
Finding Cuts in Static Analysis Graphs to Debloat Software
Christoph Blumschein

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

christoph.blumschein@student.hpi.uni-

potsdam.de

Fabio Niephaus

Oracle Labs

Potsdam, Germany

fabio.niephaus@oracle.com

Codruţ Stancu

Oracle Labs

Zurich, Switzerland

codrut.stancu@oracle.com

Christian Wimmer

Oracle Labs

Redwood Shores, USA

christian.wimmer@oracle.com

Jens Lincke

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

jens.lincke@hpi.uni-potsdam.de

Robert Hirschfeld

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

robert.hirschfeld@uni-potsdam.de

Abstract
As software projects grow increasingly more complex, debloating

gains traction. While static analyses yield a coarse over-approxi-

mation of reachable code, approaches based on dynamic execution

traces risk program correctness. By allowing the developer to recon-

sider only a few methods and still achieve a significant reduction

in code size, cut-based debloating can minimize the risk. In this

paper, we propose the idea of finding small cuts in the rule graphs

produced by static analysis. After introducing an analysis with suit-

able semantics, we discuss how to encode its rules into a directed

hypergraph. We then present an algorithm for efficiently finding

the most effective single cut in the graph. The execution time of the

proposed operations allows for the deployment in interactive tools.

Finally, we show that our graph model is able to expose methods

worthwhile to reconsider.

CCS Concepts
• Software and its engineering→ Automated static analysis;
• Theory of computation→ Program analysis; Graph algorithms
analysis.

Keywords
Software Debloating, Static Analysis, Call-Graph Construction,

Graph Cuts, Interactive Feedback

ACM Reference Format:
Christoph Blumschein, Fabio Niephaus, Codruţ Stancu, Christian Wimmer,

Jens Lincke, and Robert Hirschfeld. 2024. Finding Cuts in Static Analy-

sis Graphs to Debloat Software. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’24), Sep-
tember 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3650212.3680306

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680306

1 Introduction
As a software project evolves over time, it tends to accumulate more

and more features. The implementation of features that are never

used is often called bloat. With the growing complexity of software

systems, which rely on an increasing amount of dependencies, the

amount of bloat shipped tends to rise [25].

This bloat manifests primarily in increased artifact file size, a

concern traditionally associated with embedded systems facing

memory constraints. Recently, size has gained importance in cloud

deployments, too: Secondary effects of software bloat include higher

memory footprints, longer build times, an increased attack surface

[22], and a reduced optimization potential. Therefore, the field

of debloating—finding and removing software bloat—has gained

attention in recent years [7, 26].

1.1 Context
Many existing solutions deal with the peculiarities of machine code

("binary debloating") [1, 21]. Others operate on the levels of source

code or high-level intermediate representations, which facilitate

program analysis. The different approaches can be categorized as

either static or dynamic:

Static approaches. These construct some kind of code depen-

dency graph (e.g., a call graph) statically, and identify the unreach-

able code as bloat. However, static analyses struggle with three

difficulties:

a) Dynamic language features complicate a sound analysis.

b) Due to over-approximation, they miss much of the bloat.

c) They anticipate all possible program inputs.

The first is usually dealt with by compromising on soundness

("soundiness" [16]), and instead relying on manually provided de-

pendency relationships and information gained from dynamic exe-

cution. The second difficulty remains even with soundy analyses,

and using more precision only yields diminishing returns. The third

one can be addressed by explicitly stating additional assumptions.

Dynamic approaches. Coverage obtained by dynamic execution

of the software system under test gives an under-approximation

of the necessary code. It can be used in an aggressive debloating

strategy [26]. However, the quality of the result heavily depends

on the available testcases. Developers employing coverage-based

https://orcid.org/0009-0000-5834-9481
https://orcid.org/0000-0002-3297-9730
https://orcid.org/0009-0007-3646-3663
https://orcid.org/0009-0003-3213-9306
https://orcid.org/0000-0002-3828-7778
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3650212.3680306
https://doi.org/10.1145/3650212.3680306

ISSTA '24, September 16�20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruµ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

debloating risk program correctness, unless they can guarantee that
every piece of code not covered is indeed dead code. This assurance
is impractical for realistic software projects due to their sheer size.

