bar

int

int

x

A

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 80

Object Layout Transitions (2)

var x = {};
x.foo = 0;
x.bar = 0;
// + subtree A

var y = {};
y.foo = 0.5;
y.bar = "foo";
// + subtree B

empty

foo

bar

int

int

x

A

bar

double

String

y

B

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 81

Object Layout Transitions (3)

var x = {};
x.foo = 0;
x.bar = 0;
// + subtree A

var y = {};
y.foo = 0.5;
y.bar = "foo";
// + subtree B

x.foo += 0.2
// + subtree C

empty

foo

bar

int

int

A

bar

double

String

B

int C

y x

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polymorphic Inline Cache in SLReadPropertyCacheNode
@Specialization(limit = "CACHE_LIMIT",
 guards = {"namesEqual(cachedName, name)", "shapeCheck(shape, receiver)"},
 assumptions = {"shape.getValidAssumption()"})
protected static Object readCached(DynamicObject receiver, Object name,
 @Cached("name") Object cachedName,
 @Cached("lookupShape(receiver)") Shape shape,
 @Cached("lookupLocation(shape, name)") Location location) {
 return location.get(receiver, shape);
}

@TruffleBoundary
@Specialization(contains = {"readCached"},
 guards = {"isValidSLObject(receiver)"})
protected static Object readUncached(DynamicObject receiver, Object name) {
 Object result = receiver.get(name);
 if (result == null) {
 throw SLUndefinedNameException.undefinedProperty(name);
 }
 return result;
}

82

@Fallback
protected static Object updateShape(Object r, Object name) {
 CompilerDirectives.transferToInterpreter();
 if (!(r instanceof DynamicObject)) {
 throw SLUndefinedNameException.undefinedProperty(name);
 }
 DynamicObject receiver = (DynamicObject) r;
 receiver.updateShape();
 return readUncached(receiver, name);
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polymorphic Inline Cache in SLReadPropertyCacheNode
• Initialization of the inline cache entry (executed infrequently)

– Lookup the shape of the object
– Lookup the property name in the shape
– Lookup the location of the property
– Values cached in compilation final fields: name, shape, and location

• Execution of the inline cache entry (executed frequently)
– Check that the name matches the cached name
– Lookup the shape of the object and check that it matches the cached shape
– Use the cached location for the read access

• Efficient machine code because offset and type are compile time constants

• Uncached lookup (when the inline cache size exceeds the limit)
– Expensive property lookup for every read access

• Fallback
– Update the object to a new layout when the shape has been invalidated

83

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polymorphic Inline Cache for Property Writes
• Two different inline cache cases

– Write a property that does exist
• No shape transition necessary
• Guard checks that the type of the new value is the expected constant type
• Write the new value to a constant location with a constant type

– Write a property that does not exist
• Shape transition necessary
• Both the old and the new shape are @Cached values
• Write the new constant shape
• Write the new value to a constant location with a constant type

• Uncached write and Fallback similar to property read

84

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 85

Compilation with Object Allocation
Machine code without allocation:

function loop(n) {
 o = new();
 o.i = 0;
 o.sum = 0;
 while (o.i <= 10000) {
 o.sum = o.sum + o.i;
 o.i = o.i + 1;
 }
 return o.sum;
}

SL source with allocation: Machine code with allocation:
function loop(n) {
 i = 0;
 sum = 0;
 while (i <= 10000) {
 sum = sum + i;
 i = i + 1;
 }
 return sum;
}

SL source without allocation:
 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

Truffle gives you escape analysis for free!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Stack Walking and Frame Introspection

86

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Stack Walking Requirements
• Requirements

– Visit all guest language stack frames
• Abstract over interpreted and compiled frames

– Allow access to frames down the stack
• Read and write access is necessary for some languages

– No performance overhead
• No overhead in compiled methods as long as frame access is not used
• No manual linking of stack frames
• No heap-based stack frames

• Solution in Truffle
– Stack walking is performed by Java VM
– Truffle runtime exposes the Java VM stack walking via clean API
– Truffle runtime abstracts over interpreted and compiled frames
– Transfer to interpreter used for write access of frames down the stack

87

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 88

Stack Walking
public abstract class SLStackTraceBuiltin extends SLBuiltinNode {

 @TruffleBoundary
 private static String createStackTrace() {
 StringBuilder str = new StringBuilder();

