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Abstract

Sequence-to-Sequence (Seq2Seq) neural text generation models, especially the
pre-trained ones (e.g., BART and T5), have exhibited compelling performance
on various natural language generation tasks. However, the black-box nature of
these models limits their application in tasks where specific rules (e.g., controllable
constraints, prior knowledge) need to be executed. Previous works either design
specific model structures (e.g., Copy Mechanism corresponding to the rule “the
generated output should include certain words in the source input”) or implement
specialized inference algorithms (e.g., Constrained Beam Search) to execute partic-
ular rules through the text generation. These methods require the careful design
case-by-case and are difficult to support multiple rules concurrently. In this paper,
we propose a novel module named Neural Rule-Execution Tracking Machine, i.e.,
NRETM, that can be equipped into various transformer-based generators to leverage
multiple rules simultaneously to guide the neural generation model for superior
generation performance in an unified and scalable way. Extensive experiments
on several benchmarks verify the effectiveness of our proposed model in both
controllable and general text generation tasks.

1 Introduction

Transformer-based neural language models (LMs), such as GPT/BART [1–3], have led a wave of new
trends in natural language generation, producing texts of prominent quality. They are trained roughly
on huge amounts of text corpora to reconstruct the full sentences (i.e., next coming tokens and missing
text fragments). Despite their success in varieties of NLP tasks, we argue that the black-box nature of
these models leads to inefficiently learning to follow constraints and incorporating prior knowledge.

In controllable text generation, most relevant studies [4–6] focus on controlling high-level text
attributes (e.g., topic, sentiment) or simply keyword/phrase. More complex fine-grained control
constraints such as “generate a sequence of tokens with ‘apple’ in the first sentence which has 15
words and ‘orange’ or ‘oranges’ in the fourth sentence” are less explored. A very recent work [7]
reveals that large-scale LMs do not learn to obey the underlying constraints reliably, even in a
quite simple constrained generation task (cover all the given keywords without hallucinating new
ones). In general text generation, existing works on various tasks reveal the benefit of incorporating
task-specific prior knowledge: machine translation [8] (e.g., each source phrase should be translated
∗Work done during the internship at Microsoft STCA.
†Corresponding author: Daxin Jiang (djiang@microsoft.com).
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into exactly one target phrase), text summarization [9] (e.g., the lead bias: front loading the most
salient information), dialogue generation [10] (e.g., humans tend to repeat entity names or even long
phrases in conversation). However, they either need designing specific model architectures (e.g.,
Coverage Mechanism and Copy Mechanism) or devising well-designed learning objectives (e.g.,
GSG [11]). These methods require careful design case-by-case and are difficult to combine multiple
arbitrary prior knowledge simultaneously.

Motivated by the above research dilemma, we take the first step towards building an unified framework
to handle all of the above control tasks simultaneously by proposing a novel module Neural Rule-
Execution Tracking Machine (NRETM) 3 Specifically, NRETM is a trainable neural module that can be
equipped with transformer-based sequence-to-sequence pre-trained LMs. It can handle constraints in
any Predicate Logic Formula, which crucially includes the arbitrarily complicated relations among
different control tasks. For example, the above fine-grained constraint can be written as:(

InSen(apple, 1 ) ∧ Len(1 , 15 )
)
∧
(
InSen(orange, 4 ) ∨ InSen(oranges, 4 )

)
To build NRETM, we combat three major challenges: i) modeling the complicated relationships among
control tasks and the logic operators (i.e., ∧, ∨) in the constraint expressions; ii) an unified control
system is required to execute different control tasks simultaneously and iii), the control signals
for different control tasks should be properly aligned with the constraint expressions. NRETM uses
the encoder of transformer-based pre-trained sequence-to-sequence LMs to model the relationship
between control tasks and the logic operators. NRETM completes different control tasks via non-
differential Logic Trackers (empowered by executable programs) in an unified control progress
system during the decoding process. Finally, the encoded constraint expressions and control progress
signals are combined together in the transformer decoder. NRETM is fine-tuned with the pre-trained
LMs (except logical trackers) to follow the control progress signal and predicate logic formula.
NRETM reconciles symbolic computing (that has precise logic and numerical calculation capabilities
from logic trackers) with neural language generation (that has an exceptional ability of wording and
phrasing), which results in both the accurate controllability and the superior generation performance.

For evaluation, we select three representative benchmarks because all of them involve constraints
or prior knowledge, allowing us to verify the effectiveness of our proposed NRETM model: ROCSto-
ries [12] are five-sentence stories with complicated predicate constraints over the story structure;
Commonsense Generation task [13] with the constraints of mentioning all input concepts; TED15
Zh-En document-level machine translation benchmark [14] with prior knowledge of translating input
sentences one by one.

Our contributions in this work are three-fold: (1) To the best of our knowledge, we are the first
to propose a general framework that incorporates control signal and prior knowledge, formulated
as predicate logic constraints, into transformer-based seq2seq text generation models; (2) We train
(or fine-tune) the transformer-based seq2seq text generation models to follow the predicate logic
constraints(i.e., control signal or prior knowledge) by dynamically updating the rule execution
intermediate progress value to the text decoder; and (3) Empirical verification of the effectiveness of
the proposed approach on three benchmarks.

2 Approach

This section first formalizes fine-grained content control task, then introduces an overview of proposed
NRETM model, followed by diving into details of each component.

2.1 Fine-Grained Content Control

In this work, we focus on fine-grained content control task where the model input consists of predicate
logic constraints x = [x1, . . . , xlx ] ∈ X that should be satisfied in the outputs and optional context
input c = [c1, . . . , clc ]. The encoder takes concatenation of x and c (i.e., [c;x]) as input. At decoding
step t, the decoder take y:t = [y1, · · · , yt] ∈ Y as input and generate yt+1.

3Our Source Code can be found in https://github.com/GaryYufei/NRETM
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Figure 1: An overview of NRETM. Boxes are trainable neural components and boxes are non-
differentiable symbolic components. The predicate logic constraints are modeled as follows: 1) the
transformer encoder handles the relationships among the predicates and basic logic operators; 2)
Logic Tracker keeps track of the control progress of all predicates simultaneously; 3) the encoded
expression and control progress are combined in the transformer decoder to guide NRETM to satisfy
the constraints.

2.2 Predicate Logic Constraint

We define predicate U(a, y) as a boolean function that indicates whether output y has satisfied control
task a including: a) Discrete values (e.g., total length, stop word counts); b) Continuous Values
(e.g., copied word ratio); c) lexicons (e.g., copying particular words/phrases). In this paper, our
proposed model accepts predicate logic constraints in Conjunctive Normal Form (CNF):

(
U1 · · · ∨

Ui

)
∧ · · · ∧

(
Uk · · · ∨ Un

)
. Each predicate logic constraint includes multiple predicates Ui and basic

logic operators (e.g., ∨, ∧ and brackets).