1.2 Cut-Based Approach
We observe that the result produced by static analyses is su�ciently
precise for the vast majority of the code, while missed opportunities
lead to a strong over-approximation only in a few places. We want
to �nd these critical places so that a developer can consider adding
a few assumptions to make the analysis result much more precise.
Using our approach, given a small set of deliberately removed
("cut") methods, the static analysis can prove another potentially
much larger set of methods as unused. Then, instead of having to
supervise the removal of unfeasible amounts of code, the developer
only has to consider a handful of locations.

Figure 1: High-level overview.

Proposed Work�ow.Figure 1 presents a high-level overview of
the proposed work�ow. We �rst capture the rules of an underlying
static reachability analysis in a directed hypergraph model. In this
rule graph, we search for cuts that separate bloat. The search can be
conducted semi-automatically, which allows to target a speci�c sus-
picious dependency and to use additional domain knowledge about
which code is essential. We also present an algorithm for yielding
the cut that separates the biggest chunk of bloat. To maintain the
correctness of the program, cut methods must not be exercised
in any intended use of the application. Therefore, we restrict the
search for cuts to methods not covered during the traced execution
of test cases. This restriction alone cannot guarantee correctness,
as coverage reports under-approximate the set of necessary code.
Therefore, an engineer must review the cut before applying it to
the original program.

1.3 Contributions
Our main research question is:How to �nd a suitable set of methods
for cutting?As our contributions towards answering the question,

(1) we capture the rules of a static analysis in a directed hyper-
graph model, which allows for fast recomputation of the
analysis given method cuts. This is enabled by introducing
� an analysis semantics that forms an appropriate trade-o�

between computation speed and precision,
� and an algorithm for computing the e�ect of many disjoint

cuts e�ciently.

(2) we then develop a tool that uses this model
� to provide interactive feedback on the amount of bloat

removed with a cut,
� and to recommend e�ective cuts to the developer.

(3) we evaluate the model's ability to propose e�ective cuts and
show that applying them leads to the expected reduction in
code size.

2 Background
In this section, we introduce the necessary theory, and establish
some formalism which we use throughout the paper.

2.1 Directed Hypergraphs
Directed hypergraphs generalize directed graphs by allowing edges
to connect arbitrarily large sets of nodes. In this paper, we only deal
with directed B-hypergraphs [10]. In a directed B-hypergraph, the
edges have a set of source nodes (tail), and exactly one destination
node (head). Formally, we de�ne a directed hypergraphH = ¹+• � º
as containing nodes+ and hyperedges� � 2+ � + . We de�ne two
helper functions for denoting theheadandtail of a hyperedge:

) : � ! 2+ • � : � ! + such that 4 = ¹) ¹4º• � ¹4ºº 84 2 �

A hyperpath (also called B-hyperpath) from a set of nodes(to a
single nodeCis a sequence of edges41• ”””• 4= such that

) ¹48º � ([f � ¹49º j 1 � 9Ÿ 8g 88= 1• ”””•=

We write (! �
� Cif there is such a path. Notice that the start set of

nodes(can be encoded in the graph via "entry" hyperedges with
an empty tail, such that

(! �
¹+ •� º C , ; ! �

¹+ •� 0º C with � 0 = � [f¹; •Bº j B2 (g

As the graphs in this paper follow this encoding, we are commonly
interested in the set of nodes reachable from entry hyperedges:

Reach¹Hº = fC2 + j ; ! �
H Cg

We say "Cis reachable inH " if C2 Reach¹Hº .

Traversal.The set of reachable nodes can be computed in linear
time using a simple worklist algorithm. Finding a minimum-weight
path to a particular node is sometimes feasible, depending on the
weight measure [10]. Minimizing the cardinality of a hyperpath
is NP-hard. Yet, for inductively de�ned weight measures, there of-
ten exist e�cient algorithms. One example for that isRank, which
assigns each node along the path the maximum value of its prede-
cessors plus one. Minimum-Rankhyperpaths can be computed via
a generalized Breadth-First Search (BFS).