 Truffle.getRuntime().iterateFrames(frameInstance -> {
 dumpFrame(str, frameInstance.getCallTarget(), frameInstance.getFrame(FrameAccess.READ_ONLY, true));
 return null;
 });

 return str.toString();
 }

 private static void dumpFrame(StringBuilder str, CallTarget callTarget, Frame frame) {
 if (str.length() > 0) { str.append("\n"); }

 str.append("Frame: ").append(((RootCallTarget) callTarget).getRootNode().toString());
 FrameDescriptor frameDescriptor = frame.getFrameDescriptor();
 for (FrameSlot s : frameDescriptor.getSlots()) {
 str.append(", ").append(s.getIdentifier()).append("=").append(frame.getValue(s));
 }
 }
}

TruffleRuntime provides stack walking

FrameInstance is a handle to a guest language frame

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 89

Stack Frame Access
public interface FrameInstance {

 public static enum FrameAccess {
 NONE,
 READ_ONLY,
 READ_WRITE,
 MATERIALIZE
 }

 Frame getFrame(FrameAccess access, boolean slowPath);

 CallTarget getCallTarget();
}

The more access you request, the slower it is:
Write access requires deoptimization

Access to the Frame and the CallTarget gives you full
access to your guest language’s data structures and the
AST of the method

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polyglot

90

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 91

Language Registration
public final class SLMain {

 public static void main(String[] args) throws IOException {
 System.out.println("== running on " + Truffle.getRuntime().getName());

 PolyglotEngine engine = PolyglotEngine.newBuilder().build();
 Source source = Source.fromFileName(args[0]);
 Value result = engine.eval(source);
 }
}

PolyglotEngine is the entry point to execute source code

@TruffleLanguage.Registration(name = "SL", version = "0.12", mimeType = SLLanguage.MIME_TYPE)
public final class SLLanguage extends TruffleLanguage<SLContext> {

 public static final String MIME_TYPE = "application/x-sl";

 public static final SLLanguage INSTANCE = new SLLanguage();

 @Override
 protected SLContext createContext(Env env) { ... }

 @Override
 protected CallTarget parse(Source source, Node node, String... argumentNames) throws IOException { ... }

Language implementation lookup is via mime type

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The Polyglot Diamond

92

Polyglot VM

Truffle

Graal VM

Truffle:
Language implementation framework
with language agnostic tooling

JavaScript Ruby R LLVM

Language Developer

Language User / Integrator

Your Language

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 93

Graal VM Multi-Language Shell

Ruby>
def rubyadd(a, b)
 a + b;
end
Truffle::Interop.export_method(:rubyadd);

JS>
rubyadd = Interop.import("rubyadd")
function jssum(v) {
 var sum = 0;
 for (var i = 0; i < v.length; i++) {
 sum = Interop.execute(rubyadd, sum, v[i]);
 }
 return sum;
}
Interop.export("jssum", jssum)

R>
v <- runif(1e8);
jssum <- .fastr.interop.import("jssum")
jssum(NULL, v)

Shell is part of Graal VM download

Start bin/graalvm

Add a vector of numbers using three languages:

Explicit export and import of symbols (methods)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

High-Performance Language Interoperability (1)

94

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

High-Performance Language Interoperability (2)

95

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 96

Cross-Language Method Dispatch
public abstract class SLDispatchNode extends Node {

 @Specialization(guards = "isForeignFunction(function)")
 protected static Object doForeign(VirtualFrame frame, TruffleObject function, Object[] arguments,
 @Cached("createCrossLanguageCallNode(arguments)") Node crossLanguageCallNode,
 @Cached("createToSLTypeNode()") SLForeignToSLTypeNode toSLTypeNode) {
 try {
 Object res = ForeignAccess.sendExecute(crossLanguageCallNode, frame, function, arguments);
 return toSLTypeNode.executeConvert(frame, res);
 } catch (ArityException | UnsupportedTypeException | UnsupportedMessageException e) {
 throw SLUndefinedNameException.undefinedFunction(function);
 }
 }

 protected static boolean isForeignFunction(TruffleObject function) {
 return !(function instanceof SLFunction);
 }
 protected static Node createCrossLanguageCallNode(Object[] arguments) {
 return Message.createExecute(arguments.length).createNode();
 }
 protected static SLForeignToSLTypeNode createToSLTypeNode() {
 return SLForeignToSLTypeNodeGen.create();
 }
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 97

Compilation Across Language Boundaries
Machine code for loop:

function main() {
 eval("application/x-ruby",
 "def add(a, b) a + b; end;");
 eval("application/x-ruby",
 "Truffle::Interop.export_method(:add);");
 ...
}

function loop(n) {
 add = import("add");

 i = 0;
 sum = 0;
 while (i <= n) {
 sum = add(sum, i);
 i = add(i, 1);
 }
 return sum;
}

Mixed SL and Ruby source code:
 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

Truffle gives you language interop for free!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polyglot Example: Mixing Ruby and JavaScript

