
Solving Retail Space Optimization Problem using
the Randomized Search Algorithm

Kresimir Mihic1, Andrew Vakhutinsky2 and David Vengerov1

Oracle Labs1 and Oracle RGBU2

April 21st, 2012

1 / 19



Randomized Search Algorithm

Case Study: Shelf Space Optimization Problem

Experimental Results

Summary

2 / 19



Randomized Search Algorithm

Case Study: Shelf Space Optimization Problem

Experimental Results

Summary

3 / 19



Randomized Search (RS) Algorithm

I Applies to hard combinatorial problems (solution space is finite)

I Especially suited for smooth surface problems:
I That include complex constraints among the function’s input and

output variables.
I That are non-linear and non-convex (the optimal solution does not

need to be guaranteed)

I It builds on a stochastic nature of the Simulated Annealing (SA)
methodology, but:

I includes a mechanism for structural exploration of the solution space
I derives its convergence criteria on a quality of the result rather than

on a ”temperature” schedule
I does not recognize the concept of ”temperature” what makes it

easier to implement across a wide range of problems

4 / 19



The Big Picture

I The algorithm consists of two sequential phases, exploration and
exploitation phase, that alternate until RS converges to some locally
optimal solution or until maximum run time is reached.

I Each phase consists of repetitive cycles where components of the
solution vector are considered in random order using uniform
probability distribution.

I In the exploitation phase, the algorithm seeks to improve the current
solution vector

I The exploration phase serves as a mean to ”escape” locally optimal
points.

5 / 19



RS Algorithm: Top View

6 / 19



Exploitation phase

1: let S0 be the current solution vector.
2: for each component i ∈ S0 (randomly chosen without replacement)

do
3: among all the values allowed for the component i find the value

that satisfies constraints and maximizes (minimizes) the
objective value with all the other components unchanged. Set i to
that value.

4: end for
5: repeat steps 2-4 if terminating criteria not reached

7 / 19



Exploration phase

1: let S0 be the current solution vector.
2: for each component i ∈ S0 (randomly chosen without replacement)

do
3: choose a value from the set of all the values allowed for the

component i at random.
4: accept the random value if it does not decrease the previously

found best objective value by more than a specified percentage
number.

5: if the new objective value > the best objective value, return from
the exploration phase

6: end for
7: return to the step 2 if terminating criteria not reached

8 / 19



Randomized Search Algorithm

Case Study: Shelf Space Optimization Problem

Experimental Results

Summary

9 / 19



Shelf Space Optimization Problem

I Objectives:

1. Determine shelf location and the number of facings for each item
that would maximize a business criteria subject to the total shelf
capacity, inventory replenishment constraints and adjacency rules.

2. Minimize the total cost of changing the current layout.

I Constraints:
I Shelf capacity
I Category and brand boundaries
I Item group adjacency
I Shelf uniqueness

10 / 19



Constraints

I Shelf capacity
I Hard constraint. Specifies an upper bound on the total number of

fixtures occupied by the items on the shelves

I Brand boundaries
I Soft constraint. There is a certain tolerance associated with violating

vertical brand alignment.

I Category boundaries
I Categories can occupy only integer number of shelf fixtures. Any

shelf space unoccupied by a category is wasted.

I Item adjacency
I A group of items can be requested to be placed on the same shelf.

I Shelf uniqueness
I An item can be assigned only to a single shelf.

11 / 19



Sales volume as the function of number of facings

I Given the replenishment policy and demand forecast, compute sales
volume as a function of the number of facings lost sales are due to
insufficient storage space

I Demand may depend on:
I shelf position (e.g. eye level vs. bottom)
I number of facings

I The volume as a function of facings increases with diminishing return

12 / 19



Service Level vs. Shelf Facing Allocation

I Space-aware assortment:
I Start with some initial assortment for the store type
I Drop items from the assortmen

13 / 19



Randomized Search Algorithm

Case Study: Shelf Space Optimization Problem

Experimental Results

Summary

14 / 19



Experimental Results: Quality of the results

I Brand vertical alignment tolerance = 35 mm

I RS experiments repeated for 10 times each. Reporting mean values.

I “RS fast“ - Exploitation phase only. Exploration turned off

I ”Gurobi optimized“ - Runtime parameters optimized for the ShelfSpace problem

I ”Gurobi default“ - no solution found in 3600 seconds for aisle lengths > 24 ft

15 / 19



Experimental Results: Runtime

I Brand vertical alignment tolerance = 35 mm

I RS experiments repeated for 10 times each. Reporting mean values.

I “RS fast“ - Exploitation phase only. Exploration turned off

I ”Gurobi optimized“ - Runtime parameters optimized for the ShelfSpace problem

I ”Gurobi default“ - no solution found in 3600 seconds for aisle lengths > 24 ft

16 / 19



Experimental Results: Memory footprint

I RS has the same memory footprint across the different modes of
operation (default, fast):

I Max heap size (estimated from the JVM garbage collection) is below
300 KB

I Gurobi memory requirements are between 2.9 and 3.2 GB (found by
using unix command ”pmap -x “)

I Memory footprint measured across different aisle lengths and vertical
aligment constraints

17 / 19



Randomized Search Algorithm

Case Study: Shelf Space Optimization Problem

Experimental Results

Summary

18 / 19



Summary

I RS is an algorithm for solving complex multi-dimensional
combinatorial problems.

I There is no guarantee that the solution is the global optimum

I The algorithm uses internal structure of a problem to explore the
search space and finds good solutions very quickly

I Shelf space optimizaton problem:
I Implementation done in Java.
I RS produces results of a better quality than the commercial solver

(Gurobi) within comparable or shorter runtime.
I Yields optimal solutions across a wide range of problem

configurations without tuning.

19 / 19


	Randomized Search Algorithm
	Case Study: Shelf Space Optimization Problem
	Experimental Results
	Summary