Cuts.We say "- � + is a cut forC2 + in H " i� C8 Reach¹H � - º.
The problem of �nding a minimum cardinality cut is equivalent to
Maximum Horn Satis�ability, which makes it NP-hard [2] as well.

2.2 Call Graph Construction
Much research in the static analysis �eld deals with the construc-
tion of call graphs. A call graph is a simple directed graph, con-
taining edges from each method to any potential callee. It may
contain spurious edges; in fact, all practical analyses produce over-
approximations of the "true" call relationship.

Finding Cuts in Static Analysis Graphs to Debloat So�ware ISSTA '24, September 16�20, 2024, Vienna, Austria

A big problem is posed by dynamic languages features, such
as re�ection (i.e., string-based dispatch) [14]. In order to produce
useful results, static analyses usually compromise on soundness
when encountering re�ection, and rely on a combination of user-
provided rules and heuristics for simple cases [5].

Various call graph construction algorithms di�er in how they
treat multiple dispatch in object-oriented languages, which corre-
sponds to �rst-class function invocation in functional languages
[19]. In the following, we present some construction algorithms,
beginning with a very coarse approach and gradually advancing
towards more precision.

Reachability Analysis.The simplest analysis ignores run-time
polymorphism. Caller-callee pairs are matched by the name of the
called method.

Class Hierarchy Analysis.A �rst improvement is to take the
class hierarchy into account [8]. Unrelated methods that happen
to have the same name are correctly excluded. Also, upon a run-
time polymorphic call, only implementations belonging to a type
assignable to the declared type of the call are connected via an edge.

Rapid Type Analysis (RTA).RTAconsiders callees only if their
declared type (or a type inheriting the same implementation) has
previously been instantiated in a reachable method [3].

Variable Type Analysis (VTA).VTA tracks the �ow of instantiated
types along variable assignments from allocation sites to invoca-
tions. It keeps track of the set of types that may appear in each local
variable or �eld. A callee is only considered if the receiver variable
may contain its de�ning type.

In the initial VTA paper [28], the authors avoid "on-the-�y call-
graph construction" [19], which would be required to obtain the
minimum �xed-point universe. Instead, after initializing their call
graph with an approximation computed by a simpler, less precise
analysis, they propagate type sets in one run along the topological
order of Strongly-Connected Componentss (SCCs), and remove
edges where the receiver variable does not contain any de�ning
type of the callee implementation. Therefore, they trade precision
for reduced computational e�ort.

Nevertheless, whenever we use the term VTA in this paper, we
refer to a minimum �xed-point variant. So only once a new callee is
reachable, types are propagated from actual to declared parameters,
and from declared to actual returns. In the Points-to Analysis (PTA)
community, this is also known as Context Insensitive Control Flow
Analysis (0-CFA) [29].

3 Capturing an Analysis Run in a Directed
Hypergraph

Given a static analysis and a software project, we want to �nd
promising cuts. Instead of performing the analysis over and over
again, which can be time-consuming, we capture one run in a
graph. In principle, any analysis that derives facts via rules (horn
clauses) is suitable for our approach. This includes the many points-
to analyses that can be speci�ed as a high-level datalog program
[24].

We derive the rule graph by mapping every fact to a node and
every rule instantiation to an edge. The graph is ordinary i� all

rule preconditions consist of at most one atom. This is only the
case for the most simple analyses, such as the Reachability Analysis
andCHA described in Section 2.2. In general, however, we obtain a
directed hypergraph.

Generally, a higher level of analysis precision results in a larger
graph. WhileRTAas an underlying analysis yields a compact hy-
pergraph,VTA already results in an explosion of the graph, as every
combination of types and variables (beyond1010 in practice) yields
a distinct node. Therefore, we introduce an approximation ofVTA,
which we denoteVTAŸ: . This saturationtechnique models the
exact types that may occur in each variable as long as the number
of types stays below a certain threshold and merges variables that
exceed this threshold [32]. This enables us to limit the run time
until a BFS converges.

3.1 Rules
The following subsection presents the rules ofVTAŸ: . In addition
to the precondition atoms, which are stated on the upper side of
each rule, a rule may have a meta-condition written on the right.
These introduce information about the concrete program, which is
assumed to stay constant during cutting and re-simulating.