98

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 99

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 100

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Tools

101

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Tools: We Don’t Have It All

• Difficult to build
– Platform specific
– Violate system abstractions
– Limited access to execution state

• Productivity tradeoffs for programmers
– Performance – disabled optimizations
– Functionality – inhibited language features
– Complexity – language implementation requirements
– Inconvenience – nonstandard context (debug flags)

102

(Especially for Debuggers)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Tools: We Can Have It All
• Build tool support into the Truffle API

– High-performance implementation
– Many languages: any Truffle language can be tool-ready with minimal effort
– Reduced implementation effort

• Generalized instrumentation support
1. Access to execution state & events
2. Minimal runtime overhead
3. Reduced implementation effort (for languages and tools)

103

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Implementation Effort: Language Implementors
• Treat AST syntax nodes specially

– Precise source attribution
– Enable probing
– Ensure stability

• Add default tags, e.g., Statement, Call, ...
– Sufficient for many tools
– Can be extended, adjusted, or replaced dynamically by other tools

• Implement debugging support methods, e.g.
– Eval a string in context of any stack frame
– Display language-specific values, method names, …

• More to be added to support new tools & services

104

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

 “Mark Up” Important AST Nodes for Instrumentation

105

Tag: Statement

Probe: A program location (AST
node) prepared to give tools
access to execution state.

Tag: An annotation for
configuring tool behavior at a
Probe. Multiple tags, possibly
tool-specific, are allowed.

P N

…

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Access to Execution Events

Instr. 1 Instr. 2 Instr. 3

106

Tag: Statement

Instrument: A receiver of
program execution events
installed for the benefit of
an external tool

Tool 1

Tool 2

Tool 3

Event: AST execution flow
entering or returning from
a node.

…
P N

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Implementation: Nodes

107
107

W PN

WrapperNode
• Inserted before any execution
• Intercepts Events
• Language-specific Type

ProbeNode
• Manages “instrument chain” dynamically
• Propagates Events
• Instrumentation Type

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 108

Node Tags
@Instrumentable(factory = SLStatementNodeWrapper.class)
public abstract class SLStatementNode extends Node {

 private boolean hasStatementTag;
 private boolean hasRootTag;

 @Override
 protected boolean isTaggedWith(Class<?> tag) {
 if (tag == StandardTags.StatementTag.class) {
 return hasStatementTag;
 } else if (tag == StandardTags.RootTag.class) {
 return hasRootTag;
 }
 return false;
 }
}

Annotation generates type-specialized WrapperNode

The set of tags is extensible, tools can provide new tags

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 109

Exmple: Debugger
mx repl
==> GraalVM Polyglot Debugger 0.9
Copyright (c) 2013-6, Oracle and/or its affiliates
 Languages supported (type "lang <name>" to set default)
 JS ver. 0.9
 SL ver. 0.12
() loads LoopPrint.sl
Frame 0 in LoopPrint.sl
 1 function loop(n) {
 2 i = 0;
 3 while (i < n) {
 4 i = i + 1;
 5 }
 6 return i;
 7 }
 8
 9 function main() {
--> 10 i = 0;
 11 while (i < 20) {
 12 loop(1000);
 13 i = i + 1;
 14 }
 15 println(loop(1000));
 16 }

Simple command line debugger is in Truffle
development repository:
https://github.com/graalvm/truffle#hacking-truffle

(<1> LoopPrint.sl:10)(SL) break 4
==> breakpoint 0 set at LoopPrint.sl:4
(<1> LoopPrint.sl:10)(SL) continue
Frame 0 in LoopPrint.sl
[...]
--> 4 i = i + 1;
[...]
(<1> LoopPrint.sl:4)(SL) frame
==> Frame 0:
 #0: n = 1000
 #1: i = 0
(<1> LoopPrint.sl:4)(SL) step
Frame 0 in LoopPrint.sl
[...]
--> 3 while (i < n) {
[...]
(<1> LoopPrint.sl:3)(SL) frame
==> Frame 0:
 #0: n = 1000
 #1: i = 1
(<1> LoopPrint.sl:3)(SL) backtrace
==> 0: at LoopPrint.sl:3 in root loop line=" while (i <
 1: at LoopPrint.sl:12~ in root main line=" loop(1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Substrate VM

110

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Substrate VM
• Goal

– Run Truffle languages without the overhead of a Java VM

• Approach
– Ahead-of-time compile the Java bytecodes to machine code
– Build standard Linux / MacOS executable

111

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Substrate VM: Execution Model

112

Ahead-of-Time
Compilation

Static Analysis

Substrate VM

Truffle Language

JDK

Reachable methods,
fields, and classes

Machine Code

Initial Heap

All Java classes from
Truffle language

(or any application),
JDK, and Substrate VM

Application running
without dependency on JDK
and without Java class loading

DWARF Info

ELF / MachO Binary

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Substrate VM: Startup Performance