2.3 Neural Rule-Execution Tracking Machine

NRETM can be equipped into transformer-based sequence-to-sequence LMs. Figure 1 illustrates an
overview of our neural rule-execution tracking machine (NRETM). To enable LMs to follow predicate
logic constraints, it is essential to 1) model the complicated relationships among predicates and basic
logic operators; 2) control multiple predicates (i.e., control tasks) in the constraints simultaneously; 3)
combine the control signals with the predicate logic constraint expressions. For 1), we treat the whole
constraint expressions as natural language sentences and feed it into the transformer encoder. For 2),
we propose a set of unified control signals that can be used to dynamically describe the step-wise
execution progress of different predicates. For 3), we represent the control signals as relative position
embedding and align them with encoded constraints expressions in the transformer decoder.

2.3.1 Encoding Predicate Logic Constraints

Given predicate logic constraint expression x = [x1, . . . , xlx ] where xi either corresponds to a
predicate Ui or a basic logic operator, we feed x into the transformer encoder. Due to the tokenization
strategies of pre-trained LMs, each xi may be tokenized into a continuous token sequence. x is
tokenized into t = [t1, · · · , tlt ] where lt ≥ lx and there exists one-to-one mapping m(ti) = xj . We
use he to denote the encoder output of x. As pre-trained LMs is trained with significant amount
of natural language sentences, it should encode complicated sequential relationships within the
constraints expressions.

2.3.2 Mentoring Control Progress

Specialized controlling components (e.g., Constrained Beam Search [15] and Copy Mechanism [10])
can only be used for limited control tasks. To enable unified controlling system, we propose to
complete control by mentoring control progress. We describe the control progress of different
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Figure 2: A running example of our NRETM model with three logic constraints (i.e., Copy(car) &
SWR(snow) & Length(2,9); The output should include “car” and its stop word ratio should be 0.5.
The length of second sentence should be 6. The words are stop words.

predicates using an unified progress state system. Each predicate Ui has a corresponding Logic
Tracker QUi(y), which is a non-differentiable executable program (i.e., written by Python) and takes
current generated outputs and returns one progress state at each generation step, formulated as follows:

QUi
(y) =


S0 Ui is ∅
S1 Ui is not triggered in y

(S2,V) Ui is in progress in y
S3 Ui is satisfied in y

(1)

where State S0 always is assigned to non-predicate ∅ (i.e., basic logic operators in the constraint
expression); State S1 means the tracking for predicate Ui is not triggered in y. For example, when
controlling the stop word counts of the second sentence, the Logic Tracker returns S1 when the LMs
are generating the first sentence; State S2 means predicate Ui is in progress and V is the optimal
intermediate value that allows fine-grained tracking. For example, in generation length control, V
could be total target length minus the current length informing pre-trained LMs the number of words
left to satisfy the constraint; State S3 means Ui is satisfied in y. In short, Logic Tracker unifies
different predicates by returning the same set of control signals.

Global Or-Clause Update: Each Logic Tracker traces the execution progress of its corresponding
predicate Ui independently. This independent tracing strategy works well in the And-Clause because
all involved predicates are required to reach State S3. However, only a subset of predicates are
required to reach State S3 in the Or-Clause. Our preliminary experiment shows that the independent
tracing strategy trains the model not to complete the constraints. To solve this issue, we propose
to update the status of all predicates in the same Or-Clause to State S3 when one of the predicates
reach State S3. This forces all predicates finish themselves in State S3 and improves the constraint
satisfaction ratio in the Or-Clause.

Control Progress Matrix: Given the predicate logic constraint expressions t = [t1 · · · , tlt ], we
further define Control Progress Matrix S to align the predicates with their control progress signals
returned by Logic Trackers:

S = [C(t, ε); C(t,y:1); · · · ; C(t,y:t)] (2)
C(t,y:t) = [v(t1,y:t), · · · , v(tlt ,y:t)] (3)

where ε is the empty string at first decoding step. S is a two-dimensional matrix where each row
describes the control progress of all tokens in t at a single decoding step and each column describes
the control progress of a single token in t along all decoding steps. Recall that basic logic operators
in predicate logic constraint expressions do not require control progress tracking. Each cell Si,j in S
is formulated as:

Si,j = v(ti,y:j−1) =

{
Q∅(y) m(ti) = xk and xk is a basic logic operator
QUq (y) m(ti) = xk and xk is a predicate Uq

(4)

Example: In Figure 2, we are given three logic constraints, a) copy “car”; b) the stop word ratio of
the output should be 0.5 and c) the length of second sentence should be 6. The basic logic operators
& are assigned with S0. Length control and Stop Word Ratio maintain intermediate values (e.g., the
residual Length and Stop Word Ratio). The length control is assigned with S1 when generating the
first sentence because it will only be triggered in the second sentence. Copy control does not have
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intermediate values and its State are updated from S2 to S3 only when the corresponding words (at
step 10 in our example) appear in the y:t.

Control Progress Matrix Encoder: Control Progress Matrix S aligns the results from Logic Tracker
with the encoded predicate logic constraint expressions. However, S is a non-differentiable symbolic
matrix with each cell Si,j being discrete symbol S0 to S3 combined with additional numbers (i.e.,
V ). As the encoder has already captured the inter-relationship in the predicate logic constraints, we
only model each cell Si,j independently. To support various types of predicates, We treat Si,j as a
string and encode it using a single-layer transformer-based encoder ShallowEncoder which shares
the same vocabulary and word embeddings as the pre-trained LMs:

hs
ij = ShallowEncoder(Si,j) (5)

h̄s
ij = MeanPooling(hs

ij) (6)

where hs
ij ∈ Rlsij×d, h̄s

ij ∈ Rd and lsij is the length of the tokenized Si,j and d is the hidden size of
ShallowEncoder. We use h̄s to denote the neural representation of whole S.

2.3.3 Combining Predicate Logic Constraint with Control Progress Matrix

Finally, we combine the encoded Predicate Logic Constraints he with the encoded Control Progress
Matrix h̄s in the transformer-based pre-trained LMs. Injecting h̄s into the transformer encoder would
result in encoder content re-computation at each decoding step and stop the standard parallel training
for transformer-based decoders. In addition, as Control Progress Matrix incrementally increases as
the decoding goes on, it is reasonable to equip h̄s into the transformer decoder. Given the encoder
output he, decoder input y:t, the probability of the next token yt+1 can be calculated by:

hd
t = KV(Ws

qy:t,W
s
ky:t,W

s
vy:t (7)

ot+1 = CrossKV(Wc
qh

d
t ,W

c
kh

e,Wc
vh

e) (8)

p(yt+1|x1:lx , y1:t) = softmax(Wo ot+1) (9)

where ot+1 ∈ Rdc is the hidden state at step t with dc the hidden size, and Wo ∈ R|V |×dc , Both
KV and CrossKV are the standard key-value self-attention described in [16]. In the CrossKV
which takes hd

t and he as input, the resulting attention score matrix has the same size as S, making
CrossKV suitable to incorporate our Control Progress Matrix.