Methods.The relationMethodReachable ¹�º keeps track of the
methods that are required according to the analysis. As the analysis
begins at prede�ned entry points (e.g., the main method), these are
unconditionally reachable.

Entry
MethodReachable ¹< º

if < is an entry point

Direct calls�when the callee can be resolved statically�can be
modeled with a simple rule.

Call
MethodReachable ¹< 1º

MethodReachable ¹< 2º
if < 1 directly calls< 2

Variables.The relationFlow ¹C• Eº tracks which typeCmay ap-
pear in a variableE.

Alloc
Flow ¹C• Eº

for "v = new t(...) "

Variables propagate their types along assignments, whether explic-
itly stated in the code or implicitly established through method
parameter/return linking. Each variable applies a �lter on incoming
types. It is derived from explicit casts, control-�ow facts, and the
implicit casting of the receiver argument at run-time-dispatched
method implementations. Variables de�ned in method bodies only
propagate their types once the method is reachable since propaga-
tion can have side e�ects on the reachable universe.

Propagation

Flow ¹C• E1º
MethodReachable ¹< º

Flow ¹C• E2º
for "v2 = v1" if

C2�lter E2
^

< de�nes E1

For variables de�ned outside of methods (i.e., �elds), there is an
analog rule that omits theMethodReachable ¹< º precondition.

A polymorphic implementation method becomes reachable once
its formal receiver ("this-pointer") contains any type. This works
as intended since the formal receiver variable applies the correct

ISSTA '24, September 16�20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruµ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

�ltering, accepting only types that use this exact implementation�
subtypes that have not overridden the method themselves.

Invocation
Flow ¹C• Eº

MethodReachable ¹< º
if Eis formal receiver of<

Type Set Merging.To restrict the number of types whose propa-
gation has to be computed for each variable, we employ an approx-
imation: once a variable may contain: di�erent types, we consider
it saturated.

Saturation
Flow ¹C1• Eº ””” Flow ¹C: • Eº

Saturated ¹Eº
with C8 < C9 88< 9

Then, instead of tracking its precise type set, we only track one
globally merged set of types for all saturated variables.

Merge I
Saturated ¹Eº Flow ¹C• Eº

Merged¹Cº

Merge II
Saturated ¹Eº Merged¹Cº

Flow ¹C• Eº

With a higher limit : , VTAŸ: becomes more precise. Observe
that RTA and VTA correspond to special cases of it:

RTA = VTAŸ0 Ÿ
precision

””” Ÿ
precision

VTAŸ1 = VTA”

3.2 Graph Model
Mapping eachFlow ¹�•�º fact to a separate node would result in
a graph size explosion. Instead, taking advantage of the parallel
structure of the nodes induced byPropagation, we introduce special
variablenodes, which represent a vector ofFlow ¹�•�º facts. The vec-
tors are of sizej)~?4Bj, as they represent a subset of all types in the
analysis universe. Furthermore, we integrate saturation semantics
into these nodes to e�ciently evaluate the cardinality constraint in
the Saturationrule.

Figure 2 illustrates the behavior of the nodes in our graph in
terms of a circuit diagram. There are two kinds of nodes in our
graph: ordinary nodes modeling methods and special nodes for
variables. In aBFS, the ordinary nodes behave unsurprisingly: each
one stores a state of one bit, indicating whether it is reachable. Once
any predecessor becomes reachable, an ordinary node becomes
reachable, making all its successors reachable. A variable node
stores a vector of bits, indicating whether each type can appear in
this variable. It is interconnected to other variable nodes according
to assignments in the program. Each variable node has a read-only
parameter�lter E, which masks the types that may be propagated
from predecessors. Once its state includes at least: types, it is
united with the global setMerged¹�º. If a variable is not a �eld, its
node is associated with the node of the method in which it is de�ned.
The reachability of the method node acts as a gate to the further
propagation of the types. If the variable is the formal receiver of its
method, it leads to the reachability of the method node once any
type occurs in its state.