113

Running Ruby “Hello World”

Execution time:

Memory footprint:

time -f "%e"

time -f "%M"

13

35
3

68
8

14

0

200

400

600

800

MRI JRuby Truffle on
JVM

 Truffle on
SVM

[msec] Execution Time

5

35

53

9

0

10

20

30

40

50

60

MRI JRuby Truffle on
JVM

 Truffle on
SVM

[MByte] Memory Footprint

Substrate VM eliminates the Java VM
startup overhead:

Orders of magnitude for
time and memory

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Summary

114

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Summary

Low-footprint VM, also
suitable for embedding

Common API separates
language implementation,
optimization system,
and tools (debugger)

Language agnostic
dynamic compiler

AST Interpreter for
every language

Integrate with Java
applications

Substrate VM

Graal

JavaScript Ruby LLVM R

Graal VM

…

Truffle

115

Your language
should be here!

Tools

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 116

117

	Slide Number 1
	One VM to Rule Them All
	Slide Number 3
	One Language to Rule Them All?
	One Language to Rule Them All?
	“Write Your Own Language”
	Truffle System Structure
	Speculate and Optimize …
	… and Transfer to Interpreter and Reoptimize!
	Open Source Code on GitHub
	Binary Snapshots on OTN
	Truffle Language Projects
	Performance Disclaimers
	Performance: GraalVM Summary
	Performance: JavaScript
	Performance: Ruby Compute-Intensive Kernels
	Acknowledgements
	Partial Evaluation and �Transfer to Interpreter
	Example: Partial Evaluation
	Example: Transfer to Interpreter
	Example: Partial Evaluation and Transfer to Interpreter
	A Simple Language
	SL: A Simple Language
	Types
	Syntax
	Parsing
	SL Examples
	Getting Started
	Simple Tree Nodes
	Truffle Nodes and Trees
	If Statement
	Blocks
	Return Statement: Inter-Node Control Flow
	Truffle DSL: Specialization and Node Rewriting
	Addition
	Code Generated by Truffle DSL (1)
	Code Generated by Truffle DSL (2)
	Type System Definition in Truffle DSL
	UnexpectedResultException
	Truffle DSL Workflow
	Frames and Local Variables
	Frame Layout
	Frame Management
	Frame Management
	Local Variables
	Local Variables
	Compilation
	Compilation
	Compilation
	Visualization Tools: IGV
	Visualization Tools: IGV
	Function Calls
	Polymorphic Inline Caches
	Example: Simple Polymorphic Inline Cache
	Polymorphic Inline Cache for Function Dispatch
	Invoke Node
	Dispatch Node
	Code Created from Guards and @Cached Parameters
	Language Nodes vs. Truffle Framework Nodes
	Function Arguments
	Function Inlining vs. Function Splitting
	Compilation with Inlined Function
	Compilation API
	Truffle Compilation API
	Guards and Interpreter Profiling (1)
	Guards and Interpreter Profiling (2)
	Slow Path Annotation
	Function Redefinition (1)
	Assumptions
	Function Redefinition (2)
	Function Redefinition (3)
	Compiler Assertions
	Truffle Mindset
	Truffle Mindset: Frames
	Objects
	Objects
	Object API Classes
	Object Allocation
	Object Layout Transitions (1)
	Object Layout Transitions (2)
	Object Layout Transitions (3)
	Polymorphic Inline Cache in SLReadPropertyCacheNode
	Polymorphic Inline Cache in SLReadPropertyCacheNode
	Polymorphic Inline Cache for Property Writes
	Compilation with Object Allocation
	Stack Walking and Frame Introspection
	Stack Walking Requirements
	Stack Walking
	Stack Frame Access
	Polyglot
	Language Registration
	The Polyglot Diamond
	Graal VM Multi-Language Shell
	High-Performance Language Interoperability (1)
	High-Performance Language Interoperability (2)
	Cross-Language Method Dispatch
	Compilation Across Language Boundaries
	Polyglot Example: Mixing Ruby and JavaScript
	Slide Number 99
	Slide Number 100
	Tools
	Tools: We Don’t Have It All
	Tools: We Can Have It All
	Implementation Effort: Language Implementors
	 “Mark Up” Important AST Nodes for Instrumentation
	Access to Execution Events
	Implementation: Nodes
	Node Tags
	Exmple: Debugger
	Substrate VM
	Substrate VM
	Substrate VM: Execution Model
	Substrate VM: Startup Performance
	Summary
	Summary
	Slide Number 116
	Slide Number 117