Control Progress Matrix as Relative Position: Inspired by [17] which incorporates token relative
positions into the self-attention module, we propose to inject Control Progress Matrix as the “relative
positions” between encoder output he and current decoder input y:t in the cross-attention (Eq. 8)
module. Following this approach, we linearly project each h̄ij into Control Progress Matrix key
h̄k
ij = Wf

k · h̄ij + bf
k and Control Progress Matrix Value h̄v

ij = Wf
v · h̄ij + bf

v . All transformer
decoder layers share the same representations. Eq. 8 is changed to:

ot+1 = R(Wc
qH

d
t ,W

c
kH

e,Wc
vH

e, h̄k, h̄v) (10)

where Rlx×t×d and R is the Self-Attention function with relative position, defined as follows:

R(q,k,v,mk,mv)j =

lx∑
i=1

ai,j(vi + mv
i,j) (11)

where a∗,j = Softmax (e∗,j) and ei,j = qj(ki + mk
i,j)

T d−1/2.

2.4 Why NRETM Could Satisfy Constraints

A powerful implicit compulsion comes from the combined force of two aspects: 1) before generating
the EOS token (i.e., End-Of-Sequence Token), all the predicate constraints should be satisfied. As
demonstrated in Fig 2, all elements in Control Progress Matrix are set to “satisfied” (i.e., S3) at EOS
position; 2) The pre-trained LMs are trained to generate text with limited length. Such a soft way of
combining symbolic operators (good at logical and mathematical calculations ) and neural operators
(good at wording and phrasing) can retain their respective strengths to the utmost extent.
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2.5 What If NRETM Fails to Satisfy Constraints

NRETM does not forces the pre-trained LMs to execute the hard constraints on the text decoder
explicitly, but instead, provides Control Progress Matrix as input features describing rule execution
intermediate values to the text decoder. That is, no explicit effect when NRETM fails to satisfy the
constraints. It is possible that our text generators decide to stop the generation before completing all
constraints. In our experiments, NRETM has less than 1% chance not to complete all constraints.

2.6 The Generalization Ability of NRETM

The generalization ability of NRETM comes from two aspects: 1) NRETM can construct new constraints
via combining pre-trained predicates with basic logic operators in arbitrarily complicated ways; 2)
To expand a new predicate, users only need to implement the corresponding Logic Trackers, which
returns S1-S3 and intermediate values, via executable programs.

3 Experiment

We test our proposed NRETM on the controllable text generation and general text generation tasks.
For controllable text generation, we verify NRETM on the complex fine-grained control instructions
in the ROCStories Benchmark [12]. Further, we test NRETM on the general text generation tasks,
commonsense generation and document-level machine translation, to show that NRETM can efficiently
integrate prior knowledge into seq2seq models towards superior generation performance.

Table 1: Controllable ROCStories Experiment Results.

Predicate Logic Constraint M CSR RL BS B1 B2

∧4i=1

(
InSen(wi, y

pi)
) T5 94.6 56.1 91.7 52.5 27.7

NRETM 97.6 56.0 91.7 52.1 27.5

Copy(w1) ∧3i=1

(
Order(wi, wi+1)

) T5 95.6 55.5 91.5 51.4 26.5
NRETM 98.3 55.6 91.4 47.5 25.0

∧2i=1

(
InSen(wi, y

pi) ∧ Len(ypi , lpi
)
) T5 15.0 33.0 87.8 38.6 11.5

NRETM 78.8 33.1 87.8 38.4 11.5

InSen(w1, y
p1) ∧ InSen(w2, y

p2) ∧ (¬InSen(w3, y
p2))

∧(Len(yp1 , lp1
) ∨ SWC(yp1 , sp1

))

T5 32.4 33.2 87.8 36.1 11.8
NRETM 70.0 32.7 87.7 36.9 11.7

∧2i=1

(
InSen(wi, y

pi) ∧ (Len(ypi , lpi) ∨ SWC(ypi , spi))
) T5 18.7 33.2 87.9 37.6 11.5
NRETM 64.7 33.2 87.9 38.5 11.7

3.1 Controllable ROC Stories

ROCStories is a corpus of five-sentence stories that capture a rich set of causal and temporal
commonsense relations between daily events. Following [18], we extract key phrases from the
ground-truth stories. To show the ability of NRETM in executing complex predicate logic instructions,
we design multiple predicate logic constraints and feed them as input to NRETM.

Predicate Logic Formulation As shown in table 1, five constraints with increasing difficulties are
used: (1) Generate a story with storyline wi in the pith sentence. (2) Generate a story with an ordered
storyline w1, · · · , w4 (3) Generate a story with storyline wi in the pith sentence which has lpi

words
(i = 1, 2). (4) Generate a storyline w1 in the p1th sentence which has lp1

words or sp1
stop words

and w2 in the p2th sentence that does not mention w3 (5) Generate a storyline wi in the pith sentence
which has lpi

words or spi
stop words (i = 1, 2).

Baselines and Metrics Both baseline and NRETM use T5-Base model [19]. We report Constraints
Success Ratio (CSR), the ratio of stories that completely satisfy the given constraints. We additionally
report ROUGE-L (RL), BERT-Score (BS), BLEU-1/4 (B1/4) to show the generated stories quality.
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Main Results As shown in Table 1, in all five predicate logic constraints, compared to the T5 model,
the NRETM model achieves higher Constraint Success Ratio and maintains a similar level of ROUGH-
L, showing that the NRETM model can be flexibly controlled without loss of generated text quality.
The gap in CSR between the T5 and NRETM model is moderate in the first two constraints with simple
token permutations. However, the success ratio of T5 model drops significantly given constraints that
requires long-range numerical tracking (e.g., sentence length and the count of stop words).

3.2 Commonsense Generation

COMMONGEN is a generation benchmark dataset target explicitly test machines for the ability of
generative commonsense reasoning. Given a set of common concepts the task is to generate a coherent
sentence describing an everyday scenario using these concepts.

Predicate Logic Formulation The input is an unordered set of n concepts x = {xi}ni=1. From the
expectation of COMMONGEN, one easily obtained prior knowledge is that each xi must appear in
output y. The corresponding predicate logic constraint Pc is:

Pc = ∧ni=1

(
Copy(xi)

)
where y will appear by default, for the sake of brevity, we have omitted y in predicate Copy.
Another prior knowledge comes from the observation that generating y requires giving the correct
morphological inflections of the concept word rather than copy it as it is. Let x̃i = {x̃ik}

|x̃i|
k=1 denote

all inflections of xi. y covers concept xi, if at least one of {x̃ik}
|x̃i|
k=1 appears. The constraint P̂c is:

P̂c = ∧ni=1

(
∨|x̃

i|
j=1 Copy(x̃ij)

)
Baselines and Metrics We experiment with T5-Base and T5-Large. We equip NRETM into the T5-
Large and T5-Base model to incorporate Pc and P̂c respectively (+ NRETM Pc) (+ NRETM P̂c). Grid
Beam Search (GBS) [20] (+ G) is a well-designed decoding method that ensures the generation
model satisfies the lexical constraints. We only apply GBS to the T5-Base model due to the memory
constraint. Following the suggestions in [13], we use CIDEr [21] and SPICE [22] to automatically
assess the quality of generated texts. We calculate constraint satisfaction for all constraints (ALL),
novel constraints (Novel) and seen constraints (Seen).