Strictly speaking, our graph with special nodes is no longer a
directed hypergraph. Yet, since it compactly represents something
that could be reduced to a hypergraph in polynomial space, theo-
retical results from hypergraph theory apply. Furthermore, given
an implementation of aBFSalgorithm that respects the particular

^

�lter E

^

^

� :

^

� 1

Eis
formal receiver?

successorspredecessors

Merged¹�º

Saturated ¹Eº

Flow ¹�• Eº_

_

predecessors successors

MethodReachable ¹< º

#types bits1 bit variable node method node

Figure 2: Node semantics expressed as a circuit diagram.

semantics of variable nodes, we can treat our special graph like a
directed hypergraph in the following sections.

4 Analysis Recomputation with Cuts
As the analysis discovers facts monotonically, removing a set of
nodes- and subsequently doing a graph search yields all elements
that the analysis would discover if the corresponding code ele-
ments had not existed. Compared with re-running the analysis,
"re-simulating" it with a given cutset speeds up the hypothesize-
modify-observe cycle of a developer trying to reduce the size of
a software artifact. In addition, this basic operation facilitates the
construction of automated searches on top of it.

4.1 Finding Promising Cutsets
We use the functionSepto denote the set of nodes separated by a
given cut.

Sep� : 2+ ¹� º ! 2+ ¹� º

Sep� ¹- º = Reach¹� º nReach¹� � - º

Depending on the scenario, apromisingcutset is a solution to one
of multiple optimization problems. If developers suspect that a
particular dependency is bloat, they might want to �nd a small set
of methods that separate it.

MinCut� ¹) º = argmin
- � "

) � Sep� ¹- º

j- j

Finding Cuts in Static Analysis Graphs to Debloat So�ware ISSTA '24, September 16�20, 2024, Vienna, Austria

Without speci�c targets in mind, a developer may be interested in
some methods that reduce the artifact size as much as possible.

MostE�ectiveCut� ¹;º = argmax
- � "
j- j � ;

Õ

< 2Sep� ¹- º

size¹< º

Here," � + ¹� º denotes the set of methods we allow to cut. This
additional constraint can be used to restrict the result to methods
not included in dynamic coverage or to incorporate other project-
speci�c knowledge of a developer.

While MinCut would be computationally feasible if we dealt
with a regular graph, it is NP-hard for hypergraphs (see Section 2.1).
MostE�ectiveCutis a variant of Minimum-Size Bounded-Capacity
Cut (MinSBCC) [11], which is already NP-hard for regular graphs.
Therefore, we focus onMostE�ectiveCut� ¹1º, the singleton cut
problem.

4.2 Simulating Many Disjoint Cuts
The naïve approach to determiningMostE�ectiveCut� ¹1º involves
computingSep� ¹f< gº from scratch for each method< 2 " . This
is impractical for larger projects with more than100•000methods.
This section describes a divide-and-conquer algorithm that reuses
intermediate results to compute MostE�ectiveCut� ¹1º.

Incremental Computation.It would be convenient if we could
computeReach¹� º once, and take a decremental step toReach¹� �
f< gºfor each method< with little e�ort. Updating the set of reach-
able elements after deletion is di�cult to do e�ciently. However,
updating the set of reachable elements after an increment is eas-
ily computed in time linear to the increase in reachable nodes
� = j Sep� ¹- º j. We exploit this by approaching the desired reacha-
bility results from the other side in a hierarchical scheme.

Let" = f< 0• ”””•<=� 1g, with = being a power of two for the sake
of simplicity. Then we de�ne hierarchical partitions:

- 8
F =

n
< 9 2 "

�
�
�

=
F

� 8� 9Ÿ
=
F

� ¹8¸ 1º
o

The de�nition above implies recursive properties:

- 0
1 = "

- 8
F = - 28

2F ¤[- 28̧ 1
2F for 0 � 8Ÿ F �

=
2

- 8
= = f< 8g for 0 � 8Ÿ =

Using hierarchical partitioning, Algorithm 1 e�ciently enumer-
ates all universes with a single cut. It starts with computingReach¹� �
" º = Reach¹� � - 0

1º, the reachable nodes in a graph where all al-
lowed methods are removed. In each recursive step, givenReach¹� �
- 8

F º, it computesReach¹� � - 28
2F º andReach¹� � - 28̧ 1

2F º respec-
tively, by adding the complementary set of nodes to the graph and
continuing the search (see Figure 3).