Main Results Table 2 shows that the NRETM model improves the constraint satisfaction over the
baselines for all cases, achieving close to 100% (i.e., 99.5% and 99.2%). While GBS achieves perfect
constraint satisfaction (i.e., 100%), doing so significantly degrades the output text quality (more than
50 CIDEr), indicating the necessity integrating prior knowledge in training rather than inference.
In addition, both prior knowledge Pc and P̂c have a positive effect on our model, improving our
T5-large baseline by 3.1 and 5.0 CIDEr score, respectively. Finally, our T5-Large + NRETM P̂c model
outperforms the previous state-of-the-art result [23], which integrates the ConceptNet [24] into the
BART model, suggesting that our incorporated task-specific prior knowledge could be as powerful as
knowledge from large-scale hand-crafted corpus. All of the above shows how potential it is to find a
method that could execute multiple rules effectively.

3.3 Document-Level Machine Translation

Document-level machine translation tasks is a general text generation task, where the goal is to
translate segments of text (up to an entire document). Following [14], we use TED15 Zh-En (from
IWSLT 2014 and 2015 [25, 26]) as training and validation set and 2010-2013 TED as the test set.

Predicate Logic Formulation The input is an ordered set of n sentences in the source language that
form a document x = {xi}ni=1, the expected output is a translated document y = {yi}ni=1 = in the
target language. We observed that neural model is prone to sentence correspondence confusion (the
ith sentence in source document is translated as the jth sentence in target document) when doing
document-level translation. To alleviate this problem, we propose incorporating Doc-mBART25 with
prior knowledge: each source sentence should be translated only once. It is formulated as:

TranslatedOnce(xi) =

{
2 θ(y:t) > i
1 θ(y:t) = i
0 θ(y:t) < i

(12)
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Table 2: Experiment Results on Commonsense.

Constraint
Method BS B1 B4 C S

Seen NovelALL

T5-Base 94.5 71.3 29.2 159.4 31.9 92.9 90.1 92.7
T5-Base + NRETM Pc 94.6 72.5 30.3 163.8 32.4 94.6 93.6 94.6
T5-Base + NRETM P̂c 94.5 74.2 29.3 167.7 33.2 99.4 99.6 99.5

T5-Large 94.8 73.0 32.4 170.3 33.1 94.8 92.4 94.6
T5-Large + NRETM Pc 94.8 74.3 32.1 173.4 33.5 97.8 96.9 97.8
T5-Large + NRETM P̂c 94.8 74.8 32.6 175.3 34.3 99.2 99.0 99.2

T5-Base + G 92.8 58.6 40.2 110.7 27.8 100 100 100
T5-Large + NEUROLOGIC 94.8 73.2 32.3 169.7 32.3 99.1 98.8 99.0
KGBART [23] - - - 168.3 32.7 - - 98.6

where θ(·) returns the line number of yt in y, as t is monotonic during generation, the status only set
to be 2 once. To trace the sentence translation progress, we add an additional End-Of-Sentence token
at the end of each sentence to the training data. Once NRETM finishes the ith sentence (generating
an end-of-sentence token) in the decoder, we assume that the ith sentence in the encoder has been
translated. The predicate logic constraint Pc of this task can be formulated as:

Pc = ∧ni=1

(
TranslatedOnce(xi)

)
Baselines and Metrics We combine our NRETM Pc component with the Doc-mBART25 model
proposed in [3] which is a state-of-the-art multilingual pre-trained language model. We compare
this model with the state-of-the-art non-pretraining and pretraining approaches, including HAN
(Hierarchical Attention Networks) [14], Doc-mBART25 and Sen-mBART25 proposed in [3]. When
implementing our model, we use the same pre-processing method, blocks segmentation strategy and
beam search setting as [3]. TED15 Zh-En provides sentence-to-sentence translation from Chinese
to English. We use both document-level (d-BLEU) and sentence-level (s-BLEU) to measure the
similarities between generated target document and the source document. We also report Sentence
Aligned Ratio (SAR), the ratio of source and target documents with the same sentence count, to show
the effectiveness of our control over this translation prior knowledge.

Table 3: Model Performance on TED15 Zh-En Test.

Model s-BLEU d-BLEU SAR

Doc-mBART25 + NRETM Pc 24.9 30.4 100 %

Doc-mBART25 [3] 23.8 29.6 98.7 %
Sen-mBART25 [3] - 28.4 -

HAN [14] - 24.0 -

Main Results Table 3 shows that the NRETM
Pc component helps the Doc-mBART25
model to better capture the sentence-level
corresponding relationship between the
source and target documents. In particular,
sentence-level alignment ratio is improved
from 98.7% to 100%. The improvement in
s-BLEU (+ 1.1 BLEU) also confirms that
our final Doc-mBART25 + NRETM Pc model
learns to translate sentences based on the
sentence order in source documents.

3.4 Discussion

Updating Progress in Encoder In Sec 2.3.3, we incorporate the Control Progress Matrix as relative
position embeddings in the decoder. To show the importance of this design choice, we conduct
an ablation study in Table 4 where the row of Control Progress Matrix is concatenated with the
encoder output. We find that updating the rule execution progress information with the encoder output
contributes little to improve the CSR. This shows that simply extracting rule execution intermediate
values is not enough. This could be because the encoder that encodes the rule execution intermediate
values cannot effectively broadcast this information into text decoders.

NRETM Robustness The above experiment results are based on the perfect training data. In this
section, we explore the effect of training data noise. We corrupt the training data by replacing the
input commonsense keywords with a random sampled one under the probability 5%, 10%, 15%,
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Table 4: Updating Rule Execution Progress with Encoder Output

Constraint (1) (2) (3) (4) (5)

Model RL CSR RL CSR RL CSR RL CSR RL CSR

NRETM 56.0 97.6 55.6 98.3 33.1 78.8 32.4 70.0 33.2 54.7

enc-update XX XX XX XX XX XX XX XX XX XX

25%, and 50% (Validation and Test Split remain unchanged). As shown in Table 5, in all noise levels,
NRETM successfully achieves higher constraint coverage (i.e, Cons) and CIDEr score than the T5
baseline model, showing that NRETM is robust to the training data noise. It is worthwhile to note
that the main goal of NRETM is to incorporate constraints that are satisfied by the training data into
transformer-based seq2seq text generators. It is reasonable to assume that in practice, the noise level
should be relatively low (e.g., 0% - 10%).

Table 5: NRETM performance on Commonsense Test Split under different noise levels.