Complexity.The theoretical worst-case run-timeO¹=2º remains
the same as for the naïve approach, since large parts of the graph
could be only discovered late in the computation tree. We expect
benign graphs to satisfyj Reach¹� º j � j Reach¹� � - º j 2 O¹j- jº in
the average case. Then, at each layer of the tree,O¹=º increases in
the reachability relation are accumulated. As the tree is balanced, it
hasO¹log¹=ºº layers. Therefore, we expect the average-case com-
plexity of this algorithm to beO¹= � log¹=ºº. Section 6 shows that

� � - 0
1

� � - 0
2 � � - 1

2

� � - 0
4 � � - 1

4 � � - 2
4 � � - 3

4

� � - 0
8 � � - 1

8 � � - 2
8 � � - 3

8 � � - 4
8 � � - 5

8 � � - 6
8 � � - 7

8

�

Figure 3: Incremental scheme: Updating the set of reachable
nodes after a decremental change is not computationally feasible.
Instead, we start with many cuts and incrementally continue the
graph search after adding methods back again in a hierarchical
manner. This allows us to e�ciently enumerate the reachable sub-
graphs for all possible single-method cuts.

this algorithm indeed performs better by orders of magnitude. An
additional speedup can be gained by applying a Branch-and-Bound
strategy.

Algorithm 1 EnumerateReach¹� � f < gº for all < 2 "

Require: � is a hypergraph," � + ¹� º
' Reach¹� � " º
Recursive(�• "• ')

function Recursive(�• -• ')
if - = f< g then

yield ¹<• ' º
else

- 0• - 1 split¹- º
for 82 f0•1gdo

9 1 � 8
' 0 IncrementalSearch (�• - 8• - 9• ')
Recursive(�• - 8• ' 0)

function IncrementalSearch (�• -• . • ')
Expects ' = Reach¹� � - � . º
Returns Reach¹� � - º

5 Implementation
In our implementation, we capture the static analysis results of
GraalVM Native Image, which produces standalone binaries for
Java applications that contain the application along with all its
dependencies [31]. GraalVM Native Image uses a static analysis
that determines a reachable universe to limit the amount of code
that needs to be compiled and shipped. We obtain our rule graph
via an instrumentation of its imperative analysis code.

ISSTA '24, September 16�20, 2024, Vienna, Austria Christoph Blumschein, Fabio Niephaus, Codruµ Stancu, Christian Wimmer, Jens Lincke, and Robert Hirschfeld

5.1 Extended Rule Graph
In principle, the graph generated by our concrete implementation
still follows the same structure as described in Section 3.2. We
extended it to deal with issues that typically occur when analyzing
real-world Java projects.

Additional Facts.In addition toMethodReachable ¹�º, we have
ordinary graph nodes that model more kinds of facts. These include
class and �eld reachability, types instantiated during build-time,
the e�ects of custom analysis plugins, and statically resolvable
re�ection usages.

Dynamic Language Features.Languages like Java provide certain
dynamic features which make sound analysis infeasible. GraalVM
Native Image already handles them with a combination of static
resolution in trivial cases, tracing concrete executions, and user-
de�ned con�guration. We introduce the respective facts and add
edges between them, where applicable. These facts might be con-
sidered entry points, e.g., if the user-de�ned con�guration speci�es
that a method should be accessible per re�ection. They can also
be integrated via incoming edges, e.g., if the analysis resolves a
trivial re�ection usage statically. The latter scenario is preferable,
as it captures dependencies more precisely, increasing our model's
capability to propose e�ective cuts.

Build-Time Initialization.In addition to Ahead-of-time (AOT)-
compilation, Native Image reduces startup time by executing class
initializers at build-time, if possible. The result of such early execu-
tion manifests in a build-time heap, which is persisted as part of the
resulting binary and, therefore, subject to the analysis, too. To make
these heap e�ects �t into our framework of facts and causal rules,
we employ a Java Virtual Machine Tool Interface (JVMTI) agent. It
tracks heap allocations and write operations during build time and
assigns the e�ects observed by the analysis to the responsible class
initializers.

5.2 Cut Tool
While our graph model allows us to compute the e�ects of cuts e�-
ciently, theCut Toolserves as the front end, enabling the developer
to interact with the model. It is implemented as a client-side-only
web application. The heavy lifting part, i.e., recomputing the anal-
ysis as described in Section 4, is done in a hand-written library
shipped to the client as a WebAssembly module.

We demonstrate how the Cut Tool can be used for debloating
using the Minecraft Server1 as a concrete real-world example. It is
used to host a multiplayer session for a game written in Java. Our
prior knowledge of the software is limited as we did not create it.

First, we played the game to generate coverage information. It
is not exhaustive, but it should be su�cient to prevent the Cut
Tool from suggesting overly aggressive cuts. After supplying the
coverage-enhanced rule graph to the Cut Tool, we see a user in-
terface mainly composed of two views: They both list the code
elements in their natural hierarchy, similar to the project overview
in an IDE. Elements of the hierarchy are modules, packages, classes,
and methods. The left panel o�ers elements that are available for
cutting. The right panel shows what is separated by the selected cut

1https://www.minecraft.net/de-de/download/server

(a) Cutting DedicatedServer.showGui() separates8”05MB.

(b) Additionally cutting MinecraftServer$$Lambda.accept() sepa-
rates 2”57MB.

Figure 4: The e�ect of cuts indicated in our Cut Tool.

set. Each element comes with a bar of a certain length. On the right
side, the bar of an element indicates the code size of all methods in
its subtree. On the left side, it indicates the code size of all methods
separated after cutting the element.

Cut View.The batched cut simulation scheme introduced in
Section 4.2 allows us to e�ciently compute the cut e�ectiveness for
all expanded elements on the left panel. By sorting them accordingly,
a developer can explore the ones that are most worth reconsidering.
When hovering over an element on the left side, the bars on the
right side are partially �lled in orange to show a breakdown of
code size reduction across the hierarchy (see Figure 4). Clicking
on an element on the left side can add it to the cut set. Then, the
code size reduction previewed on the right side in orange turns red
permanently. Additionally, the cut e�ectiveness is recalculated for
each element on the left side. It now considers how muchadditional
code would be removed if the element was added to the cut set.
The cut e�ectiveness often decreases, indicating that additionally
cutting an element is redundant given the current cut selection. Yet,
it can also increase if a synergy e�ect arises between the existing
cut selection and the potential new cut.

The Cut Tool also provides a button to compute the most e�ective
cut method. Conceptually, it automates the process of expanding
every element to �nd the method with the largest bar. Applying it
twice for the Minecraft Server yields two cut methods:

(1) DedicatedServer.showGui()
(2) MinecraftServer$$Lambda.accept()

Cut 1 separates8”05MBcode in the modulejava.desktop (see Fig-
ure 4a), while cut 2 separates an additional2”57MB (see Figure 4b).
Without the �rst cut, the second cut would only separate0”56 MB.

	Abstract
	1 Introduction
	1.1 Context
	1.2 Cut-Based Approach
	1.3 Contributions

	2 Background
	2.1 Directed Hypergraphs
	2.2 Call Graph Construction

	3 Capturing an Analysis Run in a Directed Hypergraph
	3.1 Rules
	3.2 Graph Model

	4 Analysis Recomputation with Cuts
	4.1 Finding Promising Cutsets
	4.2 Simulating Many Disjoint Cuts

	5 Implementation
	5.1 Extended Rule Graph
	5.2 Cut Tool

	6 Evaluation
	6.1 Projects
	6.2 Graph Collection Performance
	6.3 Analysis Recomputation Performance
	6.4 Effectiveness of Suggested Cuts

	7 Limitations
	8 Related Work
	8.1 Debloating
	8.2 Understanding Static Analyses
	8.3 Points-to Analyses

	9 Conclusions
	10 Data Availability
	Acknowledgments
	References