Noise 0% 5% 10% 15% 25% 50%

Model C Cons C Cons C Cons C Cons C Cons C Cons

T5 170.3 94.6 168.8 93.3 168.0 93.7 163.8 92.9 160.7 91.3 102.0 66.7

NRETM 175.3 99.2 169.5 96.5 168.5 96.2 167.1 94.6 161.2 92.4 149.7 87.4

Table 6: Novel Sentence Index Ex-
periment. MR for Mention Ratio.

model CSA MR RL

T5 19.7 95.7 30.0

NRETM 97.7 98.3 33.3

Zero-Shot Execution In Table 1, we show that the pre-trained
language model T5 cannot handle complicated and fine-grained
constraints even after fine-tuning. Here, we further demonstrate
that NRETM model is capable to handle zero-shot rule execution.
We train the T5 and NRETM model to only mention keywords in
the 3rd, 4th and 5th sentence and test these models to mention
keywords in the first and second sentence of the whole story. As
shown in Table 6, although both T5 and NRETM model mention
most of the keywords (95.7% and 98.3% respectively) in the
generated story, the T5 model only mention 19.7% of keywords
in the correct sentence and the NRETM model makes 97.7% of keywords correct. This is becuase the
T5 model cannot recognize the novel sentence index (i.e., the first and second) during the generation.
The logic tracker helps the NRETM model to generalize to handle these cases.

Table 7: Inference Time On Com-
monsense Generation Task Test
Split (in minutes).

Model Baseline +NRETM +GBS

T5-Base 1.05 2.27 84

T5-Large 1.32 2.6 -

Running Efficiency We compare the inference time (in min-
utes) for NRETM on the test split of commonsense generation
task in Table 7. All models use the beam search decoding
algorithm with beam size 5. Adding NRETM components
to T5-Base and T5-Large approximately double the inference
time. While the Grid Beam Search (GBS) algorithm uses a
much longer inference time. Compared to existing constrained
decoding approaches, NRETM uses much less computational
costs.

4 Related Work

NRETM is mainly related to two lines of research work in text generation: constrained decoding
and prior knowledge integration. Early work in constrained decoding can be traced back to dual
decomposition and lagrangian relaxation [27, 28]. These works focus on sequence labelling and
parsing problems where the solution space is relatively small (i.e, less than 100 tags per step),
compared to text generation tasks (i.e, over 10,000 words per step). Research efforts in text generation
tasks [29–31] involve controllable generation methods where the generators are trained on text data
with the labeled target attributes. CTRL [4], PPLM [6] and CoCon [32] are recent approaches that
built on the transformer-based large-scale pretrained LMs, they pay more attention on controlling high-
level attributes,phrases and keywords. While NRETM focuses on controlling text generation to follow
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arbitrary logical constraints, leading to a fine-grained control. Recently, GDC [33] permits to specify
both pointwise and distributional constraints over the target LMs. Very recently, NEUROLOGIC [7]
was proposed to generate fluent text while satisfying complex lexical constraints (in a predicate logic
form). There are three main differences between NRETM and NEUROLOGIC: 1) NEUROLOGIC
only provides control constraints over the text generators. Instead, NRETM is a general framework that
provides control constraints (e.g., copy or not copy words) and prior knowledge (e.g., translating
sentences one by one). NEUROLOGIC can be viewed as a special case of NRETM; 2) NEUROLOGIC
is an inference-only algorithm that only controls the model to generate or avoid specific words or
phrases at decoding time; while NRETM fine-tunes the pre-trained transformer-based seq2seq text
generators with the predicate logic constraints; 3) NEUROLOGIC only supports the “copy” predicate
(i.e., to generate or not to generate specific words or phrases), while NRETM is a general framework
that supports various control predicates. NRETM supports 6 kinds of logic operators in this paper, and
it is also possible for users to expand new logic operators. Existing efforts [34–38] to incorporate
prior knowledge into sequence-to-sequence framework either resort to modifying model architectures,
including adding external memory components, specialized decoding method or designing training
objectives, including minimum risk training. These methods usually can only support to inject one
narrow type of knowledge into the neural models. To the best of our knowledge, we first attempt to
formalize the prior knowledge integration in seq2seq generation as text generation that conforms to
predicate logic constraints.

5 Conclusion and Future Work

In this paper, we propose a unified controllable generation framework that leverages predicate
logic constraints to implement efficient complex fine-grained control and scalable prior knowledge
integration. We explore and compare two controllable strategies: dynamic tracking and static strategy,
and show that the proposed dynamic tracking mechanism significantly outperforms the static ones.
Empirical results on three benchmarks indicate that NRETM could achieve accurate control and exhibits
a superior generation ability over different tasks. Pre-trained models have been the dominant paradigm
in natural language processing, and researchers resort to massive data and large-scale models to
improve performance. We unify the rules used in various tasks into the form of predicate logic,
provide the possibility to pretrain models on massive rules. In the future, we will explore pre-training
large-scale neural rule-execution machine with massive rules and data.

Broader Impact

Our work proposes a unified and scalable approach to efficiently perform fine-grained controllable
text generation and incorporate multiple prior knowledge for superior text generation performance.
This work uses story generation, machine translation, commonsense generation as applications to
verify the effectiveness. However, while our proposed method achieves promise performance on
several benchmarks, deployment of our method in the real world requires a careful analysis of
potential societal benefits and harms (e.g., the harms associated with furthering negative stereotypes
against certain vulnerable groups). The potential ethical issues include: powerful language models
might be used to generate abuse, faked or misleading content in the news or on social media; they
might pose safety concerns if they are used to generate harassing or hateful materials. In order
to mitigate these risks, it is possible to use AI systems to fight against misleading content and
harassing material. However, as discussed in previous work [39, 40], mitigating these risks could be
an extremely complex socio-technical problem that many are working to understand and solve.
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Appendix

In this Appendix, we provide more details and examples for our proposed NRETM models. A.1
provides the case study for three evaluation tasks. A.2 provides the definitions of six predicates used
in this paper. A.3 provides some more analysis about predicate logic constraint and state flag as well
as the actual state flag matrix used in the Commonsense Generation task (Sec 3.2) and Document-level
Machine Translation task (Sec 3.3). A.4 provides more results regarding the controllable ROCStories
Generation Experiments (Sec 3.1). Finally, A.5 provides implementation details of our models.

5.1 Case Study

In this case study, we select representative examples from our T5 baseline and NRETM models. The
Logic expression is the actual predicate logic constraints that we use in the model. The Input
expression is the actual string that we feed into the T5 model simply because T5 vocabulary does not
include ∧, ∨, and ¬.

Table 8: Generated examples of the T5 and NRETM model for the story generation task.

Task 1: Story Generation

Input expression: Order(hated, stupid) & Order(stupid, insulting) & Order(insulting, punched)
Logic expression: Order(hated, stupid) ∧ Order(stupid, insulting) ∧ Order(insulting, punched)

T5: I had a crush on a man. I told him I was stupid. He hated me for insulting me. I
punched him in the face. He told me i was stupid.

NRETM: I had a crush on a guy. He was very rude. He hated me because i thought he was stupid
and insulting me. I punched him in the face. He slapped me.

Input expression: InSen(walking around, 2) & InSen(school yard, 2)
Logic expression: InSen(walking around, y2) ∧ InSen(school yard, y2)

T5: I went to the park today. I was walking around the school yard. I saw a squirrel in the
yard. I saw a squirrel in the yard. I took a picture of the squirrel.

NRETM: Sam was playing in the yard. He was walking around in the school yard. He saw a
squirrel in the yard. He ran into the squirrel. Sam was able to retrieve the squirrel.

Input expression: InSen(waitressing job, 3) & (Len(3, 16) || StopWordCount(3, 8)) & (not
InSen(tenacity, 3)) & InSen(talent agent, 4)

Logic expression: InSen(waitressing job, y3) ∧ (Len(y3,16) ∨ StopWordCount(y3,8)) ∧ ( ¬
InSen(tenacity, y3)) ∧ InSen(talent agent, y4)

T5: Sarah had a crush on a girl named Sarah. Sarah s crush was Sarah’s boyfriend. Sarah’s
boyfriend had a waitressing job and Sarah had a crush on Sarah . Sarah s boyfriend
was a talent agent. Sarah’s crush was sarah’s boyfriend.

NRETM: Sarah wanted to be a chef. but she didn’t have the money to make a living. She applied
for a waitressing job but she did n’t get a job at all . Sarah was approached by a talent
agent. Sarah was hired and now she is a chef.

Input expression: InSen(longest grocery trip, 1) & Len(1, 12) & InSen(line forever, 4) & Len(4, 9)
Logic expression: InSen(longest grocery trip, y1) ∧ Len(y1, 12) ∧ InSen(line forever, y4) ∧ Len(y4, 9)

T5: Sam was on the longest grocery trip of his life. He was so hungry he couldn’t wait to
get to the store. When he got to the store he had to wait in line forever. Sam had to wait
in line forever for his next grocery trip.

NRETM: I was on the longest grocery trip I ever went on. I had to wait in line for a long time.
When I got there the line was long. I had to wait in line forever again. I was so glad I
finally got to the store

Input expression: InSen(could buy one, 2) & (Len(2, 13) || StopWordCount(2, 6)) & InSen(would
work, 4) & (Len(4, 10) || StopWordCount(4, 7))

Logic expression: InSen(could buy one, y2) ∧ (Len(y2, 13) ∨ StopWordCount(y2, 6)) ∧ InSen(would
work, y4) ∧ (Len(y4, 10) ∨ StopWordCount(y4, 7))

T5: I needed a new computer. I asked my mom if I could buy one. She said yes. I asked her
if it would work for me. She said yes

NRETM: I needed a new computer. I went to the store to see if I could buy one. I went to the
store to buy a computer. I found a computer that would work for me. I bought the
computer and was very happy.
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Table 8 shows selected examples in Controllable ROCStories Generation task. This task is to show the
controllability of our proposed NRETM model. Sentences in red are the ones being controlled. In the
first story, the T5 baseline model produces a short sentence and misses the order of storyline "stupid"
which should appear after generating the storyline "hated". While our NRETM model successfully
completes all storylines in order. In the second story, the NRETM model controls the story generation
in a more coherent way than the T5 baseline model. Although both baseline and NRETM model
successful incorporate all given storylines, the T5 baseline model inconsistently generates “school
yard” just after generating the “park”. On the contrary, in the story generated by the NRETM model,
Sam consistently stays in the “yard”. In the third story, the length and stop word control force
the NRETM model to generate sentences with more details, while the T5 baseline simply repeats
information from previous sentences. The NRETM model successfully generates eight stop words
in the third sentence, whereas the baseline model only generates six stop words (highlighted via
underline). In addition, the generated story from the NRETM model has more rational plots than the
one from the T5 model. In the fourth story, the length of the first and fourth sentences are controlled
to be 12 and 9. The outputs of NRETM model successfully obey these control constraints while the
baseline model generates 11 and 13 tokens for the first and fourth sentences. In the last story, the
second sentence generated by the NRETM model successfully generates six stop words (highlighted
via underline). For this task, we are more concerned about the expression rate of predicate logic
control constraints than the quality of the generated story. In addition to the case study, we have
shown more quantitative analysis, and please refer to Sec. A.4 for details.

Table 9: Generated Example of the T5 and NRETM model in the Commonsense Generation task.

Task 2: Commonsense Generation

Input expression: Copy(stone) & Copy(explain) & Copy(knife) & Copy(sharpen)
Logic expression: Copy(stone) ∧ Copy(explain) ∧Copy(knife) ∧Copy(sharpen)

T5: a man is sharpening a knife on a stone
NRETM: a man explains how to sharpen a knife on a stone

Input expression: Copy(stand) & Copy(map) & Copy(report) & Copy(front) & Copy(weather)
Logic expression: Copy(stand) ∧ Copy(map) ∧ Copy(report) ∧ Copy(front) ∧ Copy(weather)

T5: map showing where the weather is standing at the front
NRETM: a man stands in front of a map reporting the weather

Input expression: Copy(put) & Copy(lipstick) & Copy(talk) & Copy(lip)
Logic expression: Copy(put) ∧ Copy(lipstick) ∧ Copy(talk) ∧ Copy(lip)

T5: a woman puts lipstick on and talks about it
NRETM: a woman is talking and putting lipstick on her lips

Input expression: Copy(iron) & Copy(straighten) & Copy(demonstrate) & Copy(hair)
Logic expression: Copy(iron) ∧ Copy(straighten) ∧ Copy(demonstrate) ∧ Copy(hair)

T5: a woman straightens her hair with an iron and shows how to do it
NRETM: a woman is demonstrating how to straighten her hair with an iron

Input expression: Copy(bride) & Copy(stand) & Copy(bridesmaid) & Copy(groomsman) &
Copy(groom)

Logic expression: Copy(bride) ∧ Copy(stand) ∧ Copy(bridesmaid) ∧ Copy(groomsman) ∧
Copy(groom)

T5: bride standing with her bridesmaids and groomsmen
NRETM: the bridesmaids and groomsmen stand in front of the bride and groom

Input expression: Copy(kitchen) & Copy(watermelon) & Copy(knife) & Copy(cut)
Logic expression: Copy(kitchen) ∧ Copy(watermelon) ∧ Copy(knife) ∧ Copy(cut)

T5: a knife cutting a watermelon in a kitchen
NRETM: a man cutting a watermelon with a knife in the kitchen

Table 9 shows selected examples from our T5 baseline and NRETM models in the Commonsense
Generation task. Concepts that are missed in the baseline model outputs are in red. Words in blue are
the key difference between the output of baseline and NRETM model. Note that we omit the synonyms
for simplicity. Full Examples for this task can be found in Sec. A.3. Although the baseline model
can correctly complete many Copy operations, it fails when the input combination is not commonly
seen. For example, “explain” and “knife” in the first example. The baseline model also generates
meaningless sentence when the inputs are complicated concepts combination in the second example.
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In addition, the baseline model cannot handle the case where some input concepts share the same
prefix, such as “groom” and “groomsman” in the forth example. The baseline model seems to merge
these morphological similar input concepts into a single concept and only mentions one of them in
the outputs. Whereas the NRETM model successfully completes all of Copy operations.

Table 10 shows selected examples from our T5 baseline and NRETM models in document-level machine
translation. In the first case, the mT5 baseline model produces duplicated sentences (“what happens
when co2 emissions go up”, in red). As a consequence, it fails to translate a few important chunks
in the source sentences (see in Blue). This may due to the fact that the mT5 baseline model cannot
handle long input documents well. While our NRETM model translates all source sentences into fluent
English. Sentences in Green are missed by the baseline model but successfully translated by the
NRETM model with the help of the predicate translateOnce. In the second case, the baseline model
skips the important word “exchange” (see underline in the Input expression) in its translated text
(highlighted in red). The NRETM model accurately translates this sentence (highlighted in blue). This
shows that the NRETM model is more focused on the current sentence than the T5 baseline model.

Table 10: Generated Example of the mT5 and NRETM model for document-level machine translation.

Task 3: Document-level Machine Translation

Input expression: 当前二氧化碳巨大的排放量将导致温度上升，温度的升高将引起一系列非常严
重的后果，比如对天气的直接影响，或对生态系统的间接影响，生态系统无法
应对剧烈变化的结果就是生态系统的全面崩溃。二氧化碳排放增加和温度升高
究竟成怎样的关系，两者间的正反馈效应为何？这中间有一些不确定因素，但
不多。至于全球变暖的具体负面影响有多严重，这无法完全确定，但肯定极其
严重。translateOnce(1) & translateOnce(2) & translateOnce(3)

mT5: what happens when co2 emissions go up – what happens when co2 emissions go up – is
that the system collapses. what’s the positive feedback between co2 emissions and
temperature rising, and what’s the negative feedback between co2 emissions and
temperature rising?there’s some uncertainty about how severe it is, but it’s certainly
severe.

NRETM: what’s going to happen when co2 emissions go up will cause temperatures to rise with a
range of very severe consequences, such that, either directly or indirectly, ecosystems
will collapse. there’s some uncertainty about how this relationship, the positive
feedback, between co2 emissions and temperature rise will work. how severe it will be,
it’s not entirely clear.

Input expression: 我是跟着50个去往贾拉拉巴德战役的反叛者乘着卡车一起来的，当时我19岁，
是一位住在佛罗里达州杰克逊维尔的素食主义者兼冲浪爱好者。我用我的黑色
匡威的低邦鞋换了一双棕色的皮拖鞋，并且对着我看不太清的政府的坦克发了
一枚火箭。这是我第一次到阿富汗。translateOnce(1) & translateOnce(2) &
translateOnce(3)

mT5: I was riding a truck with 50 rebels who had gone to Jalabard to fight the Taliban, and I
was 19 years old, a vegetarian and surfer in Jacksonville, Florida. I took my black shoe
boots and a brown leather shoe, and I threw a rocket at a government tank that I couldn’t
see. This was my first trip to Afghanistan.

NRETM: I was accompanied by 50 counter-insurgents on a truck heading to Jamalabad, Florida,
when I was 19 years old, a vegetarian and surfers living in Jacksonville, Florida. I
exchange brown leather sandals with my black jackets, and I fired a rocket at the tanks
of the government that I didn’t see. This was my first time in Afghanistan
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5.2 Definition of Predicates

Figure 3 to 8 show the six kinds of predicates, including InSen, Order, Copy, TranslatedOnce,
Len and StopWordCount, used in our framework. The code in figures is the pseudo code of the
logical operator (i.e., executable programs), in which y refers to y:t, y_i is yi, state is the default
state status q̂kit and i_val is the additional intermediate values q̄kit . In our experiments, all of these
logical operators are implemented using the Python programming language, and their source codes
are not directly visible to the neural text generators. They only communicate with the neural text
generators using the state flags. All predicates have State 0, indicating unfinished status and State
2, indicating finished status. As discussed in Sec 2.4, State 1 is an optional predicate-specific state.
We will introduce the definition and role of State 1 for each of the above predicate if it exists in the
captions.

Figure 3: The definition of predicate InSen. The State 1 starts when the text generators start to
generate kth sentence. This informs the model that it is possible to mention xi in the outputs.

Figure 4: The definition of predicate Order. The State 1 starts when the previous element x_a has
already been mentioned in the outputs. This informs the model to mention x_b next.

Figure 5: The definition of predicate Copy. There is no State 1 in the definition of Copy because
there is no “partial copy” status.
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Figure 6: The definition of predicate TranslatedOnce. The State 1 starts when ith sentence is being
translated. This informs the model should pay attention to which source sentence.

Figure 7: The definition of predicate Len. The State 1 starts when the text generator starts to generate
ith sentence. We also explicitly inform the model of how many tokens are remaining for the current
sentence. So they have State 1 with additional information i_val. Figure 9 shows the actual state
matrix of this predicate.

Figure 8: The definition of predicate StopWordCount. The State 1 starts when the text generator
starts to generate ith sentence. We also explicitly inform the model of how many stop words are
remaining for the current sentence. So they have State 1 with additional information i_val.
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5.3 Predicate Logic Constraint and State Flag

As the predicate logic constraintsM used in our framework could support arbitrary formats (i.e.,
predicates can be in any combination with logical words), a key challenge is mapping each state flag
in the state matrix to the corresponding predicate in the logic expression. To tackle this challenge, we
treat the predicate logic constraints (as "Logic expression" in tables of Sec. A.1) as the extra input (as
"Input expression" in tables of Sec. A.1) to the encoder of sequence-to-sequence (S2S) transformer-
based text generators. In addition, we encode the state flags using a shallow transformer-based
encoder with the same architecture. With the help of both positional embeddings in two modules,
NRETM could align the state flags in state matrix with predicates in logic expression to achieve
successful control. For the state flag qit, it keep tracks of the dynamic progress of all predicates
during text generation. Therefore, we only put the current progress of each predicate in qit and
encode it using a shallow rule transformer encoder. ForM with n predicates D = {Ui}ni=1, qit is
the concatenation of {qkit}nk=1, where qkit is the concatenation of default state status q̂kit and optional
intermediate values q̄kit. q̂

k
it is formulated as:

q̂kit =


N variables of Uk do not contain xi
0 Uk is not satisfied
1 Uk is in progress
2 Uk is satisfied

(13)

To show the importance of our proposed rule-execution tracking module, our baseline models also
have access to the predicate logic constraints in their encoders in all of our evaluation tasks. The
baseline model and our NRETM model have the same amount of input information and only differ in
whether equipped with the above rule-execution tracking module.

In Table 1, Sec 3.1, we control the length of arbitrary sentence for ROCStories generation. Figure 9
shows a minimal example of controlling the length of the second sentence. q̂kit is in status 0 when the
model is generating the first sentence. As the model finishes the first sentence (i.e., after generating
“!”), qkit is updated to “1 5” (see the definition of predicate Len in Figure 7). The q̂kit is finally updated
to status 2 when finishing this sentence.

Figure 9: The State Matrix for controlling the length of the second sentence. The yellow cell indicates
the status update.

We further show the actual state matrix used in the Commonsense Generation and the document-level
machine translation task in Figure 10 and 11, respectively. In both tasks, the number of qkit is linear to
the number of input concept words or the number of input source sentences. In our implementation,
we compress qk1

it and qk2
it if they satisfy the following two conditions:

• Uk1
and Uk2

are the same predicate.
• the variables of Uk1

and Uk2
are disjoint or the “in progress” period of Uk1

and Uk2
are not

overlapped.

After the above compression, the length of {qkit} in the Commonsense Generation task and Document-
level Machine Translation task becomes one.
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Figure 10: The State Matrix for the Commonsense Generation task. In this task, the status is updated
once the keywords or phrases are fully mentioned in the outputs.

Figure 11: The State Matrix for the Document-level Machine Translation. The yellow cell indicates
the status update. In this task, the status is updated once one sentence is finished.
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5.4 More Results for Controllable ROCStories Generation Experiment

In this section, we conduct more analysis in Table 11 and 12 for the rules with relatively low Con-
straint Success Ratio (CSR) in Table 1, Sec. 3.1 (Controllable ROCStories Generation Experiment).
Specifically, they are:

• R1 = InSen(w1, y
i) ∧ InSen(w2, y

j) ∧ Len(yj , lj) ∧ Len(yi, li);

• R2 = (¬InSen(w3, y
j)) ∧ (Len(yi, li) ∨ StopWordCount(yi, si)) ∧ InSen(w1, y

i) ∧
InSen(w2, y

j);
• R3 = (Len(yi, li)∨StopWordCount(yi, si))∧(Len(yj , lj)∨StopWordCount(yj , sj))∧

InSen(w1, y
i) ∧ InSen(w2, y

j)

The full CSR for R1, R2 and R3 is relatively low in Table 1, Sec 3.1. As all of them involve length
and stop word control, we are interested in how accurate they are when they are allowed to make
small control errors. We calculate Constraint Success Ratio with errors ±1 and ±2 in Table 11.
Under errors ±1, the CSR of NRETM model is significantly improved. In R3, the CSR of the NRETM
model is improved from 35.9% to 64.4%. In three rules, the NRETM model is 20% - 30% higher than
the T5 baseline model. Under errors ±2, among all three rules, the lowest CSR for the NRETM model
is 82.1%. The NRETM model can still improve the CSR of baseline model by 6% to 11%. Note that
±2 is relatively large error gap in ROCStories dataset becuase each sentence only has, on average,
7.3 stop words. This explains the smaller CSR gap between the NRETM and T5 baseline model in the
CSR ±2 setup. In summary, the NRETM model reasonably completes this controllable text generation
task.

Table 11: Constraint Success Ratio with total length and stop word count errors ±1 and ±2.

#R M CSR (±0) CSR (±1) CSR (±2)

R1
T5 18.5 67.6 89.2

NRETM 84.5 97.0 98.9

R2
T5 23.5 56.5 78.6

NRETM 49.4 76.1 89.9

R3
T5 11.0 44.9 76.2

NRETM 35.9 64.4 82.1

We further break the CSR into predicate level in Table 12. The NRETM model achieves consistently
higher CSR in all predicates than the T5 baseline model. Specifically, both T5 baseline and NRETM
model achieve near-perfect performance in the predicate InSen. We believe that this is due to effect
of the large-scale pre-training in the T5 model. The length control Len is more challenging than
InSen. The NRETM model achieves around CSR 90%, while the baseline model only achieves CSR
38%. This shows that simply feeding the target length to the S2S encoder cannot properly control
the output text length. When using the logical word ∨ in R2 and R3, the CSR for Len is around 50 -
60%. Unlike R1 where the model is always trained to satisfy predicate Len, in R2 and R3, only 67%
of the training data satisfy predicate Len. The predicate StopWordCount is even more challenging:
the NRETM model only achieves 43.2% and 28.6% CSR in R2 and R3, respectively. This may because
the models have to distinguish between stop word tokens and non-stop word tokens.
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Table 12: Predicate-Level Constraint Success Ratio. InS: InSen; L: Len; SWC: StopWordCount;

Model Predicate-Level CSR

R1

Predicate InS(w1, y
i) InS(w2, y

j) L(yi, li) L(yj , lj) - -
T5 99.5 99.0 38.0 36.2 - -

NRETM 99.5 99.3 89.7 91.2 - -

R2
Predicate InS(w1, y

i) InS(w2, y
j) ¬InS(w3, y

j) L(yi, li) SWC(yi, si) -
T5 99.6 99.1 99.1 23.5 18.8 -

NRETM 100 99.9 99.9 50.7 43.2 -

R3
Predicate InS(w1, y

i) InS(w2, y
j) L(yi, li) SWC(yi, si) L(yj , lj) SWC(yj , sj)

T5 99.6 99.5 28.8 15.2 25.3 13.7
NRETM 100 100 56.4 28.6 55.7 27.3
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5.5 Implementation Details For Each Evaluation Task

In this section, we will introduce the implementation details of all our evaluation tasks. In our
experiments, we use three different pre-trained language model, T5-base, T5-Large and MBart-Large.
We use the implementation of huggingface transformers 4. We modify their decoder models to
integrate our state matrix and use their provided model weights in our experiment. We only additional
introduce the State Matrix Encoder. It is a one-layer transformer encoder. Its hidden size equals to
the dimension of each head in the pre-trained transformer-based langauge models. The size of its
FFN layer is 256. The number of its heads is 4.

Controllable ROCStories Generation We first use RAKE algorithm (implemented by https:
//github.com/csurfer/rake-nltk) to extract storyline (i.e., key words and phrases) from the
ground-truth stories. In the ROCStories dataset, each story has 5 sentences. For extracted storylines,
we can easily find their original sentence index and ordering. We can also extract total length
and stop word counts from each sentence in the ground-truth stories. We use these information to
construct the training rules. For rules with only logic ∧, we simply use these extracted ground-truth
information as the predicate logic constraint. For rules with logic ∨ (e.g., R2 and R3 in A.4), we
create all cases with equal proportion in the training data. For example, for clause Len(yi, li) ∨
StopWordCount(yi, si), we create 33% of the training data only satisfy Len(yi, li), 33% of the
training only satisfy StopWordCount(yi, si) and the remaining training data satisfy both of them.
We can assign fake value for li or si for the above data argumentation. To improve the generalization
of our pre-trained model, we freeze the parameters in the Self-Attention module and Feed-Forward
Layers in each layer of the T5 decoder. This parameters freezing technology is applied to both T5
baseline models and the NRETM models in all of our experiments. We use constant learning rate 5e−5

and batch size 32 for this experiment.

Commonsense Generation In the Commonsense Generation task, we first use NLTK toolkit to
expand each input concept with all of its possible inflected forms, including plurals and different
tenses. We further search the mention position of each input concept, including all of its inflected
forms, on its corresponding ground-truth references. With this mention position, we can construct the
state matrix shown in Figure 10 by putting Status 2 after this mention position and Status 0 before
this mention position. We use the same model and training setup in the Controllable ROCStories
Generation task. We use constant learning rate 5e−5 and batch size 48 for this experiment.

Document-level Machine Translation In the document-level Machine Translation, we split each
documents into 2 - 4 trucks. Following the fine-tune setup in the original MBart paper, we use
learning rate 3e−5. But we use batch size 8 and total training step 80k for our experiment.

4https://github.com/huggingface/transformers
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